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Abstract

We present an electronical analogue circuit modelling a

FitzHugh-Nagumo neuron with a modified excitability.

To characterize this basic cell, the bifurcation curves be-

tween stability with excitation threshold, bistability and

oscillations are investigated. An electrical circuit is then

proposed to realize an unidirectional coupling between

two cells, mimicking an inter-neuron synpatic coupling.

In such a master-slave configuration, we show experimen-

tally how the coupling strength control the dynamic of

the slave neuron, leading to frequency locking, chaotic be-

havior and synchronization. These phenomena are then

studied by phase map analysis. The architecture of a

possible neural network is then described introducing dif-

ferent kind of coupling between neurons.

1 Introduction

As biological neurons have been well studied over the
previous century, there is nowadays a strong interest
in realizing electrical networks to reproduce the ac-
tivity of biological neurons. Accurate models are usu-
ally used to describe biological neural network, such
as Hodgkin and Huxley (HH) [1], and are subject to
intensive studies [2, 3] in engineering science. Never-

theless, mathematicians often study the 2-component
FitzHugh-Nagumo (FHN) model [4, 5], as a simplified
version of the HH one. This set of equations leads in-
deed to analytical studies, enlightening the nonlinear
dynamical mechanisms generating complex patterns
in the neural information process [6].
Although these differential equations are used to
model the nerve membrane [6, 7], we suggest to de-
scribe overall activity of the neuron by them. In
this reductive approach, we propose an experimental
electronic implementation of a neuron based on the
FitzHugh-Nagumo (FHN) equation with modified ex-
citability to conceive the electronic MFHN neuron
[8].
In the first part, the electronic neuron is presented
and characterized by its experimental bifurcation
curves, showing that this MFHN circuit leads to com-
plex dynamics of travelling waves [9, 10] emerging
from saddle homoclinic loop bifurcations.
In the second part, we use the MFHN circuit as a ba-
sic cell to realize a master-slave configuration. Two
cells are coupled in an unidirectional manner, which
would correspond to two neurons coupled synapti-
cally. After the presentation of the electronic circuit
giving this coupling, we discuss the experimental con-
ditions for which the master dynamics controls the
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excitability of the slave neuron leading to a shift of
bifurcation curves, a variation of interspike frequen-
cies or a phenomenon of intermittency route to chaos.
Finally, we present the architecture of a possible ex-
perimental network including different electrical re-
alizations of neuronal coupling.

2 Experimental description of
one cell

2.1 Electrical circuit

The nonlinear circuit, as sketched in Fig. 1, can be
described as follows: Part (A) is a parallel association
of three different branches, two of them being resis-
tive and commuted by silicium diodes (V d = 0.6 V )
while the third one is a negative resistor obtained
with an operational amplifier. Due to diodes’ com-
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Figure 1: Diagram of the nonlinear circuit

muting behaviour, the resulting I-V characteristic is
nonlinear and can be modelled by a cubic polynomial
function for an appropriate set of parameters so that

INL = f(U) =
1

R0

[
U − γ2U3

3

]
, (1)

where U and INL are respectively the voltage and
the corresponding current. The parameters R0 and
γ are obtained by a fitting approximation, e.g. by
least mean square’s method. As illustrated in Fig.
2, we obtain a good match between experimental re-
sults and equation (1) by setting R0 = 1010 Ω and

γ = 1.138 V −1. This nonlinear resistor is in parallel
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Figure 2: Experimental I-V characteristic (+ sym-
bols) of part (A). Continuous line: INL = f(U) from
eq. (1) with R0 = 1010 Ω and γ = 1.138 V −1.
Dashed line: Experimental I-V characteristic I1 +
I2 = h(U) with R6 = 2021 Ω, R7 = 690 Ω, L1 =
10.2 mH, L2 = 3.5 mH and E1 = 0.4 V

with a capacitance and two branches in parallel in-
cluding inductances, resistances and voltage sources,
one of them being commuted by a silicium diode so

that setting the conditions
R6

L1
=

R7

L2
, E2 = −V d,

and using a piecewise linear I-V description for diode
D7, I2 = 0 if U < 0. Therefore, using Kirchhoff’s
laws, the system of equations can be expressed in a
normalized way by :





dV

dτ
=

[
V − V 3

3

]
−W

dW

dτ
= ε

[
g(V )−W − η

] (2)

Where V = γU and W = γR0(I1 + I2) correspond,
in biological terms, to the membrane voltage and

the recovery variable; τ =
t

R0C
is a rescaled time,

ε =
R0R6C

L1
the recovery parameter and η = γ

R0

R6
E1

a bifurcation parameter. g(V ) is a piecewise linear
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function, g(V ) = αV if V ≤ 0 and g(V ) = βV if

V > 0 where α =
R0

R6
and β =

L1 + L2

L2

R0

R6
control

the shape and location of the W-nullcline [8].
Note also that the initial condition Uini can be loaded
in the neuron via an analogue commutator controlled
by a periodic signal Vsyn.

2.2 Experimental bifurcation curves
of MFHN circuit

This section presents different dynamics of the
MFHN neuron [8]. In the case, α = β, the system cor-
responds to the standard FitzHugh-Nagumo (FHN)
equation where the recovery variable is driven by a
linear function of the ”membrane voltage”. In the
general case α 6= β, equation (2) exhibits much more
complex dynamics. The phase portrait is very similar
to the one occurring from the modified Morris-Lecar
(ML) equations [11, 7] proposed to model barnacle
muscle fibres and pyramidal cells. Considering the
case α = 0.5 and β = 1.96, experimental bifurcation
curves in the parameter plane (η,ε) is presented in
Fig. 3. Several results are to be distinguished de-
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Figure 3: Experimental bifurcation curves in the di-
mensionless plane (η, ε).

pending on the location of the nullcline points and
on initial conditions. In domain (1), the systeme has
one stable and unstable fixed point, while one point

is a saddle. Then, if a perturbation of the rest state,
O1, is large enough so that it lies between the points
O2 and O3, the system responds with an excitation
pulse, as illustrated in Fig. 4. The upper inset shows
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Figure 4: Dimensionless phase plane (V,W) show-
ing stability with excitation threshold corresponding
to domain (1) of Fig.3 with η = 0.19 and ε = 0.2
(E1 = 0.332 V and C = 1 nF ). Insets: Excita-
tion pulse (upper inset); perturbation reaching rest-
ing state (lower inset). Parameters of insets: abscissa
20 µs/div; ordinate 225 mV/div.

an excitation pulse while the bottom one shows a per-
turbation reaching the resting state; the main figure
gives the respective experimental phase portrait for
the both cases. Domain (2) corresponds to the bista-
bility case characterized by the existence of a stable
fixed point and a stable limit cycle that has appeared
from a big homoclinic loop bifurcation. Then, the
model exhibits oscillations if the perturbation is large
enough, as illustrated in Fig. 5. The inset shows a
spiking train of pulses corresponding to the limit cy-
cle in the experimental phase portrait. Otherwise,
it decays to the rest state. In domain (3), the fixed
point looses stability via a subcritical Andronov-Hopf
bifurcation and only oscillations occur in the model,
which are similar to the spiking train of pulses. Note
that in the region (2), another saddle homoclinic loop
bifurcation has taken place leading to a small unsta-
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Figure 5: Dimensionless phase plane (V,W) show-
ing bistability corresponding to domain (2) of Fig. 3
with η = 0.226 and ε = 0.2 (E1 = 0.3981 V and
C = 1 nF ). Inset: Spiking train of pulses corre-
sponding to limit cycle in experimental phase por-
trait. Parameters of inset: abscissa 20 µs/div; ordi-
nate 195 mV/div.

ble limit cycle near the fixed point. Note also that,
contrary to standard FHN, arbitrarily long interspike
intervals can be found theoretically, as the two lower
equilibrium points are merging. Finally, in domain
(4), a single unstable fixed point exists leading to os-
cillations. In domains (2) and (3), the frequency of
the oscillations is controlled by the parameters η and
ε, leading to a wide range of values, as illustrated in
Fig. 6.
In the following section, we study the dynamical be-

haviour of a network composed of two neurons con-
nected unilaterally.

3 Unidirectional coupling of
two cells

The neurons communicate mainly between them
through specialized devices called synapses via chem-
ical messages. The chemical synapse transmits the
impulse unidirectionally. Therefore, it is interest-
ing to conceive and to realize an electrical circuit in-
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Figure 6: Frequency of an oscillating neuron in func-
tion of the parameters η and ε. The dot lines corre-
spond to a jump from the resting state to the oscil-
lating one.

cluding the same features as the synaptical coupling.
We present in Fig. 7 the unidirectional coupling be-
tween two cells leading to a master-slave configura-
tion where Ni(i = 1, 2) are described by the circuit
of Fig. 1. Let us introduce D the coupling parame-

N 1 N 2

D

Figure 7: Coupling between two cells N1 and N2.

ter (synaptic strength). Its circuit, as illustrated in
the Fig. 8, includes an adder-inverter, an inverter
and then a follower. U1 (resp. U2) is the voltage
capacitor of the cell N1 (resp. N2). The value of
the resistor R is fixed to 100 kΩ, which is large com-
pared to the other components so that the current
going though 2R is negligible, Ra = 10 kΩ, while Rc
is a detuning parameter which allows to control the
coupling parameter value. Note also that the initial
condition can be loaded in the neuron via an ana-
logue commutator controlled by Vsyn. Although it is
usual to study a system with normalized variables, it
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Figure 8: Unidirectional coupling circuit.

is more convenient to describe electrical circuits with
experimental variables. Therefore, we will keep both
variables (as normalized V1 and experimental U1) in
the following of this paper. Using Kirchoff’s laws,
the normalized equations corresponding to the cou-
pling between two MFHN neurons in a master-slave
configuration can be expressed by:





dVi

dτ
=

[
Vi − V 3

i

3

]
−Wi + DV1δ2,i

dWi

dτ
= εi

[
g(Vi)−Wi − ηi

] (3)

with i = {1, 2}, D = R0
Rc

, and where δ2,i is a Kro-
necker symbol, so that δ2,1 = 0 and δ2,2 = 1.
Therefore, the two neurons are coupled so that a part
of current weighted by D via R, and generated by
N1 is included in N2. The two neurons are initially
set to voltage U1ini and U2ini, due to the analogue
commutators controlled by voltage Vsyn. When the
initial conditions are loaded, these commutators are
switched off while the two neurons are connected via
a third commutator controlled by Vsyn. Note that
the time delay between the two neurons has not been
taken into account in this circuit, a master-slave con-
figuration rendering it unnecessary.

3.1 The master in a resting state

When the voltage is so that V1 is constant (the cell N1

is in a resting state), the dynamics of the slave cell is
given by eqs. (2) with effective bifurcation parameter

η̄2 = η2 −DV ∗
1 , (4)

where V ∗
1 < 0 is the voltage at stable resting state

of the master. Therefore, it implies a modification
of the excitability of the cell N2 corresponding to a
shift in the (η, ε) plane illustrated on Fig. 9. The pa-
rameters are taken so that, when D = 0, the master
neuron N1 lies in domain (1), while the slave neu-
ron N2 is in domain (3) and generates a spiking train
of pulses. When the unilateral coupling is increased
and reaches a critical value, the neuron N2 ceases to
oscillate and stays in the resting state, meaning that
the slave neuron has been moved from domain (3) to
domain (1) of Fig. 3. This ability of neuron N1 to
inhibit neuron N2 corresponds to the shift predicted
by equation (4): As V ∗

1 < 0, increasing D implies
to increase η̄2 and therefore the bifurcation curves of
Fig. 3 are translated along abscissa, while the value
of η2 defined by the electrical parameters of neuron
N2 has not been changed. This result suggests that,
for a defined activity of a slave neuron, the strength
of this unilateral coupling should be above a critical
value to give to the master neuron the control on the
slave neuron. In Fig. 9, experimental values (D, η̄2)
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Figure 9: Shifted bifurcation curve of the slave neu-
ron N2 between domains (1) and (3). Parameters:
Master neuron N1: α1 = 0.5, β1 = 1.96, ε1 = 0.01,
η1 = 0.108 leading to V1 = −1.05 (i.e. U1 =
−921mV ). Slave neuron N2: α2 = 0.5, β2 = 1.96,
ε2 = 0.01
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correspond to the shifted bifurcation curve between
domains (1) and (3) of the neuron N2 with ε2 = 0.01
and when the master neuron N1 lies in domain (1)
in a resting state so that V ∗

1 = −1.05. Compari-
son shows a good match between experimental results
(+) and equation (4) (continuous line), validating the
unilateral coupling circuit.

3.2 The master in a spiking regime

In this section, we present some results when the mas-
ter is in domain (2) or (3) and oscillates. As V1 is
varying in time, we cannot express a simple relation-
ship between the parameters of neuron N2 and V1,
as in equation (4). Nevertheless, oscillations of neu-
rons N1 let V1 be alternatively positive and negative,
which implies that the bifurcation curves of neurons
are translated along the abscissa in the plane (η, ε)
in a periodic manner (the position of saddle points
of the cell N2 is moved periodically). Thus, the slave
neuron N2 initially situated in the vicinity of a bi-
furcation curve may be able to cross sometimes this
curve and develop a different dynamical behaviour.

Therefore, the master neuron can control the dy-
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Figure 10: Normalized eigen interspike frequency
fs/fm in function of fm for two values of D. Pa-
rameters : ε1 = 0.1934, ε2 = 0.1938 and η2 = 0.2163.

namic of the slave one depending on either its intrin-
sic behaviour or on the coupling parameter D.

The influence of the frequency fm of the oscillating
master neuron on the dynamical behaviour of the
slave neuron is illustrated in Fig. 10, where the nor-
malised eigenfrequencies fs/fm with fs, frequency of
the oscillating slave neuron, are plotted in function
of fm (given by η1 as presented in Fig. 6) for two
values of D.
Initially, the slave uncoupled neuron is so that it lies
in domain (2) at the resting state, while the master
neuron is oscillating.
In both cases, synchronization occurs for small values
of fm, the locking range being wider for stronger D.
When fm is above a critical value depending on the
coupling, chaotic behavior emerges, separating fre-
quency locking plateaus. This result suggests that
the excitability of the master neuron controls the dy-
namics of the slave neuron. It is interesting to note
that chaotic response is observed in a wide range of
frequencies, which in is accordance with numerous bi-
ological observations [12].
It also suggests that the coupling parameter D
changes the behaviour of the slave neuron.
Note that D is the parameter controlling the inter-
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Figure 11: Normalized eigen interspike slave fre-
quency fs by interspike master frequency fm versus
D with ε1 = 0.1934, ε2 = 0.1938, η1 = 0.2527 and
η2 = 0.2262.

action strength. Then changing D mimics variable
”plasticity” of the synaptic interaction. We fix the
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master frequency (hence fix the incoming spike mes-
sage) and show how the parameter D controls the
response dynamics of the slave neuron (Fig. 11 and
12)
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Figure 12: Temporal evolution of experimental volt-
age U2 for different values of D corresponding to cases
(a− f) of Fig. 11. Voltage of the master neuron N1

is shown on top. Abscissa : 0.5 ms/div; ordinate:
1 V/div.

Figure 11 shows normalized spike frequency locking
diagram. Spike frequency locking is defined as the
ratio N : M where M is the number of master spikes
in a certain time window and N is the number of
successive response spikes of the slave neuron. Fig-
ure 12 (a-f) illustrates the spike trains corresponding
to plateaus (a-f) in Fig. 11. With increasing value
of D (from a to f) the number of response spikes in-

creases reaching its maximum value fs/fm = 1 (Fig.
12 (f) to be compared with the curve at the top cor-
responding to master oscillations). This corresponds
to 1 : 1 spike synchronization mode when the slave
repeats the incoming spike message. The frequency
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Figure 13: Chaotic signal in the case where D =
0.0535. Abscissa : 5s per division; ordinate : 1 V per
division.

locking plateaus are separated by chaotic sequences,
represented in dot lines in Fig. 11.
An illustration of a chaotic signal is given in Fig. 13
for D = 0.02775. The corresponding probability of
normalized interspike slave frequency fs/fm shows
that in a chaotic regime, the interspike frequencies
are widely distributed, indicating that the response
spike timing can be very complex. In particular, the
sequence has variable inter-spike periods which, how-
ever, should be associated with the initiating master
spike sequence. Then, we define the relative spik-
ing phase variable, φn, characterizing relative time
(phase) shift between a master spike and the follow-
ing response spike [14]. The definition of φn is illus-
trated in Fig. 14. We take it as

φn = (tsn − tmn )/T, (5)

where tsn and tmn are the spike peak times of the slave
and master unit, respectively, T is the master oscil-
lation period and n is the number of successive slave
spike in the response sequence. Figure 15 illustrates
the spiking phase bifurcation diagram obtained ex-
perimentally. Here the value of φn, n = 1, 2, 3, . . .
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Figure 14: Qualitative view of superimposed mas-
ter and slave time series shown by dashed and solid
curves, respectively. The spiking phase, φn, is defined
as a time shift between master and slave oscillations
peaks.
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Figure 15: Experimental spiking phase bifurcation
diagram. φ∗ points are linked by the dot line

computed over master-slave experimental traces (Fig.
12,13) are plotted versus coupling coefficient D. It
appears that for 1 : 1 frequency locking mode the
phase tends to a single fixed point φ∗. This value
accounts the phase shift in the synchronized spik-
ing sequence shown in Fig. 13 (f). Note that for
more complicated frequency locking modes the phase
shift is described either by stable fixed points with
m < φ∗ < m + 1, where m is number of “integrated”
master spikes to get a response, or by stable periodic
orbits of a certain period. Note also that transition to
chaos suddenly occurs with decreasing D. In this case
the spiking phases “fill” some interval with arbitrary
changing values from spike to spike. To characterize
the phase sequences we calculate the phase map di-
agrams in the (φn, φn+1)-plane (Fig. 16). For 1 : 1
locking mode the map has one stable fixed point φ∗

(for instance, φ∗ = 0.5 in Fig. 16 (c)). With crossing
to the chaotic region the fixed point disappears and
the phase starts to oscillate. Note the points are lo-
cated near some curve in the (φn, φn+1)-plane. Then
the phase dynamics can be approximately described
by a 1D phase map, φn → φn+1. Note also that
the map curve goes very close to the bisector line,
φn+1 = φn. Then, the dynamics occurs as follows.
The phase shift between master and slave spikes is
slowly increasing while evolving near the bisector line.
Then, the phase jumps out of the 1 : 1 response re-
gion. After one or a few oscillations it returns back to
the φn+1 ≈ φn - region (Fig. 16 (b)). Such behavior
indicates the intermittency chaotic dynamics of the
phase variable. Note that the jumps corresponds to
the appearance of “missed” spike in the response se-
quence relative to the master oscillations. More com-
plex intermittency behavior with increasing number
of jumps, indicating different missed spike numbers,
are shown in Fig. 16 (a).

Thus the response spike sequences obtained in the
master-slave neuron model can be associated with
spiking phase sequences which can be thought as a
kind of neuronal “code”. The “code” is tuned by
the values of interaction coefficient, D. The relative
spiking phase represents biologically relevant charac-
teristics of real neuron dynamics. For example, oscil-
lation phase processing plays a crucial role in object
tracking by hippocampus neurons [13].
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Figure 16: Experimental (φn, φn+1)-plane. The
phase map are shown at the top of the figure.
The corresponding temporal signals are given below.
Zoom of each signal is presented at the bottom of the
figure.

4 Architecture of the neural
network

The previous study allowed us to validate the exper-
imental setup where two neurons where connected
unilaterally: The results have been indeed confirmed
by numeral simulations of eq. (1) using a fourth order
runge-kutta algorithm. Therefore, it is interesting to
increase the size of the network to realize complex
configuration mimicking small assemblies of neurons.
In this reductive point of view, the neurons can be
connected via unilateral coupling, as presented previ-
ously or via bidirectional coupling, which would cor-
respond to electrical synapses (gap junctions). The
first mentioned coupling is improved to generate ei-
ther inhibitory or excitatory connection (see Fig. 17)
such as the current flowing from neuron n to neuron
m can be expressed by I = D(Vn − V c) where D
can be either positive and negative and where Vc is
the voltage of the neuron n at its resting state. The
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Figure 17: Electrical excitatory or inhibitory cou-
pling.

bidirectional circuit is simply obtained by detuning
resistors.
Furthermore, an integration of such a circuit using
inductor-like components could be realized, giving
this opportunity of very large scale network.

5 Conclusion

We have presented analog electronic circuit imple-
menting MFHN mathematical model. It reproduces

9



the key features of neuron dynamics including ex-
citability, oscillatory dynamics and bistability. We
have experimentally investigated the main bifurca-
tions of the model leading to oscillatory and excitable
behavior. We have analysed a simple neuron network
architecture with two cells in master-slave configura-
tion, e. g. unidirectional coupling. We have shown
that the intervals between successive spikes can be
chaotic and depends on the intrinsic behaviour of the
master neuron and on the coupling strength. The
various dynamics of the slave neuron can be reached
by detuning D, which could be useful in the point of
view of neuronal plasticity.
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