Combining Microfluidics, Optogenetics and Calcium Imaging to Study Neuronal Communication In Vitro - Axonal Growth and Regeneration
Article Dans Une Revue PLoS ONE Année : 2015

Combining Microfluidics, Optogenetics and Calcium Imaging to Study Neuronal Communication In Vitro

Résumé

In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.

Domaines

Neurosciences
Fichier principal
Vignette du fichier
journal.pone.0120680.pdf (738.03 Ko) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01227804 , version 1 (12-11-2015)

Licence

Identifiants

Citer

Renaud Renault, Nirit Sukenik, Stéphanie Descroix, Laurent Malaquin, Jean-Louis Viovy, et al.. Combining Microfluidics, Optogenetics and Calcium Imaging to Study Neuronal Communication In Vitro. PLoS ONE, 2015, 10 (4), pp.e0120680. ⟨10.1371/journal.pone.0120680⟩. ⟨hal-01227804⟩
442 Consultations
262 Téléchargements

Altmetric

Partager

More