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Université de Bourgogne, 21078 Dijon cedex, France

Olivier.Togni@u-bourgogne.fr

February 20, 2014

The packing chromatic number χρ(G) of a graph G is the least integer k for
which there exists a mapping f from V (G) to {1, 2, . . . , k} such that any two
vertices of color i are at a distance of at least i+1. This paper studies the packing
chromatic number of infinite distance graphs G(Z, D), i.e. graphs with the set
Z of integers as vertex set, with two distinct vertices i, j ∈ Z being adjacent if
and only if |i − j| ∈ D. We present lower and upper bounds for χρ(G(Z, D)),
showing that for finite D, the packing chromatic number is finite. Our main
result concerns distance graphs with D = {1, t} for which we prove some upper
bounds on their packing chromatic numbers, the smaller ones being for t ≥ 447:
χρ(G(Z, {1, t})) ≤ 40 if t is odd and χρ(G(Z, {1, t})) ≤ 81 if t is even.

Keywords: graph coloring; packing chromatic number; distance graph.

1. Introduction

Let G be a connected graph and let k be an integer, k ≥ 1. A packing k-coloring (or simply
a packing coloring) of a graph G is a mapping f from V (G) to {1, 2, · · · , k} such that for any
two distinct vertices u and v, if f(u) = f(v) = i, then dist(u, v) > i, where dist(u, v) is the
distance between u and v in G (thus vertices of color i form an i-packing of G). The packing
chromatic number χρ(G) of G is the smallest integer k for which G has a packing k-coloring.

This parameter was introduced recently by Goddard et al. [9] under the name of broadcast
chromatic number and the authors showed that deciding whether χρ(G) ≤ 4 is NP-hard.
Fiala and Golovach [6] showed that the packing coloring problem is NP-complete for trees.
Brešar et al. [2] studied the problem on Cartesian products graphs, hexagonal lattice and
trees, using the name of packing chromatic number. Other studies on this parameter mainly
concern infinite graphs, with a natural question to be answered : does a given infinite graph
have finite packing chromatic number ? Goddard et al. answered this question affirmatively
for the infinite two dimensional square grid by showing 9 ≤ χρ ≤ 23. The lower bound was
later improved to 10 by Fiala et al. [7] and then to 12 by Ekstein et al. [5]. The upper bound
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was recently improved by Holub and Soukal [13] to 17. Fiala et al. [7] showed that the infinite
hexagonal grid has packing chromatic number 7; while both the infinite triangular lattice and
the 3-dimensional square lattice were shown to admit no finite packing coloring by Finbow
and Rall [8]. Infinite product graphs were considered by Fiala et al. [7] who showed that the
product of a finite path (of order at least two) with the 2-dimensional square grid has infinite
packing chromatic number while the product of the infinite path and any finite graph has
finite packing chromatic number.

The (infinite) distance graph G(Z, D) with distance set D = {d1, d2, . . . , dk}, where di are
positive integers, has the set Z of integers as vertex set, with two distinct vertices i, j ∈ Z
being adjacent if and only if |i − j| ∈ D. The finite distance graph Gn(D) is the subgraph
of G(Z, D) induced by vertices 0, 1, . . . , n− 1. To simplify, G(Z, {d1, d2, . . . , dk}) will also be
denoted as D(d1, d2, . . . , dk) and Gn({d1, d2, . . . , dk}) as Dn(d1, d2, . . . , dk).

The study of distance graphs was initiated by Eggleton et al. [3]. A large amount of work
has focused on colorings of distance graphs [4, 15, 1, 11, 12, 14], but other parameters have
also been studied on distance graphs, like the feedback vertex set problem [10].

The aim of this paper is to study the packing chromatic number of infinite distance graphs,
with particular emphasis on the case D = {1, t}. In Section 2, we bound the packing chro-
matic number of the infinite path power (i.e. infinite distance graph with D = {1, 2, . . . , t}).
Section 3 concerns packing colorings of distance graphs with D = {1, t}, for which we prove
some lower and upper bounds on the number of colors (see Proposition 1). Exact or sharp re-
sults for the packing chromatic number of some other 4-regular distance graphs are presented
in Section 4. Section 5 concludes the paper with some remarks and open questions.

Our results about the packing chromatic number of G(Z, D) for some small values of D
(from Sections 2 and 4) are summarized in Table 1.

D χρ ≥ χρ ≤ period

1, 2 8 8 54

1, 3 9∗ 9 32

1, 4 11 16 320

1, 5 10∗ 12 1028

1, 6 12 23 2016

1, 7 10∗ 15 640

1, 8 11∗ 25 5184

1, 9 10∗ 18 576

1, 2, 3 17 23 768

2, 3 11 13 240

2, 5 14 23 336

Table 1: Lower and upper bounds for the packing chromatic number of G(Z, D) for different
values of D. In the fourth column are the periods of the colorings giving the upper
bounds. (∗: bound obtained by running Algorithm 1 of Section 4).

The bounds of Section 3 are summarized in the following Proposition:
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Proposition 1. Let t, q be integers. Then,

χρ(D(1, t)) ≤



89, t = 2q + 1, q ≥ 35;
40, t = 2q + 1, q ≥ 223;
179, t = 2q, q ≥ 89;
81, t = 2q, q ≥ 224;
29, t = 96q ± 1, q ≥ 1;
59, t = 96q + 1± 1, q ≥ 1.

Some proofs of lower bounds use a density argument. For this, we define the density
ρa(Gn(D)) of a color a in Gn(D) as the maximum fraction of vertices colored a in any
packing coloring of Gn(D) and ρa(D) (or simply ρa, if the graph is clear from the context)
by ρa(D) = lim sup

n→+∞
ρa(Gn(D)). Let also ρ1,2(Gn(D)) be the maximum fraction of vertices

colored 1 or 2 in any packing coloring of Gn(D) and let ρ1,2 = lim sup
n→+∞

ρ1,2(Gn(D)). We have

trivially, for any D, χρ(G(Z, D)) ≥ min{c |
∑c

i=1 ρi ≥ 1} and ρ1,2 ≤ ρ1 + ρ2.

2. Path Powers

The tth power Gt of a graph G is the graph with the same vertex set as G and edges between
every vertices x, y that are at a mutual distance of at most t in G. Let Dt = G(Z, {1, 2, · · · , t})
be the tth power of the two-ways infinite path and let P tn = Gn({1, 2, · · · , t}) be the tth power
of the path Pn on n vertices.

We first present an asymptotic result on the packing chromatic number:

Proposition 2. χρ(D
t) = (1 + o(1))3t and χρ(D

t) = Ω(et).

Proof. Dt is a spanning subgraph of the lexicographic product1 Z ◦Kt (see Figure 1). Then,
as Goddard et al. [9] showed that χρ(Z ◦Kt) = (1 + o(1))3t, the same upper bound holds for
Dt. To prove the lower bound, since ρi ≤ 1

it+1 , then for any packing coloring of Dt using at
most c colors, c must satisfy:

c∑
i=1

1

it+ 1
≥ 1.

Since
c∑
i=1

1

it+ 1
<

c∑
i=1

1

it
=

1

t

c∑
i=1

1

i
=
Hc

t
,

whereHn is the nth harmonic number and sinceHn = Ω(ln(n)), then Hc
t ≥ 1 implies c = Ω(et).

Corollary 1. For any finite subset D of N, the packing chromatic number of G(Z, D) is
finite.

For very small t, exact values or sharp bounds for the packing chromatic number can be
calculated:
1the lexicographic product G ◦H of graphs G and H has vertex set V (G)×V (H) and two vertices (a, x) and
(b, y) are linked by an edge if and only if ab ∈ E(G) or a = b and xy ∈ E(H)
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Figure 1: The infinite distance graph D3 as a subgraph of the lexicographic product Z ◦K3.

Proposition 3.
χρ(D

2) = 8.

Proof. A packing 8-coloring can be constructed by repeating the following pattern of length
54 :

8, 1, 2, 6, 1, 4, 3, 2, 1, 5, 7, 1, 2, 3, 4, 1, 6, 2, 1, 8, 3, 1, 2, 4, 1, 5, 7,
1, 3, 2, 1, 6, 4, 1, 2, 3, 1, 8, 5, 1, 2, 4, 1, 3, 6, 1, 2, 7, 1, 5, 4, 2, 1, 3.

On the other hand, it can be seen that ρi ≤ 1
2i+1 for any i ≥ 1. However, we next prove

that ρ1,2 ≤ 1
2 . Consider vertices v, v + 1, . . . , v + 9 for some v. The only possibility to color

more than 5 of these 10 vertices is to give color 1 to v, v + 3, v + 6, v + 9 and then at most 2
vertices can be given color 2 (v + 1 or v + 2, and v + 7 or v + 8). But in this case, neither
vertex v+ 10 nor vertex v+ 11 can be given color 1 or 2, resulting in 6 vertices colored out of
12. Moreover, an easy computation gives that χρ(D

2) ≥ min{c | 12 +
∑c

i=3
1

2i+1 ≥ 1} = 8.

Proposition 4.
17 ≤ χρ(D3) ≤ 23.

Proof. The upper bound comes from a packing 23-coloring of period 768 defined by repeating
the sequence of length 768 given in Appendix A.

To prove the lower bound, as the distance dist(u, v) between the vertices u and v is
dist(u, v) = dv−u3 e, then ρi ≤ 1

3i+1 and an easy computation gives that χρ(D
3) ≥ min{c|

∑c
i=1

1
3i+1 ≥

1} = 17.

3. D(1, t) with large t

The general method is to cut the distance graph into sets of consecutive vertices of size
s = t− 1 or s = t+ 1, depending on the value of t and to color each set by a predefined color
pattern. Let s be either t+ 1 or t− 1 and let Ai = {is, is+ 1, . . . , (i+ 1)s− 1} and Bi be the
subgraph of D(1, t) induced by Ai. Notice that V (D(1, t)) =

⋃+∞
i=−∞Ai and that if s = t+ 1,

then each Bi is an induced cycle of D(1, t) of length s = t + 1 (see Figure 2). By a color
pattern P , we mean a sequence of integers (c1, c2, . . . , cs) of length s that will be associated to
some subgraph Bi by giving the color cj to the jth vertex of Bi. If S is a sequence of integers,
Sp is the sequence obtained by repeating S p times. The cyclic distance between elements si
and sj of a sequence (s1, s2, . . . , s`) is min(|j − i|, `− |j − i|).

We first need to know the distance between two vertices in D(1, t).
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B1

B0

B1

B2

B3

B0

B2

B3

s = |Bi| = t+ 1

s = |Bi| = t− 1

D(1, 7)

D(1, 9)

Figure 2: D(1, t), with t = 7 (on the top) and t = 9 (on the bottom) drawn by rows of size
s = 8.

Lemma 1. The distance between two vertices u and v of D(1, t) is dist(u, v) = min(q+ r, q+
1 + t− r), where |v − u| = qt+ r, with 0 ≤ r < t.

Proof. Let us call an edge joining vertices x and y, with |y−x| = k a k-edge. Assume, without
loss of generality, that v ≥ u. then, any minimal path between u and v uses either q t-edges
and r 1-edges or q + 1 t-edges and t− r 1-edges.

The key lemma of our method is the following one which gives conditions for a coloring of
D(1, t) by color patterns to be a packing coloring.

Lemma 2. Let s > 1 be a positive integer and for each integer i, set Ai = {is, is+ 1, . . . , (i+
1)s−1}. Let t be a positive integer and for each i, let Bi be the subgraph of G = D(1, t) induced
by Ai, and Ci be the graph Bi with an additional edge joining vertices is and (i + 1)s − 1 if
s = t− 1. Suppose that G is colored in such a way that:

i) for each integer i, the coloring inherited by each Ci is a packing coloring;

ii) for each pair of integers i and j, if c is the maximum common color in both Ci and Cj
then we have c < s, |i− j| > c

2 , and each b ≤ c that is a common color in both Ci and
Cj has the property that si + k is colored b if and only if sj + k is colored b for each
k ∈ {0, 1, . . . , s− 1}.

Then the coloring is a packing coloring of G whenever t is in {s+ 1, s− 1}.
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Proof. Suppose vertices u and v have the same color, say e, and, without loss of generality,
assume u is in B0. Let σ : V (G) → V (C0) be defined by σ(k) = k mod s for each k ∈ N.
Observe that when t = s + 1 or t = s − 1, if two vertices x and y are adjacent in G, then
σ(x) and σ(y) are adjacent in C0. But then a path in G between u and v maps via σ to a
path of at most the same length between two vertices in C0 colored e. Since, by hypothesis,
C0 is colored by a packing coloring, as long as u 6= σ(v), the distance between u and v must
be greater than e.

If u = σ(u) = σ(v), then v − u = js for some j. If s = t − 1, then v − u = j(t − 1) =
(j−1)t+ t−j and by Lemma 1, dist(u, v) = min(j−1+ t−j, j+ t− t+j) = min(t−1, 2j) > e
since by hypothesis, e < s = t− 1 and 2j > e. Else, if s = t+ 1 then v− u = j(t+ 1) = jt+ j
and by Lemma 1, dist(u, v) = min(j+ j, j+ 1 + t− j) = min(2j, t+ 1) > e by hypothesis.

3.1. Proof of Proposition 1

Proof. Let t be an integer, G = D(1, t) and s = 4p if t = 4p − 1 or t = 4p + 1 for some p;
s = 4p + 1 if t = 4p or t = 4p + 2. For each integer i, set Ai = {is, is + 1, . . . , (i + 1)s − 1}
and let Bi be the subgraph of G induced by Ai.

In each of the following cases, a packing coloring of G is defined by assigning to each
subgraph Bi a pattern of colors with length s. We will use the following sub-patterns of
colors:
S2,3 = (1, 2, 1, 3),
S4,9 = (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9),
S4,11 = (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11),
S6,15 = (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15),
S6,21 = (1, 6, 1, 7, 1, 16, 1, 17, 1, 6, 1, 7, 1, 18, 1, 19, 1, 6, 1, 7, 1, 20, 1, 21),
S6,29 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 28, 1, 29),
S6,31 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 22, 1, 23,

1, 6, 1, 7, 1, 28, 1, 29, 1, 6, 1, 7, 1, 30, 1, 31).

Case A. t is odd. First, since s = 4p for some integer p and thanks to Lemma 2, we can
assign to each subgraph B2i+1 the color pattern (S2,3)

p. In order to color subgraphs B2i, we
consider three sub-cases (that are not totally disjoints).

Subcase A.1. t = 96q ± 1 for some q ≥ 1. A packing coloring of D(1, t) using these sub-
patterns is constructed by assigning inductively to 8 consecutive subgraphs B2i the sequence
of color patterns

P = ((S4,9)
8q, (S6,15)

6q, (S4,11)
8q, (S6,21)

4q, (S4,9)
8q, (S6,15)

6q, (S4,11)
8q, (S6,29)

3q).

Since the cyclic distance between two occurrences of any color e in each color pattern is
always greater than e, then Condition i) of Lemma 2 is satisfied. Moreover, as the cyclic
distance between any two color patterns in P is always greater than a quarter (since color
patterns of P are associated only with subgraphs of even indices) of their maximum common
color, then Condition ii) is also satisfied. Hence, the coloring is a packing coloring of D(1, t)
and χρ(D(1, t)) ≤ 29.
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Subcase A.2. t = 2p+1 for some p ≥ 223. We denote by S (1, α)r any sequence obtained
by inserting r quasi evenly cyclically-distributed occurrences of the pair (1, α) in the sequence
S; insertions being made only after a color different from 1, in order to keep the sequence
alternate between color 1 and other colors.
For example, (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)3 (1, α)5 can be rewritten as
(1, 4, 1, 5, 1, 8,1, α,1, 4, 1, 5, 1, 9,1, α,1, 4, 1, 5, 1, 8, 1, 4,1, α,1, 5, 1, 9, 1, 4, 1, 5,1, α,1, 8, 1, 4, 1, 5, 1, 9,1, α).

Then, color patterns using colors from {1, 2, . . . , 40} are defined by:
Qi1 = (S4,9)

q1 (1, 32 + i)r1 , for s = 12q1 + 2r1, 0 ≤ r1 ≤ 4, i = 0, 1, 2;
Qi2 = (S4,11)

q2 (1, 35 + i)r2 , for s = 12q2 + 2r2, 0 ≤ r2 ≤ 4, i = 0, 1, 2;
Qi3 = (S6,15)

q3 (1, 38 + i)r3 , for s = 16q3 + 2r3, 0 ≤ r3 ≤ 6, i = 0, 1, 2;
Q4 = (S6,21)

q4 (1, 30)r4 , for s = 24q4 + 2r4, 0 ≤ r4 ≤ 10;
Q5 = (S6,29)

q5 (1, 31)r5 , for s = 32q5 + 2r5, 0 ≤ r5 ≤ 14;
and we assign inductively to 24 consecutive subgraphs B2i the sequence of color patterns
Q defined by

Q = (Q0
1, Q

0
3, Q

0
2, Q4, Q

1
1, Q

1
3, Q

1
2, Q5, Q

2
1, Q

2
3, Q

2
2, Q4, Q

0
1, Q

0
3, Q

0
2, Q5, Q

1
1, Q

1
3, Q

1
2, Q4, Q

2
1, Q

2
3, Q

2
2, Q5).

In order for a color pattern S (1, α)r to satisfy Condition i) of Lemma 2 and as the

pairs (1, α) have to be inserted only on even positions, we must have 2bb |S|r c/2c ≥ α. Hence
the worst case for this separation constraint is for color 31 in Q5 when r5 = 14: one can
insert 14 occurrences of (1, 31) if 2bb32q514 c/2c ≥ 31, which is true as soon as q5 = 14 and thus
s = 448. Moreover, it can be seen that the added color in each pattern is chosen in such a
way that Condition ii) is satisfied. Hence, the coloring is a packing coloring of D(1, t) and
χρ(D(1, t)) ≤ 40.

Subcase A.3. t = 2p + 1 for some p, 35 ≤ p ≤ 222. The base case is s ≡ 0 (mod 48) for
which the sequence of color patterns that is assigned inductively to 8 consecutive subgraphs
B2i is defined as follows:

R = (R1, R3, R2, R4, R1, R3, R2, R5),

with R1 = (S4,9)
4q, R2 = (S4,11)

4q, R3 = (S6,15)
3q, R4 = (S6,21)

2q, and R5 = (S6,31)
q.

As for Subcase A.1, it can be easily checked that the defined coloring is a packing coloring.
Now, for s 6≡ 0 (mod 48), we may replace each of the above color patterns Rj ∈ R by

a certain number of patterns Rij (depending on the residue of s modulo the length of the
sub-pattern used) that will be used in turn, as for Subcase A.2.

Let ε be the empty sequence and let cj and δj , 1 ≤ j ≤ 5 be some integers (that will be set
just after).

Set Ri1 = (S4,9)
q1 .T i1, with s = 12q1 + 4r1, 0 ≤ r1 < 3, 0 ≤ i < δ1, and

T i1 =


ε, if r1 = 0;
(1, c1 + i, 1, c1 + δ1 + i), if r1 = 1;
(1, 4, 1, 5, 1, c1 + i, 1, c1 + δ1 + i), if r1 = 2.

Set Ri2 = (S4,11)
q2 .T i2, with s = 12q2 + 4r2, 0 ≤ r2 < 3, 0 ≤ i < δ2, and

T i2 =


ε, if r2 = 0;
(1, c2 + i, 1, c2 + δ2 + i), if r2 = 1;
(1, 4, 1, 5, 1, c2 + i, 1, c2 + δ2 + i), if r2 = 2.
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Set Ri3 = (S6,15)
q3 .T i3, with s = 16q3 + 4r3, 0 ≤ r3 < 4, 0 ≤ i < δ3, and

T i3 =


ε, if r3 = 0;
(1, c3 + i, 1, c3 + δ3 + i), if r3 = 1;
(1, 6, 1, 7, 1, c3 + i, 1, c3 + δ3 + i), if r3 = 2;
(1, 6, 1, 7, 1, c3 + i, 1, c3 + δ3 + i, 1, c3 + 2δ3 + i, 1, c3 + 3δ3 + i), if r3 = 3.

Set Ri4 = (S6,21)
q4 .T i4, with s = 24q4 + 4r4, 0 ≤ r4 < 6, 0 ≤ i < δ4, and

T i4 =



ε, if r4 = 0;
(1, c4 + i, 1, c4 + δ4 + i), if r4 = 1;
(1, 6, 1, 7, 1, c4 + i, 1, c4 + δ4 + i), if r4 = 2;
(1, 6, 1, 7, 1, c4 + i, 1, c4 + δ4 + i, 1, c4 + 2δ4 + i, 1, c4 + 3δ4 + i), if r4 = 3;
(1, 6, 1, 7, 1, c4 + i, 1, c4 + δ4 + i, 1, 6, 1, 7, 1, c4 + 2δ4 + i, 1, c4 + 3δ4 + i), if r4 = 4;
(1, 6, 1, 7, 1, c4 + i, 1, c4 + δ4 + i, 1, 6, 1, 7, 1, c4 + 2δ4 + i, 1, c4 + 3δ4 + i,
1, c4 + 4δ4 + i, 1, c4 + 5δ4 + i), if r4 = 5;

Set Ri5 = (S6,31)
q5−1.T i5, with s = 48q5 + 4r5, 0 ≤ r5 < 12, 0 ≤ i < δ5, and

T i5 =



S6,31, if r5 = 0;
S6,31.(1, c5 + i, 1, c5 + δ5 + i), if r5 = 1;
S6,31.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i), if r5 = 2;
S6,31.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i, 1, c5 + 2δ5 + i, 1, c5 + 3δ5 + i), if r5 = 3;
(S6,29)

2, if r5 = 4;
(S6,29)

2.(1, c5 + i, 1, c5 + δ5 + i), if r5 = 5;
(S6,29)

2.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i), if r5 = 6;
(S6,29)

2.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i, 1, c5 + 2δ5 + i, 1, c5 + 3δ5 + i), if r5 = 7;
S6,31.S6,29, if r5 = 8;
S6,31.S6,29.(1, c5 + i, 1, c5 + δ5 + i), if r5 = 9;
S6,31.S6,29.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i), if r5 = 10;
S6,31.S6,29.(1, 6, 1, 7, 1, c5 + i, 1, c5 + δ5 + i, 1, c5 + 2δ5 + i, 1, c5 + 3δ5 + i), if r5 = 11;

As the cyclic distance between two occurrences of either the color pattern R1 or of R2 or
of R3 in R is equal to 4 (hence, each of these three patterns appears every 8 set Bi), and if e
is the maximum color used in Rij , then, according to Lemma 2, for j = 1, 2, 3, δj must satisfy

δj ≥


1, if e ≤ 15;
2, if 16 ≤ e ≤ 31;
3, if 32 ≤ e ≤ 47;
4, if 48 ≤ e ≤ 63;
5, if 64 ≤ e ≤ 79.

Similarly, the cyclic distance between two occurrences of either the color pattern R4 or of
R5 in R is equal to 8, hence, for j = 4 or 5, δj must satisfy

δj ≥


1, if e ≤ 31;
2, if 32 ≤ e ≤ 63;
3, if 64 ≤ e ≤ 95.

Therefore, for each residue of s modulo 48, a packing coloring is obtained by fixing the
values of cj and δj as indicated in the next table (δj is set to the smallest value satisfying the
above inequations). The largest color used in each case is reported on the last row.
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s (mod 48) 0 4 8 12 16 20 24 28 32 36 40 44

c1, δ1 / 32, 3 32, 3 / 32, 3 32, 3 / 32, 3 32, 3 / 32, 3 32, 3
c2, δ2 / 38, 3 38, 3 / 38, 3 38, 3 / 38, 3 38, 3 / 38, 3 38, 3
c3, δ3 / 44, 4 44, 4 32, 3 / 44, 4 32, 3 44, 4 / 32, 3 44, 4 44, 4
c4, δ4 / 52, 2 52, 2 44, 2 44, 2 52, 2 / 60, 2 44, 2 38, 2 52, 2 60, 2
c5, δ5 / 56, 2 56, 2 52, 2 / 64, 3 38, 2 64, 3 / 46, 2 60, 2 78, 2

largest color 31 59 59 59 51 69 41 75 47 49 63 89

An illustration for the case s ≡ 28 (mod 48) is given in Appendix B.

Case B. t is even. For t = 4p or t = 4p+ 2, recall that subgraphs Bi are of size s = 4p+ 1.
New color patterns are constructed by inserting a new color at the end of each pattern (of
length s′ = s− 1 = 4p) defined in Subcases A.1, A.2 and A.3.

By Lemma 2, the problem of adding the missing color in each color pattern defined in
subcases A.1, A.2 and A.3 is equivalent to the one of coloring the infinite path P∞ with colors
from {k1, k1 + 1, . . . , k2} such that vertices of color e are at distance greater than e

2 .
We are going to show, by induction on k1, that k2 ≤ 2k1 − 1. For k1 = 2, vertices can be

colored by alternating color 2 and color 3, so k2 = 3. Assume that P∞ can be colored with
colors from {k1, k1 + 1, . . . , k2 ≤ 2k1− 1} and let k′1 = k1 + 1. Replace now color k1 by colors
k2 + 1 and k2 + 2 alternatively. Then the largest color used is k′2 = k2 + 2 ≤ 2k1 + 1 = 2k′1− 1
and the constraint is satisfied since if vertices x and y are colored k2 + 2 then their mutual
distance satisfies dist(x, y) > 2k12 ≥

k2+1
2 > k2

2 .
As the colorings defined in Subcase A.1 (Subcases A.2 and A.3, respectively) use colors

from 1 to 29 (40 and at most 89, respectively), then we obtain a packing coloring of D(1, t)
with colors from 1 to at most 2× 30− 1 = 59 (81 and 179, respectively), provided that t ≥ 96
(448 and 144, respectively).

Remark 1. • In Subcase A.2, the method can produce a packing coloring using less than
40 colors, depending on the value of s (i.e. if some ri are equal to zero).

• A combination of the methods of Subcases A.2 and A.3 could be used to define a packing
coloring for odd t, 95 ≤ t ≤ 447, using less colors than in Subcase A.3.

• For Case B, it seems that less than 2k1 − 1 colors are sufficient for such a coloring.
When k1 = 90, a computation gives k2 = 156 for such a coloring; when k1 = 41, we
find k2 = 72 and when k1 = 30, we find k2 = 53.

4. D(a, b) with small a and b

The results from Section 3 do not apply for D(1, t) with small t, however it is possible to
derive exact or sharp results for some of them, using density arguments and the computer.

Algorithm 1 is a simple algorithm that prints all the packing k-colorings of Dn(1, t). It
checks, for each vertex, each possible color in a recursive fashion. Hence it must be used by
initializing the first n elements of the array color to 0 and calling RecColor(0).

Proposition 5.
χρ(D(1, 3)) = 9.
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Algorithm 1: RecColor(i)

Data: global integers n, k, t; global array color;
if i = n then

print(color);

else
for c from 1 to k do

if @ j < i such that color[j]=c and dist(i, j) ≤ c then
color[i] ← c;
RecColor(i+ 1);
color[i] ← 0;

Proof. first, remark that the graph-distance dist(i, j) between vertex i and vertex j ≥ i is
dist(i, j) = b j−i3 c+ (j − i) (mod 3).

A packing 9-coloring of D(1, 3) of period 32 is given by the following sequence:

1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 8, 1, 9.

It is routine to check that the vertices of a same color are sufficiently distant. On the other
hand, running an implementation of Algorithm 1 with n = 100, k = 8, and t = 3, outputs no
coloring, showing that 8 colors are not sufficient for a packing coloring of D100(1, 3).

Proposition 6.
11 ≤ χρ(D(1, 4)) ≤ 16;

10 ≤ χρ(D(1, 5)) ≤ 12;

12 ≤ χρ(D(1, 6)) ≤ 23;

10 ≤ χρ(D(1, 7)) ≤ 15;

11 ≤ χρ(D(1, 8)) ≤ 25;

10 ≤ χρ(D(1, 9)) ≤ 18.

Proof. For the upper bounds, packing k-colorings are defined by exhibiting a pattern using
colors from {1, · · · , k} of length ` for each case. For D(1, 4), the pattern with k = 16 and ` =
320 is given in Appendix A. For D(1, 5) (D(1, 6), D(1, 7), D(1, 8), and D(1, 9), respectively),
the pattern with (k, `) = (12, 1028) ((23, 2016), (15, 640), (25, 5184), (18, 576), respectively)
can be found at http://www.u-bourgogne.fr/o.togni/PCDG.html.

For the lower bounds, we use either density arguments or computer running Algorithm 1.
For D(1, 4), we have ρ1 ≤ 2

5 since at most 2 out of 5 consecutive vertices can be colored 1.
Moreover, ρi ≤ 1

4i−2 for i ≥ 2 and min{c| 2
5 +

∑c
i=2

1
4i−2 ≥ 1} = 11.

For D(1, 5), running an implementation of Algorithm 1 with n = 43, k = 9, and t = 5
outputs no coloring. Hence χρ(D(1, 5)) ≥ 10.

For D(1, 6), we have ρ1 ≤ 3
7 since at most 3 out of 7 consecutive vertices can be colored

1. We now show that ρ2 ≤ 2
11 . Let v be a vertex colored 2. If v + 3 is also colored 2, then

no vertex of {v + 4, · · · , v + 10} can be colored 2. Hence 2 vertices out of 11 are colored 2.
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If v + 3 is not colored 2 but v + 4 is, then only one of v + 8, v + 14 can be colored 2 among
{v + 5, · · · , v + 16}, resulting in 3 out of 17 vertices colored 2 and 3

17 <
2
11 . If neither v + 3

nor v+ 4 is colored 2 then no vertex of {v+ 5, v+ 6, v+ 7} can be colored 2 and at most one
vertex of {v + 8, v + 9, v + 10} can have color 2, resulting in 2 vertices out of 11 colored 2.
Moreover, if i ≥ 3, then ρi ≤ 1

6i−9 and min{c| 3
7 + 2

11 +
∑c

i=3
1

6i−9 ≥ 1} = 12.
For D(1, 7), running an implementation of Algorithm 1 with n = 44, k = 9, and t = 7

outputs no coloring. Hence χρ(D(1, 7)) ≥ 10.
For D(1, 8), running an implementation of Algorithm 1 with n = 41, k = 10, and t = 8

outputs no coloring. Hence χρ(D(1, 8)) ≥ 11.
For D(1, 9), running an implementation of Algorithm 1 with n = 46, k = 9, and t = 9

outputs no coloring. Hence χρ(D(1, 9)) ≥ 10.

It is interesting to notice that sometimes adding just one more color allows us to shorten
considerably the period of the packing coloring, as can be seen with D(1, 5) with the following
periodic packing 13-coloring of period 80 (compared with the packing 12-coloring of period
1028):

1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 10, 1, 4, 1, 2, 1, 3, 1, 5, 1, 11, 1, 2, 1, 3, 1, 8, 1, 9,
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 12, 1, 4, 1, 2, 1, 3, 1, 5, 1, 13, 1, 2, 1, 3, 1, 9, 1, 8.

We now turn our attention to other 4-regular distance graphs, i.e. graphs of type D(a, b),
with 2 ≤ a ≤ b. First, remark that if a and b are not co-prime, then the graph D(a, b) is not
connected and consists in g = gcd(a, b) copies of D(ag ,

b
g ). Hence we only consider distance

graphs D(a, b) with gcd(a, b) = 1.
The smallest example is D(2, 3) which is a subgraph of D(1, 2, 3) = P 3

∞, thus χρ(D(2, 3)) ≤
χρ(P

3
∞) ≤ 23. In fact, we show that the upper bound is much less than 23:

Proposition 7.
11 ≤ χρ(D(2, 3)) ≤ 13;

14 ≤ χρ(D(2, 5)) ≤ 23.

Proof. The lower bound 11 ≤ χρ(D(2, 3)) is obtained by calculating the maximum density ρi
of a color i: it can be seen that ρ1 = 2

5 and ρi = 1
3i+1 for i ≥ 2 and that min{c| 25+

∑c
i=2

1
3i+1 ≥

1} = 11.
For the lower bound 14 ≤ χρ(D(2, 5)), it can be seen that ρ1 = 3

7 and ρi = 1
5i−4 for i ≥ 2

and that min{c| 2
5 +

∑c
i=2

1
5i−4 ≥ 1} = 14.

The upper bounds come from the packing 13-coloring of D(2, 3) of period 240 and the
packing 23-coloring of D(2, 5) of period 336 given in Appendix A.

5. Concluding remarks

We have shown that the packing chromatic number of any infinite distance graph with finite
D is finite and is at most 40 (81, respectively) for D = {1, t} with t being an odd (even,
respectively) integer greater than or equal to 447.

Among the many possible research directions, one can try to find better bounds and/or
more simple methods for D(1, t). In fact, running a simple greedy packing coloring algorithm
that consists in coloring vertices of a distance graph one-by-one from the left to the right
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Figure 3: Number of colors for a packing coloring of D(1, t) using a greedy algorithm.

with the smallest color with respect to the constraint, suggests that the upper bounds found
in Section 3 can be strengthened. Figure 3 shows the number of colors used by the greedy
algorithm for a packing coloring of Dn(1, t) (with n = 1000000) as a function of t for the
first 500 values of t. One can see on the figure that for large t, the algorithm finds a packing
coloring, using between 30 and 50 colors. Moreover, more colors are needed in general when
t is even compared to when t is odd. But surprisingly, even if we look only at even (or odd)
values of t, the function is not monotonic. We wonder if the same goes for χρ. An interesting
future work would be to study in more details the behavior of this greedy algorithm.

Finally, a summary of the values of t for which a upper bound on the the packing chromatic
number of D(1, t) is known and those that remain to be found is presented in Table 2.

odd t 11→ 45 47, 49 51→ 69 71→ 445 447→ +∞
χρ ≤ ? 31 ? between 29 and 89 40

even t 10→ 94 96, 98 100→ 142 144→ 446 448→ +∞
χρ ≤ ? 59 ? between 59 and 179 81

Table 2: Known upper bounds for the packing chromatic number of D(1, t)
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[7] J. Fiala, S. Klavžar, and B. Lidický. The packing chromatic number of infinite product
graphs. European J. Combin., 30(5):1101–1113, 2009.

[8] A. S. Finbow and D. F. Rall. On the packing chromatic number of some lattices. Dis-
crete Applied Mathematics, 158(12):1224 – 1228, 2010. Traces from LAGOS’07 IV Latin
American Algorithms, Graphs, and Optimization Symposium Puerto Varas - 2007.

[9] W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and D. F. Rall. Broadcast
chromatic numbers of graphs. Ars Combin., 86:33–49, 2008.

[10] H. Kheddouci and O. Togni. Bounds for minimum feedback vertex sets in distance graphs
and circulant graphs. Discrete Math. Theor. Comput. Sci., 10(1):57–70, 2008.

[11] D. D.-F. Liu. From rainbow to the lonely runner: a survey on coloring parameters of
distance graphs. Taiwanese J. Math., 12(4):851–871, 2008.

[12] D. D.-F. Liu and X. Zhu. Fractional chromatic number of distance graphs generated by
two-interval sets. European J. Combin., 29(7):1733–1743, 2008.

[13] R. Soukal and P. Holub. A note on packing chromatic number of the square lattice.
Electronic Journal of Combinatorics, (N17), 2010.

[14] J. Steinhardt. On coloring the odd-distance graph. Electron. J. Combin., 16(1):Note 12,
7, 2009.

[15] M. Voigt and H. Walther. Chromatic number of prime distance graphs. Discrete Appl.
Math., 51(1-2):197–209, 1994. 2nd Twente Workshop on Graphs and Combinatorial
Optimization (Enschede, 1991).

13



A. Periodic packing coloring of some distance graphs

A periodic packing 23-coloring of D(1, 2, 3) of period 768
23, 1, 4, 5, 3, 1, 2, 6, 7, 1, 9, 10, 12, 1, 2, 3, 4, 1, 8, 5, 13, 1, 2, 14, 16, 1, 3, 6, 11, 1, 2, 4, 7, 1, 15, 5, 3, 1, 2, 9, 18, 1, 10, 8, 4,

1, 2, 3, 6, 1, 12, 5, 17, 1, 2, 7, 19, 1, 3, 4, 13, 1, 2, 11, 20, 1, 14, 5, 3, 1, 2, 6, 4, 1, 8, 9, 10, 1, 2, 3, 7, 1, 15, 5, 16, 1, 2, 4, 12, 1,

3, 6, 21, 1, 2, 18, 22, 1, 11, 5, 3, 1, 2, 4, 7, 1, 8, 9, 10, 1, 2, 3, 6, 1, 13, 5, 4, 1, 2, 14, 17, 1, 3, 19, 23, 1, 2, 7, 12, 1, 4, 5, 3, 1, 2,

6, 8, 1, 9, 10, 11, 1, 2, 3, 4, 1, 15, 5, 16, 1, 2, 7, 18, 1, 3, 6, 13, 1, 2, 4, 20, 1, 8, 5, 3, 1, 2, 9, 12, 1, 10, 14, 4, 1, 2, 3, 6, 1, 7, 5,

11, 1, 2, 17, 19, 1, 3, 4, 8, 1, 2, 21, 15, 1, 22, 5, 3, 1, 2, 6, 4, 1, 7, 9, 10, 1, 2, 3, 12, 1, 13, 5, 16, 1, 2, 4, 8, 1, 3, 6, 11, 1, 2, 14,

7, 1, 18, 5, 3, 1, 2, 4, 9, 1, 20, 10, 17, 1, 2, 3, 6, 1, 8, 5, 4, 1, 2, 7, 12, 1, 3, 13, 15, 1, 2, 11, 19, 1, 4, 5, 3, 1, 2, 6, 9, 1, 10, 8, 14,

1, 2, 3, 4, 1, 7, 5, 16, 1, 2, 21, 22, 1, 3, 6, 18, 1, 2, 4, 12, 1, 11, 5, 3, 1, 2, 8, 7, 1, 9, 10, 4, 1, 2, 3, 6, 1, 13, 5, 15, 1, 2, 14, 17, 1,

3, 4, 19, 1, 2, 7, 8, 1, 20, 5, 3, 1, 2, 6, 4, 1, 9, 10, 11, 1, 2, 3, 12, 1, 16, 5, 18, 1, 2, 4, 7, 1, 3, 6, 8, 1, 2, 13, 21, 1, 14, 5, 3, 1, 2,

4, 9, 1, 10, 15, 17, 1, 2, 3, 6, 1, 7, 5, 4, 1, 2, 8, 11, 1, 3, 12, 19, 1, 2, 20, 22, 1, 4, 5, 3, 1, 2, 6, 7, 1, 9, 10, 13, 1, 2, 3, 4, 1, 8, 5,

14, 1, 2, 16, 18, 1, 3, 6, 11, 1, 2, 4, 7, 1, 12, 5, 3, 1, 2, 9, 15, 1, 10, 8, 4, 1, 2, 3, 6, 1, 17, 5, 13, 1, 2, 7, 19, 1, 3, 4, 20, 1, 2, 11,

14, 1, 21, 5, 3, 1, 2, 6, 4, 1, 8, 9, 10, 1, 2, 3, 7, 1, 12, 5, 16, 1, 2, 4, 15, 1, 3, 6, 13, 1, 2, 18, 22, 1, 11, 5, 3, 1, 2, 4, 7, 1, 8, 9, 10,

1, 2, 3, 6, 1, 14, 5, 4, 1, 2, 12, 17, 1, 3, 19, 20, 1, 2, 7, 23, 1, 4, 5, 3, 1, 2, 6, 8, 1, 9, 10, 11, 1, 2, 3, 4, 1, 13, 5, 15, 1, 2, 7, 16, 1,

3, 6, 12, 1, 2, 4, 14, 1, 8, 5, 3, 1, 2, 9, 18, 1, 10, 21, 4, 1, 2, 3, 6, 1, 7, 5, 11, 1, 2, 17, 19, 1, 3, 4, 8, 1, 2, 13, 20, 1, 12, 5, 3, 1, 2,

6, 4, 1, 7, 9, 10, 1, 2, 3, 14, 1, 15, 5, 16, 1, 2, 4, 8, 1, 3, 6, 11, 1, 2, 18, 7, 1, 22, 5, 3, 1, 2, 4, 9, 1, 12, 10, 13, 1, 2, 3, 6, 1, 8, 5,

4, 1, 2, 7, 17, 1, 3, 14, 19, 1, 2, 11, 15, 1, 4, 5, 3, 1, 2, 6, 9, 1, 10, 8, 16, 1, 2, 3, 4, 1, 7, 5, 12, 1, 2, 13, 18, 1, 3, 6, 20, 1, 2, 4, 21,

1, 11, 5, 3, 1, 2, 8, 7, 1, 9, 10, 4, 1, 2, 3, 6, 1, 14, 5, 15, 1, 2, 17, 19, 1, 3, 4, 12, 1, 2, 7, 8, 1, 13, 5, 3, 1, 2, 6, 4, 1, 9, 10, 11, 1, 2,

3, 16, 1, 18, 5, 22, 1, 2, 4, 7, 1, 3, 6, 8, 1, 2, 14, 20, 1, 12, 5, 3, 1, 2, 4, 9, 1, 10, 13, 15, 1, 2, 3, 6, 1, 7, 5, 4, 1, 2, 8, 11, 1, 3, 17,

19, 1, 2, 21

A periodic packing 16-coloring of D(1, 4) of period 320
1, 2, 1, 3, 4, 1, 5, 1, 2, 7, 1, 6, 1, 3, 2, 1, 8, 1, 4, 10, 1, 2, 1, 3, 5, 1, 9, 1, 2, 12, 1, 13, 1, 3, 2, 1, 4, 1, 6, 7, 1, 2, 1, 3, 11, 1, 5, 1, 2,

8, 1, 4, 1, 3, 2, 1, 14, 1, 10, 15, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 7, 1, 3, 2, 1, 9, 1, 12, 8, 1, 2, 1, 3, 4, 1, 5, 1, 2, 11, 1, 6, 1, 3, 2, 1, 10,

1, 4, 13, 1, 2, 1, 3, 5, 1, 7, 1, 2, 8, 1, 9, 1, 3, 2, 1, 4, 1, 6, 14, 1, 2, 1, 3, 12, 1, 5, 1, 2, 15, 1, 4, 1, 3, 2, 1, 7, 1, 10, 8, 1, 2, 1, 3, 5, 1,

4, 1, 2, 6, 1, 9, 1, 3, 2, 1, 11, 1, 13, 16, 1, 2, 1, 3, 4, 1, 5, 1, 2, 7, 1, 6, 1, 3, 2, 1, 8, 1, 4, 10, 1, 2, 1, 3, 5, 1, 9, 1, 2, 12, 1, 14, 1, 3,

2, 1, 4, 1, 6, 7, 1, 2, 1, 3, 11, 1, 5, 1, 2, 8, 1, 4, 1, 3, 2, 1, 13, 1, 10, 15, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 7, 1, 3, 2, 1, 9, 1, 12, 8, 1, 2, 1,

3, 4, 1, 5, 1, 2, 11, 1, 6, 1, 3, 2, 1, 10, 1, 4, 14, 1, 2, 1, 3, 5, 1, 7, 1, 2, 8, 1, 9, 1, 3, 2, 1, 4, 1, 6, 13, 1, 2, 1, 3, 12, 1, 5, 1, 2, 15, 1, 4,

1, 3, 2, 1, 7, 1, 10, 8, 1, 2, 1, 3, 5, 1, 4, 1, 2, 6, 1, 9, 1, 3, 2, 1, 11, 1, 14, 16

A periodic packing 13-coloring of D(2, 3) of period 240
1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 13, 1, 1, 2, 4, 11, 1, 1, 7, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 8, 10, 2, 1, 1, 12, 3, 5, 1, 1, 2,

4, 6, 1, 1, 7, 3, 2, 1, 1, 9, 11, 13, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 7, 1, 1, 2, 4, 10, 1, 1, 12, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1,

1, 7, 8, 2, 1, 1, 11, 3, 5, 1, 1, 2, 4, 6, 1, 1, 10, 3, 2, 1, 1, 9, 13, 7, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1, 8, 3, 12, 1, 1, 2, 4, 11, 1, 1, 7, 3,

2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 8, 10, 2, 1, 1, 13, 3, 5, 1, 1, 2, 4, 6, 1, 1, 7, 3, 2, 1, 1, 9, 11, 12, 1, 1, 2, 3, 4, 1, 1, 5, 6, 2, 1, 1,

8, 3, 7, 1, 1, 2, 4, 10, 1, 1, 13, 3, 2, 1, 1, 5, 6, 9, 1, 1, 2, 3, 4, 1, 1, 7, 8, 2, 1, 1, 11, 3, 5, 1, 1, 2, 4, 6, 1, 1, 10, 3, 2, 1, 1, 9, 12, 7

A periodic packing 23-coloring of D(2, 5) of period 336
1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 7, 8, 1, 1, 2, 2, 1, 3, 10, 1, 1, 11, 4, 1, 15, 12, 1, 1, 2, 2, 1, 3, 16, 1, 1, 5, 6, 1, 4, 9, 1, 1, 2, 2, 1, 3,

7, 1, 1, 8, 14, 1, 17, 13, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10, 19, 1, 1, 2, 2, 1, 3, 11, 1, 1, 7, 4, 1, 9, 12, 1, 1, 2, 2, 1, 3, 8, 1, 1, 5, 6,

1, 4, 15, 1, 1, 2, 2, 1, 3, 18, 1, 1, 20, 21, 1, 7, 22, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10, 9, 1, 1, 2, 2, 1, 3, 8, 1, 1, 11, 4, 1, 13, 12, 1, 1,

2, 2, 1, 3, 7, 1, 1, 5, 6, 1, 4, 14, 1, 1, 2, 2, 1, 3, 16, 1, 1, 17, 23, 1, 9, 19, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 7, 8, 1, 1, 2, 2, 1, 3, 10, 1

, 1, 11, 4, 1, 15, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 5, 6, 1, 4, 9, 1, 1, 2, 2, 1, 3, 7, 1, 1, 8, 18, 1, 14, 20, 1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 6, 1, 10,

21, 1, 1, 2, 2, 1, 3, 11, 1, 1, 7, 4, 1, 9, 12, 1, 1, 2, 2, 1, 3, 8, 1, 1, 5, 6, 1, 4, 13, 1, 1, 2, 2, 1, 3, 15, 1, 1, 16, 17, 1, 7, 19, 1, 1, 2, 2,

1, 3, 4, 1, 1, 5, 6, 1, 10, 9, 1, 1, 2, 2, 1, 3, 8, 1, 1, 11, 4, 1, 14, 12, 1, 1, 2, 2, 1, 3, 7, 1, 1, 5, 6, 1, 4, 18, 1, 1, 2, 2, 1, 3, 13, 1, 1, 20,

22, 1, 9, 23
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B. An illustration of Subcase A.3 of the proof of Proposition 1

We illustrate the construction of a packing coloring of D(1, t) defined in Subcase A.3 for
t = 75 or t = 77, i.e. s = 76 = 48 + 28.

The color patterns Rij are defined as follows:

Ri1 = (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9)6.(1, 32 + i, 1, 35 + i), 0 ≤ i ≤ 2;
Ri2 = (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11)6.(1, 38 + i, 1, 41 + i), 0 ≤ i ≤ 2;
Ri3 = (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15)4.(1, 6, 1, 7, 1, 44 + i, 1, 48 + i, 1, 52 + i, 1, 56 + i),

0 ≤ i ≤ 3;
Ri4 = (1, 6, 1, 7, 1, 16, 1, 17, 1, 6, 1, 7, 1, 18, 1, 19, 1, 6, 1, 7, 1, 20, 1, 21)3.

(1, 60 + i, 1, 62 + i), 0 ≤ i ≤ 1;
Ri5 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 28, 1, 29).

(1, 6, 1, 7, 1, 64 + i, 1, 67 + i, 1, 70 + i, 1, 73 + i), 0 ≤ i ≤ 2;
And a packing 75-coloring is obtained by assigning to subgraphs B2i+1 the color pattern

(1, 2, 1, 3)19 and repeatedly to 48 consecutive subgraphs B2i the sequence of color patterns

R = (R0
1, R

0
3, R

0
2, R

0
4, R

1
1, R

1
3, R

1
2, R

0
5, R

2
1, R

2
3, R

2
2, R

1
4, R

0
1, R

3
3, R

0
2, R

1
5, R

1
1, R

0
3, R

1
2, R

0
4, R

2
1, R

1
3, R

2
2, R

2
5,

R0
1, R

2
3, R

0
2, R

1
4, R

1
1, R

3
3, R

1
2, R

0
5, R

2
1, R

0
3, R

2
2, R

0
4, R

0
1, R

1
3, R

0
2, R

1
5, R

1
1, R

2
3, R

1
2, R

1
4, R

2
1, R

3
3, R

2
2, R

2
5).
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