A Mathematical Framework for Enriching Human–Machine Interactions - Institut de Recherche en Gestion
Article Dans Une Revue Machine Learning and Knowledge Extraction Année : 2023

A Mathematical Framework for Enriching Human–Machine Interactions

Résumé

This paper presents a conceptual mathematical framework for developing rich human–machine interactions in order to improve decision-making in a social organisation, S. The idea is to model how S can create a “multi-level artificial cognitive system”, called a data analyser (DA), to collaborate with humans in collecting and learning how to analyse data, to anticipate situations, and to develop new responses, thus improving decision-making. In this model, the DA is “processed” to not only gather data and extend existing knowledge, but also to learn how to act autonomously with its own specific procedures or even to create new ones. An application is given in cases where such rich human–machine interactions are expected to allow the DA+S partnership to acquire deep anticipation capabilities for possible future changes, e.g., to prevent risks or seize opportunities. The way the social organization S operates over time, including the construction of DA, is described using the conceptual framework comprising “memory evolutive systems” (MES), a mathematical theoretical approach introduced by Ehresmann and Vanbremeersch for evolutionary multi-scale, multi-agent and multi-temporality systems. This leads to the definition of a “data analyser–MES”.
Fichier principal
Vignette du fichier
make-05-00034-v2.pdf (3.14 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04161016 , version 1 (06-09-2024)

Licence

Identifiants

Citer

Andrée Ehresmann, Mathias Béjean, Jean-Paul Vanbremeersch. A Mathematical Framework for Enriching Human–Machine Interactions. Machine Learning and Knowledge Extraction, 2023, 5 (2), pp.597-610. ⟨10.3390/make5020034⟩. ⟨hal-04161016⟩
67 Consultations
5 Téléchargements

Altmetric

Partager

More