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The packing chromatic number χ ρ (G) of a graph G is the least integer k for which there exists a mapping f from V (G) to {1, 2, . . . , k} such that any two vertices of color i are at a distance of at least i + 1. This paper studies the packing chromatic number of infinite distance graphs G(Z, D), i.e. graphs with the set Z of integers as vertex set, with two distinct vertices i, j ∈ Z being adjacent if and only if |i -j| ∈ D. We present lower and upper bounds for χ ρ (G(Z, D)), showing that for finite D, the packing chromatic number is finite. Our main result concerns distance graphs with D = {1, t} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t ≥ 447: χ ρ (G(Z, {1, t})) ≤ 40 if t is odd and χ ρ (G(Z, {1, t})) ≤ 81 if t is even.

Introduction

Let G be a connected graph and let k be an integer, k ≥ 1. A packing k-coloring (or simply a packing coloring) of a graph G is a mapping f from V (G) to {1, 2, • • • , k} such that for any two distinct vertices u and v, if f (u) = f (v) = i, then dist(u, v) > i, where dist(u, v) is the distance between u and v in G (thus vertices of color i form an i-packing of G). The packing chromatic number χ ρ (G) of G is the smallest integer k for which G has a packing k-coloring.

This parameter was introduced recently by Goddard et al. [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF] under the name of broadcast chromatic number and the authors showed that deciding whether χ ρ (G) ≤ 4 is NP-hard. Fiala and Golovach [START_REF] Fiala | Complexity of the packing coloring problem for trees[END_REF] showed that the packing coloring problem is NP-complete for trees. Brešar et al. [START_REF] Brešar | On the packing chromatic number of Cartesian products, hexagonal lattice, and trees[END_REF] studied the problem on Cartesian products graphs, hexagonal lattice and trees, using the name of packing chromatic number. Other studies on this parameter mainly concern infinite graphs, with a natural question to be answered : does a given infinite graph have finite packing chromatic number ? Goddard et al. answered this question affirmatively for the infinite two dimensional square grid by showing 9 ≤ χ ρ ≤ 23. The lower bound was later improved to 10 by Fiala et al. [START_REF] Fiala | The packing chromatic number of infinite product graphs[END_REF] and then to 12 by Ekstein et al. [START_REF] Ekstein | The packing chromatic number of the square lattice is at least 12[END_REF]. The upper bound was recently improved by Holub and Soukal [START_REF] Soukal | A note on packing chromatic number of the square lattice[END_REF] to 17. Fiala et al. [START_REF] Fiala | The packing chromatic number of infinite product graphs[END_REF] showed that the infinite hexagonal grid has packing chromatic number 7; while both the infinite triangular lattice and the 3-dimensional square lattice were shown to admit no finite packing coloring by Finbow and Rall [START_REF] Finbow | On the packing chromatic number of some lattices[END_REF]. Infinite product graphs were considered by Fiala et al. [START_REF] Fiala | The packing chromatic number of infinite product graphs[END_REF] who showed that the product of a finite path (of order at least two) with the 2-dimensional square grid has infinite packing chromatic number while the product of the infinite path and any finite graph has finite packing chromatic number.

The (infinite) distance graph G(Z, D) with distance set D = {d 1 , d 2 , . . . , d k }, where d i are positive integers, has the set Z of integers as vertex set, with two distinct vertices i, j ∈ Z being adjacent if and only if |i -j| ∈ D. The finite distance graph G n (D) is the subgraph of G(Z, D) induced by vertices 0, 1, . . . , n -1. To simplify, G(Z, {d 1 , d 2 , . . . , d k }) will also be denoted as

D(d 1 , d 2 , . . . , d k ) and G n ({d 1 , d 2 , . . . , d k }) as D n (d 1 , d 2 , . . . , d k ).
The study of distance graphs was initiated by Eggleton et al. [START_REF] Eggleton | Colouring the real line[END_REF]. A large amount of work has focused on colorings of distance graphs [START_REF] Eggleton | Colouring prime distance graphs[END_REF][START_REF] Voigt | Chromatic number of prime distance graphs[END_REF][START_REF] Barajas | Distance graphs with maximum chromatic number[END_REF][START_REF] Liu | From rainbow to the lonely runner: a survey on coloring parameters of distance graphs[END_REF][START_REF] Liu | Fractional chromatic number of distance graphs generated by two-interval sets[END_REF][START_REF] Steinhardt | On coloring the odd-distance graph[END_REF], but other parameters have also been studied on distance graphs, like the feedback vertex set problem [START_REF] Kheddouci | Bounds for minimum feedback vertex sets in distance graphs and circulant graphs[END_REF].

The aim of this paper is to study the packing chromatic number of infinite distance graphs, with particular emphasis on the case D = {1, t}. In Section 2, we bound the packing chromatic number of the infinite path power (i.e. infinite distance graph with D = {1, 2, . . . , t}). Section 3 concerns packing colorings of distance graphs with D = {1, t}, for which we prove some lower and upper bounds on the number of colors (see Proposition 1). Exact or sharp results for the packing chromatic number of some other 4-regular distance graphs are presented in Section 4. Section 5 concludes the paper with some remarks and open questions.

Our results about the packing chromatic number of G(Z, D) for some small values of D (from Sections 2 and 4) are summarized in Table 1. The bounds of Section 3 are summarized in the following Proposition:

D χ ρ ≥ χ ρ ≤ period 1, 2 8 
Proposition 1. Let t, q be integers. Then,

χ ρ (D(1, t)) ≤                89, t = 2q + 1, q ≥ 35; 40, t = 2q + 1, q ≥ 223; 179, t = 2q, q ≥ 89; 81, t = 2q, q ≥ 224; 29, t = 96q ± 1, q ≥ 1; 59, t = 96q + 1 ± 1, q ≥ 1.
Some proofs of lower bounds use a density argument. For this, we define the density 

ρ a (G n (D)) of a color a in G n (D)
(G(Z, D)) ≥ min{c | c i=1 ρ i ≥ 1} and ρ 1,2 ≤ ρ 1 + ρ 2 .

Path Powers

The t th power G t of a graph G is the graph with the same vertex set as G and edges between every vertices x, y that are at a mutual distance of at most t in G.

Let D t = G(Z, {1, 2, • • • , t})
be the t th power of the two-ways infinite path and let P t n = G n ({1, 2, • • • , t}) be the t th power of the path P n on n vertices.

We first present an asymptotic result on the packing chromatic number:

Proposition 2. χ ρ (D t ) = (1 + o(1))3 t and χ ρ (D t ) = Ω(e t ).
Proof. D t is a spanning subgraph of the lexicographic product1 Z • K t (see Figure 1). Then, as Goddard et al. [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF] showed that χ ρ (Z • K t ) = (1 + o(1))3 t , the same upper bound holds for D t . To prove the lower bound, since ρ i ≤ 1 it+1 , then for any packing coloring of D t using at most c colors, c must satisfy:

c i=1 1 it + 1 ≥ 1. Since c i=1 1 it + 1 < c i=1 1 it = 1 t c i=1 1 i = H c t ,
where H n is the n th harmonic number and since H n = Ω(ln(n)), then Hc t ≥ 1 implies c = Ω(e t ).

Corollary 1. For any finite subset D of N, the packing chromatic number of G(Z, D) is finite.

For very small t, exact values or sharp bounds for the packing chromatic number can be calculated: χ ρ (D 2 ) = 8. 

Proof

On the other hand, it can be seen that ρ i ≤ 1 2i+1 for any i ≥ 1. However, we next prove that ρ 1,2 ≤ 1 2 . Consider vertices v, v + 1, . . . , v + 9 for some v. The only possibility to color more than 5 of these 10 vertices is to give color 1 to v, v + 3, v + 6, v + 9 and then at most 2 vertices can be given color 2 (v + 1 or v + 2, and v + 7 or v + 8). But in this case, neither vertex v + 10 nor vertex v + 11 can be given color 1 or 2, resulting in 6 vertices colored out of 12. Moreover, an easy computation gives that χ

ρ (D 2 ) ≥ min{c | 1 2 + c i=3 1 2i+1 ≥ 1} = 8. Proposition 4. 17 ≤ χ ρ (D 3 ) ≤ 23.
Proof. The upper bound comes from a packing 23-coloring of period 768 defined by repeating the sequence of length 768 given in Appendix A.

To prove the lower bound, as the distance dist(u, v) between the vertices u and v is dist(u, v) = v-u 3 , then ρ i ≤ 1 3i+1 and an easy computation gives that χ ρ (D 3 ) ≥ min{c| c i=1 1 3i+1 ≥ 1} = 17.

D(1, t) with large t

The general method is to cut the distance graph into sets of consecutive vertices of size s = t -1 or s = t + 1, depending on the value of t and to color each set by a predefined color pattern. Let s be either t + 1 or t -1 and let 2). By a color pattern P , we mean a sequence of integers (c 1 , c 2 , . . . , c s ) of length s that will be associated to some subgraph B i by giving the color c j to the j th vertex of B i . If S is a sequence of integers, S p is the sequence obtained by repeating S p times. The cyclic distance between elements s i and s j of a sequence (s 1 , s 2 , . . . , s ) is min(|j -i|, -|j -i|).

A i = {is, is + 1, . . . , (i + 1)s -1} and B i be the subgraph of D(1, t) induced by A i . Notice that V (D(1, t)) = +∞ i=-∞ A i and that if s = t + 1, then each B i is an induced cycle of D(1, t) of length s = t + 1 (see Figure
We first need to know the distance between two vertices in D(1, t). Lemma 1. The distance between two vertices u and v of D(1, t) is dist(u, v) = min(q + r, q + 1 + t -r), where |v -u| = qt + r, with 0 ≤ r < t.

B 1 B 0 B 1 B 2 B 3 B 0 B 2 B 3 s = |B i | = t + 1 s = |B i | = t -1 D(1, 7) D(1, 9)
Proof. Let us call an edge joining vertices x and y, with |y -x| = k a k-edge. Assume, without loss of generality, that v ≥ u. then, any minimal path between u and v uses either q t-edges and r 1-edges or q + 1 t-edges and t -r 1-edges.

The key lemma of our method is the following one which gives conditions for a coloring of D(1, t) by color patterns to be a packing coloring.

Lemma 2. Let s > 1 be a positive integer and for each integer i, set A i = {is, is + 1, . . . , (i + 1)s-1}. Let t be a positive integer and for each i, let B i be the subgraph of G = D(1, t) induced by A i , and C i be the graph B i with an additional edge joining vertices is and

(i + 1)s -1 if s = t -1.
Suppose that G is colored in such a way that: i) for each integer i, the coloring inherited by each C i is a packing coloring;

ii) for each pair of integers i and j, if c is the maximum common color in both C i and C j then we have c < s, |i -j| > c 2 , and each b ≤ c that is a common color in both C i and C j has the property that si

+ k is colored b if and only if sj + k is colored b for each k ∈ {0, 1, . . . , s -1}.
Then the coloring is a packing coloring of G whenever t is in {s + 1, s -1}.

Proof. Suppose vertices u and v have the same color, say e, and, without loss of generality, assume u is in B 0 . Let σ : V (G) → V (C 0 ) be defined by σ(k) = k mod s for each k ∈ N. Observe that when t = s + 1 or t = s -1, if two vertices x and y are adjacent in G, then σ(x) and σ(y) are adjacent in C 0 . But then a path in G between u and v maps via σ to a path of at most the same length between two vertices in C 0 colored e. Since, by hypothesis, C 0 is colored by a packing coloring, as long as u = σ(v), the distance between u and v must be greater than e.

If u = σ(u) = σ(v), then v -u = js for some j. If s = t -1, then v -u = j(t -1) = (j -1)t + t -j and by Lemma 1, dist(u, v) = min(j -1 + t -j, j + t -t + j) = min(t -1, 2j) > e since by hypothesis, e < s = t -1 and 2j > e. Else, if s = t + 1 then v -u = j(t + 1) = jt + j and by Lemma 1, dist(u, v) = min(j + j, j + 1 + t -j) = min(2j, t + 1) > e by hypothesis.

Proof of Proposition 1

Proof. Let t be an integer, G = D(1, t) and s = 4p if t = 4p -1 or t = 4p + 1 for some p; s = 4p + 1 if t = 4p or t = 4p + 2. For each integer i, set A i = {is, is + 1, . . . , (i + 1)s -1} and let B i be the subgraph of G induced by A i .

In each of the following cases, a packing coloring of G is defined by assigning to each subgraph B i a pattern of colors with length s. We will use the following sub-patterns of colors: Since the cyclic distance between two occurrences of any color e in each color pattern is always greater than e, then Condition i) of Lemma 2 is satisfied. Moreover, as the cyclic distance between any two color patterns in P is always greater than a quarter (since color patterns of P are associated only with subgraphs of even indices) of their maximum common color, then Condition ii) is also satisfied. Hence, the coloring is a packing coloring of D(1, t) and χ ρ (D(1, t)) ≤ 29. Subcase A.2. t = 2p + 1 for some p ≥ 223. We denote by S (1, α) r any sequence obtained by inserting r quasi evenly cyclically-distributed occurrences of the pair (1, α) in the sequence S; insertions being made only after a color different from 1, in order to keep the sequence alternate between color 1 and other colors. For example, (1, 4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9) 3 (1, α) 5 can be rewritten as (1, 4, 1, 5, 1, 8, 1, α,1, 4, 1, 5, 1, 9, 1, α,1, 4, 1, 5, 1, 8, 1, 4, 1, α,1, 5, 1, 9, 1, 4, 1, 5, 1, α,1, 8, 1, 4, 1, 5, 1, 9, 1, α).

S 2,3 = (1, 2, 1, 3), S 4,9 = (1,
Then, color patterns using colors from {1, 2, . . . , 40} are defined by:

Q i 1 = (S 4,9 ) q 1 (1, 32 + i) r 1 , for s = 12q 1 + 2r 1 , 0 ≤ r 1 ≤ 4, i = 0, 1, 2; Q i 2 = (S 4,11 ) q 2 (1, 35 + i) r 2 , for s = 12q 2 + 2r 2 , 0 ≤ r 2 ≤ 4, i = 0, 1, 2; Q i 3 = (S 6,15 ) q 3 (1, 38 + i) r 3
, for s = 16q 3 + 2r 3 , 0 ≤ r 3 ≤ 6, i = 0, 1, 2; Q 4 = (S 6,21 ) q 4 (1, 30) r 4 , for s = 24q 4 + 2r 4 , 0 ≤ r 4 ≤ 10; Q 5 = (S 6,29 ) q 5 (1, 31) r 5 , for s = 32q 5 + 2r 5 , 0 ≤ r 5 ≤ 14; and we assign inductively to 24 consecutive subgraphs B 2i the sequence of color patterns Q defined by

Q = (Q 0 1 , Q 0 3 , Q 0 2 , Q 4 , Q 1 1 , Q 1 3 , Q 1 2 , Q 5 , Q 2 1 , Q 2 3 , Q 2 2 , Q 4 , Q 0 1 , Q 0 3 , Q 0 2 , Q 5 , Q 1 1 , Q 1 3 , Q 1 2 , Q 4 , Q 2 1 , Q 2 3 , Q 2 2 , Q 5 ).
In order for a color pattern S (1, α) r to satisfy Condition i) of Lemma 2 and as the pairs (1, α) have to be inserted only on even positions, we must have 2 |S| r /2 ≥ α. Hence the worst case for this separation constraint is for color 31 in Q 5 when r 5 = 14: one can insert 14 occurrences of (1, 31) if 2 32q 5 14 /2 ≥ 31, which is true as soon as q 5 = 14 and thus s = 448. Moreover, it can be seen that the added color in each pattern is chosen in such a way that Condition ii) is satisfied. Hence, the coloring is a packing coloring of D(1, t) and χ ρ (D(1, t)) ≤ 40.

Subcase A.3. t = 2p + 1 for some p, 35 ≤ p ≤ 222. The base case is s ≡ 0 (mod 48) for which the sequence of color patterns that is assigned inductively to 8 consecutive subgraphs B 2i is defined as follows:

R = (R 1 , R 3 , R 2 , R 4 , R 1 , R 3 , R 2 , R 5 ),
with R 1 = (S 4,9 ) 4q , R 2 = (S 4,11 ) 4q , R 3 = (S 6,15 ) 3q , R 4 = (S 6,21 ) 2q , and R 5 = (S 6,31 ) q .

As for Subcase A.1, it can be easily checked that the defined coloring is a packing coloring. Now, for s ≡ 0 (mod 48), we may replace each of the above color patterns R j ∈ R by a certain number of patterns R i j (depending on the residue of s modulo the length of the sub-pattern used) that will be used in turn, as for Subcase A.2.

Let be the empty sequence and let c j and δ j , 1 ≤ j ≤ 5 be some integers (that will be set just after).

Set 2 . We are going to show, by induction on k 1 , that k 2 ≤ 2k 1 -1. For k 1 = 2, vertices can be colored by alternating color 2 and color 3, so k 2 = 3. Assume that P ∞ can be colored with colors from {k 1 , k 1 + 1, . . . , k 2 ≤ 2k 1 -1} and let k 1 = k 1 + 1. Replace now color k 1 by colors k 2 + 1 and k 2 + 2 alternatively. Then the largest color used is

R i 1 = (S 4,9 ) q 1 .T i 1 , with s = 12q 1 + 4r 1 , 0 ≤ r 1 < 3, 0 ≤ i < δ 1 , and 
T i 1 =    , if r 1 = 0; (1, c 1 + i, 1, c 1 + δ 1 + i), if r 1 = 1; (1, 4, 1, 5, 1, c 1 + i, 1, c 1 + δ 1 + i), if r 1 = 2. Set R i 2 = (S 4,11 ) q 2 .T i 2 , with s = 12q 2 + 4r 2 , 0 ≤ r 2 < 3, 0 ≤ i < δ 2 , and 
T i 2 =    , if r 2 = 0; (1, c 2 + i, 1, c 2 + δ 2 + i), if r 2 = 1; (1, 4, 1, 5, 1, c 2 + i, 1, c 2 + δ 2 + i), if r 2 = 2.
k 2 = k 2 + 2 ≤ 2k 1 + 1 = 2k 1 -1 and the constraint is satisfied since if vertices x and y are colored k 2 + 2 then their mutual distance satisfies dist(x, y) > 2 k 1 2 ≥ k 2 +1 2 > k 2 2 .
As the colorings defined in Subcase A.1 (Subcases A.2 and A.3, respectively) use colors from 1 to 29 (40 and at most 89, respectively), then we obtain a packing coloring of D(1, t) with colors from 1 to at most 2 × 30 -1 = 59 (81 and 179, respectively), provided that t ≥ 96 (448 and 144, respectively).

Remark 1.

• In Subcase A.2, the method can produce a packing coloring using less than 40 colors, depending on the value of s (i.e. if some r i are equal to zero).

• A combination of the methods of Subcases A.2 and A.3 could be used to define a packing coloring for odd t, 95 ≤ t ≤ 447, using less colors than in Subcase A.3.

• For Case B, it seems that less than 2k 1 -1 colors are sufficient for such a coloring.

When k 1 = 90, a computation gives k 2 = 156 for such a coloring; when k 1 = 41, we find k 2 = 72 and when k 1 = 30, we find k 2 = 53.

D(a, b) with small a and b

The results from Section 3 do not apply for D(1, t) with small t, however it is possible to derive exact or sharp results for some of them, using density arguments and the computer. Algorithm 1 is a simple algorithm that prints all the packing k-colorings of D n (1, t). It checks, for each vertex, each possible color in a recursive fashion. Hence it must be used by initializing the first n elements of the array color to 0 and calling RecColor(0).

Proposition 5.

χ ρ (D(1, 3)) = 9. Proof. first, remark that the graph-distance dist(i, j) between vertex i and vertex j ≥ i is dist(i, j) = j-i 3 + (j -i) (mod 3). A packing 9-coloring of D(1, 3) of period 32 is given by the following sequence:

1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 6, 1, 7, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 3, 1, 8, 1, 9.

It is routine to check that the vertices of a same color are sufficiently distant. On the other hand, running an implementation of Algorithm 1 with n = 100, k = 8, and t = 3, outputs no coloring, showing that 8 colors are not sufficient for a packing coloring of D 100 [START_REF] Barajas | Distance graphs with maximum chromatic number[END_REF][START_REF] Eggleton | Colouring the real line[END_REF]. For D(1, 6), we have ρ 1 ≤ It is interesting to notice that sometimes adding just one more color allows us to shorten considerably the period of the packing coloring, as can be seen with D(1, 5) with the following periodic packing 13-coloring of period 80 (compared with the packing 12-coloring of period 1028): Proof. The lower bound 11 ≤ χ ρ (D(2, 3)) is obtained by calculating the maximum density ρ i of a color i: it can be seen that ρ 1 = 2 5 and ρ i = 1 3i+1 for i ≥ 2 and that min{c| 2

5 + c i=2 1 3i+1 ≥ 1} = 11.
For the lower bound 14 ≤ χ ρ (D(2, 5)), it can be seen that ρ 1 = 3 7 and ρ i = 1 5i-4 for i ≥ 2 and that min{c| 

Concluding remarks

We have shown that the packing chromatic number of any infinite distance graph with finite D is finite and is at most 40 (81, respectively) for D = {1, t} with t being an odd (even, respectively) integer greater than or equal to 447.

Among the many possible research directions, one can try to find better bounds and/or more simple methods for D(1, t). In fact, running a simple greedy packing coloring algorithm that consists in coloring vertices of a distance graph one-by-one from the left to the right with the smallest color with respect to the constraint, suggests that the upper bounds found in Section 3 can be strengthened. Figure 3 shows the number of colors used by the greedy algorithm for a packing coloring of D n (1, t) (with n = 1000000) as a function of t for the first 500 values of t. One can see on the figure that for large t, the algorithm finds a packing coloring, using between 30 and 50 colors. Moreover, more colors are needed in general when t is even compared to when t is odd. But surprisingly, even if we look only at even (or odd) values of t, the function is not monotonic. We wonder if the same goes for χ ρ . An interesting future work would be to study in more details the behavior of this greedy algorithm. Finally, a summary of the values of t for which a upper bound on the the packing chromatic number of D(1, t) is known and those that remain to be found is presented in Table 2 

  as the maximum fraction of vertices colored a in any packing coloring of G n (D) and ρ a (D) (or simply ρ a , if the graph is clear from the context) by ρ a (D) = lim sup n→+∞ ρ a (G n (D)). Let also ρ 1,2 (G n (D)) be the maximum fraction of vertices colored 1 or 2 in any packing coloring of G n (D) and let ρ 1,2 = lim sup n→+∞ ρ 1,2 (G n (D)). We have trivially, for any D, χ ρ

Figure 1 :

 1 Figure 1: The infinite distance graph D 3 as a subgraph of the lexicographic product Z • K 3 .

Figure 2 :

 2 Figure 2: D(1, t), with t = 7 (on the top) and t = 9 (on the bottom) drawn by rows of size s = 8.

Proposition 6 .+ c i=2 1 4i- 2 ≥

 612 11 ≤ χ ρ (D(1, 4)) ≤ 16; 10 ≤ χ ρ (D(1, 5)) ≤ 12; 12 ≤ χ ρ (D(1, 6)) ≤ 23; 10 ≤ χ ρ (D(1, 7)) ≤ 15; 11 ≤ χ ρ (D(1, 8)) ≤ 25; 10 ≤ χ ρ (D(1, 9)) ≤ 18. Proof. For the upper bounds, packing k-colorings are defined by exhibiting a pattern using colors from {1, • • • , k} of length for each case. For D(1, 4), the pattern with k = 16 and = 320 is given in Appendix A. For D(1, 5) (D(1, 6), D(1, 7), D(1, 8), and D(1, 9), respectively), the pattern with (k, ) = (12, 1028) ((23, 2016), (15, 640), (25, 5184), (18, 576), respectively) can be found at http://www.u-bourgogne.fr/o.togni/PCDG.html.For the lower bounds, we use either density arguments or computer running Algorithm 1. For D(1, 4), we have ρ 1 ≤ 2 5 since at most 2 out of 5 consecutive vertices can be colored 1. Moreover, ρ i ≤ 1 4i-2 for i ≥ 2 and min{c| 2 5 1} = 11. For D[START_REF] Barajas | Distance graphs with maximum chromatic number[END_REF][START_REF] Ekstein | The packing chromatic number of the square lattice is at least 12[END_REF], running an implementation of Algorithm 1 with n = 43, k = 9, and t = 5 outputs no coloring. Hence χ ρ (D(1, 5)) ≥ 10.

+ 2 11 + c i=3 1 6i- 9 ≥

 19 1} = 12. For D(1, 7), running an implementation of Algorithm 1 with n = 44, k = 9, and t = 7 outputs no coloring. Hence χ ρ (D(1, 7)) ≥ 10. For D(1, 8), running an implementation of Algorithm 1 with n = 41, k = 10, and t = 8 outputs no coloring. Hence χ ρ (D(1, 8)) ≥ 11. For D(1, 9), running an implementation of Algorithm 1 with n = 46, k = 9, and t = 9 outputs no coloring. Hence χ ρ (D(1, 9)) ≥ 10.

  We now turn our attention to other 4-regular distance graphs, i.e. graphs of type D(a, b), with 2 ≤ a ≤ b. First, remark that if a and b are not co-prime, then the graph D(a, b) is not connected and consists in g = gcd(a, b) copies of D( a g , b g ). Hence we only consider distance graphs D(a, b) with gcd(a, b) = 1. The smallest example is D(2, 3) which is a subgraph of D(1, 2, 3) = P 3 ∞ , thus χ ρ (D(2, 3)) ≤ χ ρ (P 3 ∞ ) ≤ 23. In fact, we show that the upper bound is much less than 23: Proposition 7. 11 ≤ χ ρ (D(2, 3)) ≤ 13; 14 ≤ χ ρ (D(2, 5)) ≤ 23.

2 5 + c i=2 1 5i- 4 ≥

 14 1} = 14. The upper bounds come from the packing 13-coloring of D(2, 3) of period 240 and the packing 23-coloring of D(2, 5) of period 336 given in Appendix A.

Figure 3 :

 3 Figure 3: Number of colors for a packing coloring of D(1, t) using a greedy algorithm.

Table 1 :

 1 Lower and upper bounds for the packing chromatic number of G(Z, D) for different values of D. In the fourth column are the periods of the colorings giving the upper bounds. (

			8	54
	1, 3	9 *	9	32
	1, 4	11	16	320
	1, 5	10 *	12	1028
	1, 6	12	23	2016
	1, 7	10 *	15	640
	1, 8	11 *	25	5184
	1, 9	10 *	18	576
	1, 2, 3	17	23	768
	2, 3	11	13	240
	2, 5	14	23	336

* : bound obtained by running Algorithm 1 of Section 4).

  4, 1, 5, 1, 8, 1, 4, 1, 5, 1, 9), S 4,11 = (1, 4, 1, 5, 1, 10, 1, 4, 1, 5, 1, 11), S 6,15 = (1, 6, 1, 7, 1, 12, 1, 13, 1, 6, 1, 7, 1, 14, 1, 15), using these subpatterns is constructed by assigning inductively to 8 consecutive subgraphs B 2i the sequence of color patterns P = ((S 4,9 ) 8q , (S 6,15 ) 6q , (S 4,11 ) 8q , (S 6,21 ) 4q , (S 4,9 ) 8q , (S 6,15 ) 6q , (S 4,11 ) 8q , (S 6,29 ) 3q ).

	S 6,21 = (1, 6, 1, 7, 1, 16, 1, 17, 1, 6, 1, 7, 1, 18, 1, 19, 1, 6, 1, 7, 1, 20, 1, 21),
	S 6,29 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 28, 1, 29),
	S 6,31 = (1, 6, 1, 7, 1, 22, 1, 23, 1, 6, 1, 7, 1, 24, 1, 25, 1, 6, 1, 7, 1, 26, 1, 27, 1, 6, 1, 7, 1, 22, 1, 23,
	1, 6, 1, 7, 1, 28, 1, 29, 1, 6, 1, 7, 1, 30, 1, 31).

Case A. t is odd. First, since s = 4p for some integer p and thanks to Lemma 2, we can assign to each subgraph B 2i+1 the color pattern (S 2,3 ) p . In order to color subgraphs B 2i , we consider three sub-cases (that are not totally disjoints).

Subcase A.1. t = 96q ± 1 for some q ≥ 1. A packing coloring of D

(1, t) 

  Case B. t is even. For t = 4p or t = 4p + 2, recall that subgraphs B i are of size s = 4p + 1. New color patterns are constructed by inserting a new color at the end of each pattern (of length s = s -1 = 4p) defined in Subcases A.1, A.2 and A.[START_REF] Eggleton | Colouring the real line[END_REF].By Lemma 2, the problem of adding the missing color in each color pattern defined in subcases A.1, A.2 and A.3 is equivalent to the one of coloring the infinite path P ∞ with colors from {k 1 , k 1 + 1, . . . , k 2 } such that vertices of color e are at distance greater than e

	s (mod 48)	0	4	8	12	16	20	24	28	32	36	40	44
	c 1 , δ 1	/ 32, 3 32, 3	/	32, 3 32, 3	/	32, 3 32, 3	/	32, 3 32, 3
	c 2 , δ 2	/ 38, 3 38, 3	/	38, 3 38, 3	/	38, 3 38, 3	/	38, 3 38, 3
	c 3 , δ 3	/ 44, 4 44, 4 32, 3	/	44, 4 32, 3 44, 4	/	32, 3 44, 4 44, 4
	c 4 , δ 4	/ 52, 2 52, 2 44, 2 44, 2 52, 2	/	60, 2 44, 2 38, 2 52, 2 60, 2
	c 5 , δ 5	/ 56, 2 56, 2 52, 2	/	64, 3 38, 2 64, 3	/	46, 2 60, 2 78, 2
	largest color 31	59	59	59	51	69	41	75	47	49	63	89
	An illustration for the case s ≡ 28 (mod 48) is given in Appendix B.			

  3 7 since at most 3 out of 7 consecutive vertices can be colored 1. We now show that ρ 2 ≤ 2 11 . Let v be a vertex colored 2. If v + 3 is also colored 2, then no vertex of {v + 4, • • • , v + 10} can be colored 2. Hence 2 vertices out of 11 are colored 2. If v + 3 is not colored 2 but v + 4 is, then only one of v + 8, v + 14 can be colored 2 among {v + 5, • • • , v + 16}, resulting in 3 out of 17 vertices colored 2 and 3 17 < 2 11 . If neither v + 3 nor v + 4 is colored 2 then no vertex of {v + 5, v + 6, v + 7} can be colored 2 and at most one vertex of {v + 8, v + 9, v + 10} can have color 2, resulting in 2 vertices out of 11 colored 2. Moreover, if i ≥ 3, then ρ i ≤ 1 6i-9 and min{c| 3 7

Table 2 :

 2 . Known upper bounds for the packing chromatic number of D(1, t) 

	odd t 11 → 45 47, 49	51 → 69	71 → 445	447 → +∞
	χ ρ ≤	?	31	?	between 29 and 89	40
	even t 10 → 94 96, 98 100 → 142	144 → 446	448 → +∞
	χ ρ ≤	?	59	?	between 59 and 179	81

the lexicographic product G • H of graphs G and H has vertex set V (G) × V (H) and two vertices (a, x) and (b, y) are linked by an edge if and only if ab ∈ E(G) or a = b and xy ∈ E(H)
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Set R i 3 = (S 6,15 ) q 3 .T i 3 , with s = 16q 3 + 4r 3 , 0 ≤ r 3 < 4, 0 ≤ i < δ 3 , and

if r 3 = 2; (1, 6, 1, 7, 1, c 3 + i, 1, c 3 + δ 3 + i, 1, c 3 + 2δ 3 + i, 1, c 3 + 3δ 3 + i), if r 3 = 3.

Set R i 4 = (S 6,21 ) q 4 .T i 4 , with s = 24q 4 + 4r 4 , 0 ≤ r 4 < 6, 0 ≤ i < δ 4 , and

Set R i 5 = (S 6,31 ) q 5 -1 .T i 5 , with s = 48q 5 + 4r 5 , 0 ≤ r 5 < 12, 0 ≤ i < δ 5 , and As the cyclic distance between two occurrences of either the color pattern R 1 or of R 2 or of R 3 in R is equal to 4 (hence, each of these three patterns appears every 8 set B i ), and if e is the maximum color used in R i j , then, according to Lemma 2, for j = 1, 2, 3, δ j must satisfy Similarly, the cyclic distance between two occurrences of either the color pattern R 4 or of R 5 in R is equal to 8, hence, for j = 4 or 5, δ j must satisfy

Therefore, for each residue of s modulo 48, a packing coloring is obtained by fixing the values of c j and δ j as indicated in the next table (δ j is set to the smallest value satisfying the above inequations). The largest color used in each case is reported on the last row.

B. An illustration of Subcase A.3 of the proof of Proposition 1

We illustrate the construction of a packing coloring of D(1, t) defined in Subcase A. [START_REF] Eggleton | Colouring the real line[END_REF]