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Abstract. An approximate analytical solution characterizing initial condi-
tions leading to action potential firing in smooth nerve fibres is determined,
using the bistable equation. In the first place, we present a non-trivial sta-
tionary solution wave. Then, we extract the main features of this solution to
obtain a frontier condition between the initiation of the travelling waves and
a decay to the resting state. This frontier corresponds to a separatrix in the
projected dynamics diagram depending on the width and the amplitude of the
stationary wave.

1. Introduction. A major problem in mathematical neuroscience and applied sci-
ence is to understand and control the excitability of a nerve fiber so that external
stimulations induce the firing of action potentials or a decay to the resting state.
Depending on the power of an external stimulus, a fiber can indeed stay at its
resting state or its membrane can be charged so that it induces a local change in
the transmembrane potential. This external stimulation, which can be realized by a
small local electrode, can be seen as an initial condition corresponding to a spatially
distributed transmembrane voltage along the nerve fiber.
In 1937, Rushton introduced a concept of the liminal length. According to this
hypothesis, there is a minimum length of a fiber which must be raised above the
excitation threshold in order to initiate the propagating wavefront [1]. The emer-
gence of travelling waves is not only function of the amplitude but also of the spatial
distribution of the stimulation. In order to quantify the effects of these parameters,
we use the bistable equation (corresponding to the FitzHugh-Nagumo (FHN) model
[2] without recovery variable) which is widely used to investigate the mechanism of
the propagation [3, 4, 5] in nerve fibres. McKean and Moll [6], using this model
with a piecewise linear representation of the sodium current flowing through the
membrane ((f(V ) in eq.(1)), demonstrated that for the initial data corresponding
to a local stimulation with a single electrode, there exists a threshold surface in
the space of initial data that separates subcritical initial conditions, which decay to
zero, from the supercritical initial conditions, which expand into a pair of propa-
gating wavefronts, sometimes called trigger waves.
Aronson and Weinberger [7] used a maximum principle to prove that, for the bistable
equation, sub- and super-critical initial data were bounded by a threshold surface.
The qualitative characterization of this threshold surface has been performed by
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Fife and McLoad [8] by using the gradient flow structure of the bistable equation.
More recently, Neu et al. [9] proposed to rewrite this problem with a variational
approach by introducing a gradient flow of the energy defined for a steady-state
solution of the system. Using a projection of this gradient onto an approximate so-
lution space, this method leads to obtain the quantitative conditions on the width
and amplitude of initial conditions which enable the emergence of a travelling wave.
They focused on an asymptotic case where the threshold parameter corresponding
to the activation of the sodium current is very small (α ¿ 1 in eq.(2)). Using
the same methodology, we propose an approximate determination of the conditions
needed to fire a nerve membrane whilst introducing this threshold parameter α as
a detuning parameter. This is motivated by the fact that this parameter can take
a wide range of values usually not very small, depending on the kind of neurons.
In this article, we consider the bistable equation which includes the stable and the
unstable excited states due to a cubic polynomial function as a description of the
sodium current.
In section 2, the analytical shape of the stationary wave is determined, correspond-
ing to initial conditions. In section 3, a parametric form of the stationary solution is
used to define an analytical shape of the separatrix in the projected dynamics dia-
gram. This separatrix corresponds to a stable manifold and provides the conditions
which allow the emergence of travelling waves. In section 4, we propose a determi-
nation of the stable manifold, using the stable manifold theorem and the Poincaré’s
linearization [10], that is the frontier between an emerging action potential and a
decay to the resting state of the membrane.

2. Analytical stationary wave. In the first place, let us consider the bistable
equation in an infinite continuous one-dimensional medium such as

∂V

∂t
= D

∂2V

∂x2
− f(V ) . (1)

In this model of the smooth nerve fibre, V denotes the voltage accross the membrane,
D represents the diffusion coefficient, t is the time and x is the longitudinal axis of
the fibre. The nonlinear function f(V ) corresponds to a cubic polynomial function
so that

f(V ) = V (V − α)(V − 1) , (2)

and represents the sodium current flowing through the membrane. The parameter
α acts as a threshold between the passive and the active role of the sodium con-
ductance (0 < α < 1), so that the steady state V = 0 is the resting state and the
steady state V = 1 is the excited one.

The system is completed by Neumann conditions, so that limx→±∞
dV

dx
= 0. In

this context, we look for non uniform stationary waves where V (x = 0) 6= 0 and
limx→±∞ V (x) = 0, so that the nerve fibre is at its resting state when |x| → ∞.
Due to symmetry, we can reduce this problem to a semi-infinite medium by set-
ting dV

dx (x = 0) = 0. We look for a time-independent solution V = Vs(x) of eq.
(1)satisfying

D
d2V

dx2
= V (V − α)(V − 1) . (3)
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Multiplying both sides by
dV

dx
and recognizing that

d

dx
(
dV

dx
)2 = 2

dV

dx

d2V

dx2
, (4)

eq. (3) can be rewritten such as

d(
dV

dx
)2 =

2
D

V (V − α)(V − 1)dV . (5)

Note that this equation could also be obtained by introducting a potential function,
as in [11]. Taking into account the Neumann conditions requirements, eq. (5) yields,
after integration,

dV

dx
=

√
2
D

(
V 4

4
− (α + 1)

V 3

3
+ α

V 2

2
) =

√
2
D

F (V ) , (6)

where F (V ) is the antiderivative function of f(V ). In the case where α ≤ 1/2, F (V )

has three real roots and can be expressed by F (V ) =
1
4
V 2(V − V1)(V − V2), with

V1,2 =
2
3
(α + 1)∓ 1

3

√
4α2 − 10α + 4 . (7)

V = 0 and V = 1 are the minima of F (V ), corresponding to stable states, and
V = α is a local maximum corresponding to an unstable state.
To integrate eq. (6), F (V ) must be positive, therefore excursion of V must lie in
the range [0, V1], leading to

Vs∫

V1

dV

V
√

(V − V1)(V − V2)
= ±

√
1

2D

x∫

0

dx . (8)

The left-hand side of eq. (8) corresponds to the integral form of an elliptic function
[12] yielding

Vs(x) =
V2

1 + (V2
V1
− 1) cosh2(x

2

√
α
D )

. (9)

Equation (9) corresponds to the stationary wave whose width depends on the dif-
fusion parameter D and on the threshold parameter α. The amplitude of Vs is
maximum when x = 0 so that Vs(0) = V1 and is only a function of α. Because of
symmetry, this result can be extended to an infinite medium, as illustrated in Fig. 1.

Note that the existence of this stationary wave (in accordance with the results
obtained in [11]) is assured only when α ∈]0, 1/2[, which corresponds to the realistic
biological case [3].

3. Projected dynamics diagram. The shape of the stationary wave expressed
by eq. (9) is rewritten into a more general form

V (a, γ, k, x) =
a

γ + cosh(kx)
, (10)

with a =
6α√

4α2 − 10α + 4
, γ =

2(α + 1)√
4α2 − 10α + 4

and k =
√

α

D
.

The parameters (a, γ, k) of eq.(10) depend on the value of the nonlinear thresh-
old α, while k also depends on the diffusion coefficient D.



266 S. JACQUIR, S. BINCZAK, J. P. GAUTHIER AND J. M. BILBAULT

−250 −200 −150 −100 −50 0 50 100 150 200 250
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Cell units

S
ta

tio
na

ry
 w

av
e 

am
pl

itu
de

Figure 1. Stationary wave in the case where α = 0.2 and D = 1.

Therefore a variation of these parameters from their specified values destroys the
stationary behaviour of the system. In order to understand the influence of such a
change, we use a variational approach leading to capture the different evolutions of
an initially distributed voltage defined by eq. (10). In the following, k and a are
defined as variable parameters, while γ remains fixed by the threshold α (this last
condition avoids untractable analytical developments). Therefore a is linked to the
amplitude of the wave while k is linked to its width. The diffusive coefficient D
is only present in the definition of k. In order to simplify the following analytical
study, we consider here the case where D = 1.
We project the dynamics of the stationary wave in the (a, k) space to determine
the projected dynamics diagram. Considering the wave V (x, t) with V (x, t) → 0 as
|x| → ∞, let its energy E be defined as

E =

∞∫

−∞
(
1
2
(
∂V

∂x
)2 + F (V ))dx, (11)

where F (V ) is the antiderivative function defined in eq. (6). The energy E can also
be expressed by considering a Lagrangian function L, so that

E =
∫

Ω

L(V (x), Vx(x), x)dx, (12)

with V (x) null on the boundaries and Ω as the domain on which E is defined.
Respecting the Euler-Lagrange conditions [13], if E has an extremum, its variational
derivative must be null, therefore

δE

δV
= 0 ⇐⇒ δE

δV
= − ∂

∂x

∂L

∂Vx
+

∂L

∂V
= 0 . (13)
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Recognizing that L(V (x),
∂V

∂x
(x), x) =

1
2

(
∂V

∂x

)2

+ F (V ) , then

∂L

∂Vx
=

∂V

∂x
,

∂

∂x

∂L

∂Vx
=

∂2V

∂x2
and

∂L

∂V
= f(V ) . (14)

Consequently,

∂V

∂t
= −δE

δV
=

∂2V

∂x2
− f(V ) . (15)

The gradient flow of eq. (10) is projected onto a two-dimensional space formed by
the parameter a and the width k of a pulse. The resulting projected dynamical
system is a pair of ODEs describing the temporal evolution of the parameter a and
the width of the pulse, and is investigated using the methodology detailed by Neu
et al. [9].
Let us recall, the main steps leading to the projected gradient flow:
The wave (eq. (10)) is considered as a parametric representation, so that

V (x, t) = V (β(t), x) ∀t , (16)

where β(t) = (a(t), k(t)) is a time-dependent vector of parameters. Considering the
time derivative of V (eq. (16)), the gradient flow (eq. (11)) implies

∂jV
∂βj

∂t
= −δE

δV
, (17)

where
δE

δV
is a linear combination of ∂jV , j = 1, ..., N . To extract the ODEs for

βj(t), the eq. (17) is multiplied by ∂iV dx and then integrated



∞∫

−∞
∂iV ∂jV dx


 ∂βj

∂t
= −

∞∫

−∞

δE

δV
∂iV dx . (18)

The energy is a function of V , i.e function of a vector β of parameters, so that the
functional derivative is

∂iE =

∞∫

−∞

δE

δV
∂iV dx . (19)

Therefore, equation (18) becomes



∞∫

−∞
∂iV ∂jV dx


 ∂βj

∂t
= −∂iE . (20)

Using linear algebraic notation, (eq. (20)) is expressed such as

M

(
∂β

∂t

)
= −∇E , (21)

where the gradient operator is taken with respect to β and M is a N×N symmetric
matrix.
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The recalled steps are applied on eq. (10), leading to

M =




∞∫

−∞

∂V

∂a

∂V

∂a
dx

∞∫

−∞

∂V

∂a

∂V

∂k
dx

∞∫

−∞

∂V

∂k

∂V

∂a
dx

∞∫

−∞

∂V

∂k

∂V

∂k
dx




=




m11

k

m12a

k2

m21a

k2

m22a
2

k3


 , (22)

with mij determined in the appendix in function of γ.
Applying eqs. (21-22) and determining the gradient operator as proposed in the
appendix, the projected dynamical system can be expressed such as





∂a

∂t
=

a

m2
12 −m11m22

[
(m22 +

m12

4
)θ1a

2 + (m22 +
m12

3
)θ2a

+(m22 + m12
2 )θ3 + (m22 − m12

2 )θ4k
2

]

∂k

∂t
=

k

m11m22 −m2
12

[
(
m11

4
+ m12)θ1a

2 + (
m11

3
+ m12)θ2a

+(m11
2 + m12)θ3 + (m12 − m11

2 )θ4k
2

]

(23)

which describes the evolution of an initial condition defined by eq. (10).

Calculating the nullclines of the system (23), four equilibrium points R(0, 0),
P1(aP1 , 0), P2(aP2 , 0) and N(aN , kN ) are found so that R(0, 0) is an attractor point
and it characterizes the return of a system to a resting state; P1(aP1 , 0) corresponds
to a source; P2(aP2 , 0) is a sink and characterizes the excited state and N(aN , kN )
is a saddle, as illustrated in Figure 2.
Depending on values of a and k, we can deduce four domains in the projected dy-
namics diagram (see Fig. 2). Domains (1) and (2) characterize the stimulation, i.e.
initial conditions defined by (a, k) leading to excite a nerve fibre. Domains (3) and
(4) are so that initial conditions defined by (a, k) lead to a return to the resting
state.
Therefore, the stable manifold of the saddle node (aN , kN ) corresponds to a frontier
between the emergence of a travelling wave and a decay to the resting state.
Determination of this separatrix leads to obtain the relationship between a and k,
thus between the amplitude and the width of the initial condition giving the fron-
tier.
An approximate solution can be reached by using the Poincaré’s linearization the-
orem.

4. Determination of the stable manifold. Let (x, y) be a basis obtained from
the linear basis so that (0, 0) corresponds to N. The x-axis corresponds to the
unstable linearized eigenvector of the saddle node N, while the y-axis corresponds
to its stable linearized eigenvector.
With λ1 (resp. λ2), the stable (resp. unstable) eigenvalue of N, we can rewrite the
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Figure 2. Projection diagram in the coordinate system (a,k) in
the case where α = 0.2 and D = 1. R, N , P1 and P2 are the critical
points. Crosses (+) correspond to the predicted stable manifold of
order seven, while the first order linearization of the separatrix is
presented in dotted line. The numerical simulations are based on
a finite difference scheme using a 4th order Runge-Kutta algorithm.

differential equation in the following form

∂x

∂t
= λ2x + g1(x, y), (24)

∂y

∂t
= λ1y + g2(x, y), (25)

where x ∈ Rn and y ∈ Rn. gi(x, y), i = 1, 2, contains the nonlinear parts of the
equation which vanish, as their first derivatives at the origin. The stable manifold
theorem is used to realize the Poincaré’s linearization [10] of eqs. (24) and (25).

The stable manifold, denoted S(x), is such as y = S(x) and
∂S

∂x
(0) = 0, leading to

S(x) =
∑

n≥2

snxn.

Replacing all terms in y by S(x) in eq. (25) yields

∂y

∂t
= λ1S(x) + g2(x, S(x)) . (26)
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Furthermore,
∂y

∂t
=

∂x

∂t

∂S(x)
∂x

, thus

∂y

∂t
= [λ2x + g1(x, S(x))]S

′
(x) , (27)

with S
′
(x) =

∑

n≥2

nsnxn−1.

We can determine the expression of the stable manifold S if and only if we know
the values of the coefficients sn, which can be realized by identifying the coefficients
sn between eqs. (26) and (27) ( for instance, fixing α = 0.2, the first calculated
coefficients are s1 = 0, s2 = 0.1014655573 and s3 = −0.1006215541).
The stable manifold of order seven has been determined and compared to the fron-
tier obtained by numerical simulations from eq. (10), as illustrated in Fig. 2. There
is a good correlation between the numerical result and the stable manifold of order
seven, compared with the first order linearization of the separatrix. Nevertheless,
even if the accuracy is increased for small k, it diverges when k exceeds a certain
value, which is due to the fact that the eigenvalues of the saddle are resonant, at least
numerically. This divergence becomes more and more pronounced as the order n of
the approximation is increased, reaching the saddle asymptotically. However, this
method can be applied to determine the (a, k) relationship in the range 0 ≤ k ≤ kN

to whatever desired accuracy. Otherwise, a compromise has to be made between
accuracy and the possible variation of k.
In this study, the criterion for the initiation of the travelling waves has been in-
vestigated, based on the existence of stationary waves. We have also determined
analytically the existence of a frontier between the initiation of a travelling wave and
its return to the resting state in a projected dynamics diagram. We suggest that our
results could be applied to determine the minimum punctual electrode stimulation
or the minimum size of the electrode needed to generate an action potential. It
would also be interesting to apply this method in the bidimensional excitable media
case modelling cardiac tissue.

Appendix. The mij coefficients defined in eq. (22) are determined such as

m11 =
2

(γ2 − 1)3/2

[
2γ tanh−1(

γ − 1√
γ2 − 1

)−
√

γ2 − 1

]

m12 = m12 =
1

2(γ2 − 1)3/2

[
γ ln(

−γ2 + 1 + γ
√

γ2 − 1

γ2 − 1 + γ
√

γ2 − 1
) + 2

√
γ2 − 1

]

m22 =
1

9(γ2 − 1)5/2

[√
γ2 − 1(6− 6γ2 + (2 + γ2)π2)

−3 ln(γ +
√

γ2 − 1)

(
γπ2 − (2 + γ2)

√
γ2 − 1 ln(γ +

√
γ2 − 1)

+γ ln(γ +
√

γ2 − 1)2
)]

.

(28)
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Using eq. (11), E can be expressed such as

E =
a4

12k(γ2 − 1)7/2

[
6γ(2γ2 + 3) tanh−1(

γ − 1√
γ2 − 1

)− (11γ2 + 4)
√

γ2 − 1

]

− a3(α + 1)
3k(γ2 − 1)5/2

[
2(2γ2 + 1) tanh−1(

γ − 1√
γ2 − 1

)− 3γ
√

γ2 − 1

]

+
a2α

k(γ2 − 1)3/2

[
2 tanh−1(

γ − 1√
γ2 − 1

)−
√

γ2 − 1

]

− Da2k

6(γ2 − 1)5/2

[
6γ tanh−1(

γ − 1√
γ2 − 1

)− (γ2 + 2)
√

γ2 − 1

]
,

(29)
which shows that this energy depends on the values of α, γ and the diffusion coef-
ficient D.
The partial derivatives of the energy can be written as





∂E

∂a
= θ1

a3

k
+ θ2

a2

k
+ θ3

a

k
+ θ4ak

∂E

∂k
= −θ1

4
a4

k2
− θ2

3
a3

k2
− θ3

2
a2

k2
+

θ4

2
a2

(30)

with

θ1 =
1

3(γ2 − 1)7/2

[
6γ(2γ2 + 3) tanh−1(

γ − 1√
γ2 − 1

)− (11γ2 + 4)
√

γ2 − 1

]

θ2 =
−(α + 1)

(γ2 − 1)5/2

[
2(2γ2 + 1) tanh−1(

γ − 1√
γ2 − 1

)− 3γ
√

γ2 − 1

]

θ3 =
2α

(γ2 − 1)3/2

[
2γ tanh−1(

γ − 1√
γ2 − 1

)−
√

γ2 − 1

]

θ4 =
−D

3(γ2 − 1)5/2

[
6γ tanh−1(

γ − 1√
γ2 − 1

)− (γ2 + 2)
√

γ2 − 1

]
.

(31)
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