An Interpretable Deep Learning Approach for Morphological Script Type Analysis - Algorithms, architectures, image analysis and computer graphics
Communication Dans Un Congrès Année : 2024

An Interpretable Deep Learning Approach for Morphological Script Type Analysis

Résumé

Defining script types and establishing classification criteria for medieval handwriting is a central aspect of palaeographical analysis. However, existing typologies often encounter methodological challenges, such as descriptive limitations and subjective criteria. We propose an interpretable deep learning-based approach to morphological script type analysis, which enables systematic and objective analysis and contributes to bridging the gap between qualitative observations and quantitative measurements. More precisely, we adapt a deep instance segmentation method to learn comparable character prototypes, representative of letter morphology, and provide qualitative and quantitative tools for their comparison and analysis. We demonstrate our approach by applying it to the Textualis Formata script type and its two subtypes formalized by A. Derolez: Northern and Southern Textualis.

Fichier principal
Vignette du fichier
paper_with_webpage_link.pdf (9.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04766901 , version 1 (12-11-2024)

Identifiants

Citer

Malamatenia Vlachou-Efstathiou, Ioannis Siglidis, Dominique Stutzmann, Mathieu Aubry. An Interpretable Deep Learning Approach for Morphological Script Type Analysis. International Workshop on Computational Palaeography, ICDAR 2024, Aug 2024, Athènes, Greece. pp.3-21, ⟨10.1007/978-3-031-70642-4_1⟩. ⟨hal-04766901⟩
13 Consultations
10 Téléchargements

Altmetric

Partager

More