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Abstract

The behaviour of impulse propagation in the presence of non-excitable scars and

boundaries is a complex phenomenon and induces pathological consequences in car-

diac tissue. In this article, a geometrical configuration is considered so that cardiac

waves propagate through a thin strand, which is connected to a large mass of cells.

At this interface, waves can slow down or even be blocked depending on the width

of the strand. We present an analytical approach leading to determine the block-

ade condition, by introducing planar travelling wavefront and circular stationary

wave. Eventually, the influence of the tissue geometry is examined on the impulse

propagation velocity.

Key words: Travelling wavefront; Circular stationary wave; Blockade

phenomenon; Cardiac tissue.



1 Introduction

Reentry is the major mechanism of life-threatening ventricular arrhythmias

associated with myocardial infarction scars [Myerburg et al., 1997]. In ab-

normal conditions, electrical cardiac wavefront may be stopped by, for in-

stance, electrically non-excitable scar or functional block, which may induce

a reentry circuit in pathological endocardial tissue. Nevertheless, normal ge-

ometrical features may also imply variations of the conduction properties, as

accessory atrioventricular pathways, consisting of narrow strands of myocytes

coursing from atrium to ventricle [Saffitz, 2005]. Therefore, the architecture

of the cellular network forming the myocardium [Rohr et al., 1997; Wang &

Rudy, 2000] and the geometry of excitation wavefront [Fast & Kleber, 1997,

1995a,b] are important to characterize the impulse propagation. Mathemati-

cal models [Kleber & Rudy, 2004; Noble, 1962] and nonlinear dynamics are

widely used to study the impulse (action potential) propagation in cardiac

cells [Murray, 1989; Keener & Sneyd, 1998; Scott, 1999]. Among them, one

of the major model is described by the FitzHugh-Nagumo (FHN) equation

[FitzHugh, 1961; Nagumo et al., 1962], which allows analytical approaches.

The goal of this paper is to study the propagation condition in a system com-

posed of a thin strand of myocytes connected to a large mass of myocytes.

This geometry is modeled using a modified version of the FHN 2D equation.

We show that, at the interface of the two parts of the system, the shape of the

waves goes through a geometrical modification, which can lead to a decrease

of the velocity up to a blockade phenomenon. Eventually, we determine the
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optimal width of the strand which minimizes the time delay at the interface.

2 Analytical determination of the propagation condition

We consider a thin sheet of myocardium such as a two-dimensional model

is used to describe the impulse propagation. The medium is assumed to be

isotropic and its schematic design is sketched in Fig. 1. In the bounded domain

Ω, domain (1) is the corridor of width l1, domain (2) is the corridor of width

l2 with l2 > l1 and the corresponding equations modelling this system are:





∂V

∂t
= D∆V − f(V )−W

∂W

∂t
= ε(V − γW ) ,

(1)

where D is the diffusion parameter, t is the time, ∆ is the continuous Laplacian

operator, V is the transmembrane voltage. W is the recovery variable, which

indicates the capacity of the medium to revert to its resting state after the

propagation of impulses due to potassium current and the nonlinear function

f(V ) represents the behaviour of the sodium current (it also includes a leak

potassium current [Scott, 2002]). Usually, f(V ) is a cubic polynomial function,

but a common simplification is to approximate this function by a piecewise

linear expression [Fath, 1998]. Furthermore, characterizing the velocity of the

action potential can be performed by determining the velocity of the leading

edge of this wave, which is given by the condition W (t) = 0 ∀t. The system

(1) becomes

∂V

∂t
= D∆V − [V −H(V − α)], (2)
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where α is a threshold between the passive and the active role of the sodium

conductance (0 < α < 1/2) and H is the Heaviside step function. This system

is completed by the Neumann boundary conditions, so that

(
∂V

∂n

)

δΩ
= 0 , (3)

where
(

∂

∂n

)

δΩ
denotes the outer normal derivative at the boundary δΩ of

the bounded domain Ω. To investigate a propagation at the interface, we

initiate a wavefront in domain (1). Due to the width of the strand, we assume

this wave to be planar and propagating towards domain (2). The symmetry

induced by this choice of configuration leads to reduce the system in domain

(1) to a continuous one-dimensional medium so that it can be described by

the following bistable equation,

∂V

∂t
= D

∂2V

∂x2
− [V −H(V − α)] . (4)

Introducing the travelling frame coordinate ξ = x − ct, where c is the front

velocity and x is the spatial parameter representing the longitudinal axis of

the strand, Eq. (4) can be written so that

D
∂2V

∂ξ2
+ c

∂V

∂ξ
− [V −H(V − α)] = 0 , (5)

which yields, due to C0 continuity, the propagating solution in domain (1):





V (ξ) = αeλ2,1ξ, if V < α

V (ξ) = (α− 1)eλ1,2ξ + 1, if V ≥ α ,

(6)
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where λ1,2 = − c

2D
± 1

2

√
(

c

D
)2 +

4

D
.

Note that in [Zemskov et al., 2000], the stability of this kind of solution in

an infinite medium has been analyzed. Note also that this solution has been

observed and confirmed by numerical simulations.

When this wave reaches the interface, a symmetry breaking occurs, depending

on the width l1 (resp. l2) of the domain (1) (resp. domain (2)) leading to

different scenarios:

• if l1 ≤ lc ¿ l2, the incoming wave is pinned at the interface (see Fig (8)),

where lc is a critical width to be determined,

• if l2 > l1 > lc, the wave is transformed in either circular (l1 small) or elliptic

one (l1 large) (see Fig (9)),

• if l1 = l2, we observe a planar propagation in domain (2), according to Eq.

(6).

In the blockade situation, numerical simulations show that the shape of the sta-

tionary wave is circular. Therefore, it corresponds to the existence of a circular

stationary solution in domain (2), precluding the possibility of a propagating

front.

In order to determine the critical value lc, we need to express the stationary

solution in the case of a circular wave. Because of this circular symmetry, we

look for a time independent solution V (r) with r radial coordinate, leading to

express Eq. (2), so that

D(
∂2V

∂r2
+

1

r

∂V

∂r
) = V −H(V − α). (7)
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Introducing ρ = r

√
1

D
, Eq. (7) becomes

(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
) = V −H(V − α) , (8)

leading to two versions of the modified Bessel equation:

• if V < α, Eq. (8) becomes
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
−V = 0 and the stationary solution

is

V (ρ) = A1I0(ρ) + B1K0(ρ) , (9)

where I0 and K0 represent the modified Bessel functions of the first and

second kind respectively.

• if V ≥ α, Eq. (8) becomes
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
− V + 1 = 0 and the stationary

solution is

V (ρ) = 1 + A2I0(ρ) + B2K0(ρ). (10)

We impose the following conditions leading to find the constants A1, B1, A2

and B2:

• V (r →∞) = 0 leading to A1 = 0.

• V (r = 0) = V0 > α leading to B2 = 0.

Eventually, due to C0 continuity at r = ra where V (ra) = α, we get for the

stationary wave solution





V (r) =
αK0(

r√
D

)

K0(
ra√
D

)
, if r ≥ ra

V (r) = 1 + (α− 1)
I0(

r√
D

)

I0(
ra√
D

)
, if r < ra.

(11)
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Moreover, ra is determined by:

ra =
√

DI−1
0 (

α− 1

V0 − 1
). (12)

In Eq. 11, V0 is the maximal amplitude of an initial condition corresponding

to r = 0 and is expressed by

V0 = 1 +
α− 1

I0(
√

1
D

ra)
(13)

The value of V0 only depends on the nonlinear threshold α and it is not influ-

enced by the diffusion properties of the tissue (see Fig 2).

An illustration of a circular stationary wave is presented in Fig. 3. The station-

ary solution given by Eq. (11) allows the determination of the critical width

lc. Indeed, the blockade situation corresponds to the case where an incoming

planar propagating wave in domain (1) gives birth to the circular stationary

wave in domain (2). In this configuration, and due to the boundary conditions,

only the half plane solution of Eq. (11) is taken into account.

The numerical simulations (see Figs (8) and (9)) show that at first approxi-

mation, it is necessary that at least a half-disc of radius rc is under excited

conditions, i.e. with V > α. Thus, for calculating a minimal area generating

a propagation, ra is assumed to be equal to rc.

In order to determine rc, we use an analogy of Eq. (7) with the Poisson equa-

tion used in the field of electrostatic phenomena. The theorem of the diver-

gence is given by

∫ ∫

surf

−−→
gradV .

−→
dS =

∫ ∫

vol

∫
∆V.dτ (14)
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where surf is the closed surface directed towards outside and vol is the interior

volume.

In our case, the study is restricted to a thin sheet of cells, i.e a bidimensional

medium. Therefore, the theorem (14) becomes

∫

lig

−−→
gradV .

−−→
dM =

∫ ∫

surf

∆V.dS, (15)

where lig is the closed line directed towards outside and surf is the interior

surface.

We calculate the two terms of Eq. (??). J1 is the integral corresponding to the

closed line and J2 is the integral of the interior surface.

Referring to Fig. (4), J1 = φ1 + φ2 where φ1 and φ2 are flows.

Thus, the flow coming from the domain (1) is given by

φ1 = −2rc
(Vi − 1)√

D
, (16)

with Vi corresponds to the value of the wave to the interface of the two domains

given by Eq (13). In addition, the outgoing flow of the half-disc, calculated

from Eq. (11), is given by

φ2 = −πα
rc√
D

K1(
ra√
D

)

K0(
ra√
D

)
. (17)

Then J2 =
∫ ∫

surf

∆V. dS =
∫ ∫ f(V )

D
dS =

r
c∫

r=0

V − 1

D
πrdr, as when V > α,

f(V ) = V − 1, with V = 1 + (α− 1)
I0(

r√
D

)

I0(
ra√
D

)
.
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The integral J2 is thus expressed by

J2 =

r
c∫

0

(α− 1)

D

I0(
r√
D

)

I0(
ra√
D

)
π r dr. (18)

Setting z =
r√
D

and using the fact that I0(Z) is very appreciably constant

and equal to 1 as long as |z| ¿ 1, J2 can be evaluated and expressed by:

J2 =
πr2

c

2D

(α− 1)

I0(
rc√
D

)
. (19)

Thus the critical width lc of the domain (1), corresponding to the blockade of

the wave, is obtained implicitly from rc, knowing that lc = 2rc. The value of

rc is given by J1 − J2 = 0:

(
4

π
+

rc√
D

)
(1− α)

I0(
rc√
D

)
− 2α

K1(
rc√
D

)

K0(
rc√
D

)
= 0. (20)

A comparison between this theoretical prediction and numerical simulations

shows a good match between them as illustrated in Fig. 5 (based on a finite

difference scheme using a 4th order Runge-Kutta on a 100 ∗ 100 adaptative

mesh). This good correlation is in fact a justification a posteriori of the as-

sumption that a half disc of ray rc =
lc
2

must have its cells in excited state

(i.e. V > α) so that the propagation initiated in the corridor can continue in

the wide second medium. Our study gives in fact a little severe condition on lc

as one can see it on the figure (5). It would be interesting of to continue this

study by considering a propagation going from a broad domain to a narrow

domain (for example in one kind of bottleneck).

In addition to the blockade phenomenon confirmed numerically when l1 ≤ lc,

the numerical simulations indicate that the wave propagation in the domain

(2) induced a delay because of the transformation of the planar wave in a
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curved wavefront. In fact, this delay is necessary so that the cells reach their

excitation threshold, such as is observed in experiments [Saffitz, 2005]. In the

following part, numerical simulations showing the relationship between the ve-

locity of the wave, the intrinsic parameters of the model and the geometrical

characteristics of the cardiac tissue are presented.

3 Wavefront velocities in the medium

Besides the numerical confirmation of the blockade phenomenon when l1 ≤ lc,

numerical simulations indicate that the emergence of propagating wave in do-

main (2) induces a time delay due to the transformation of the planar travelling

wave to a non-zero curvature wavefront. Actually, this delay is required so that

cells reach the threshold excitation, as observed experimentally [Saffitz, 2005].

In this section, we present a numerical study showing the relationship between

velocity, intrinsic parameters of the model and geometrical features. The basic

morphological features of the transition region between a domain (1) and a

domain (2) are depicted on Fig. 6, where l is the width of the domain (1), vc

is the wavefront velocity between two positions along the longitudinal axis in

the domain (1), vo is the wavefront velocity between two positions along the

longitudinal axis in the domain (2) and vt is the wavefront velocity between

one position in the domain (1) and a second position along the longitudinal

axis in the domain (2). As previously described, we initiate a planar wavefront

in the corridor travelling towards the large area. Figure 7 shows the different

velocities of the wavefront when α = 0.4 and D = 0.5, in function of l (ex-

pressed in cell number). The results indicate that the velocity of the circular

wave in domain (2) depends on the width l of the strand, which changes the
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curvature of the transformed wave, as suggested in [Kogan et al., 1992]. The

numerical results illustrate the fact that there exists a critical value lc of l

below which the wavefront fails to propagate through the subdomains inter-

face, as shown in Fig. 8. When l is large enough, velocities are equal and the

wavefront is no more influenced by the interface. Between these two cases,

the symmetry breaking implies a time delay corresponding to the geometrical

transformation of the wave from a planar to a non planar wavefront (see Fig.

9 for instance, where a circular wave appears just after the transition region).

Let ta be the necessary normalized time needed to the wavefront to cross the

interface so, that

ta =

dt

vt

− do

vo

− dc

vc

do

vo

+
dc

vc

(21)

with di, the distance between the different parts of the medium for which the

velocity vi (i={t,o,c}) is measured. Figure 10 shows that this overall delay can

be either positive or negative depending on the value of l. Note that delays may

imply reentrant arrhythmias due to a lack of synchronicity between wavefront

coming from different pathways. Our results indicate that, besides the case of

large corridors, there exists an optimum width lopt around which overall delays

are negligible (see Fig. 10). Therefore, there is a possible relationship between

length and width of corridors preventing dramatic changes of cardiac activity.

4 Discussion and conclusions

In this study, an analytical solution of travelling front in the case of the planar

propagation has been determined. The criterion for the initiation of the cir-
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cular waves has been investigated, based on the existence of stationary waves.

We showed that the existence of the stationary wave prevents the propagation.

Again, this breakdown depends not only on the nonlinearity threshold and on

the diffusion coefficient but also on the geometrical morphology of the cardiac

syncytium and on the form of the excitation wavefront. However, our results

concerning the condition of propagation are valid in the case of a very thin

strand of cells (domain 1). To generalize and to affine our approach, it would

be necessary to use the spheroidal functions using the elliptic coordinates.

There exists specific geometric configuration of two-dimensional narrow path-

ways, which allow unidirectional conduction blocks and reentry even when

membrane properties and intercollated resistance are uniform [Kogan et al.,

1992]. We suggest that this work could be applied to avoid the reentry phe-

nomena. In other words, our results could modify the strategies used during

arrhythmia ablation procedures. Indeed, precise radiofrequency applications

inside scar tissues could improve conduction velocity in other areas and pre-

vent reentries [Chillou et al, 2002]. It would correspond to fix the optimized

width so that the delay becomes negligible, which would assures synchronicity

between waves coming from different pathways.
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5 Captions

Fig1: Schematic diagram of the geometry of the tissue. l1 (resp. l2) is the width

of the domain (1) (resp. domain (2)). Arrow indicates direction of propagation.

Fig2: Initial condition V0 versus α for all diffusion parameter D.

Fig3: Cross-section of the standing wave with D = 1, α = 0.2, ra = 0.8186

leading to V0 = 0.319.

Fig4: Diagram illustrating flows entering and outgoing of the half disc of ray

rc.

Fig5: lc versus α (D = 1). Theoretical results (cf Eq.(??)) in continuous line

(crosses), numerical results in dashed line (stars) with error bars ±0.05.

Fig6: Schematic diagram of the geometry of the tissue using during simulation.

l is the width of the thin strand and di is the distance between the different

parts of the medium for which the velocity vi (i={t,o,c}) measured.

Fig7: Wavefront normalized velocity versus the width of the strand expressed

in cell numbers with parameters D = 0.5 and α = 0.4.

Fig8: Simulation of the blockade phenomenon with parameters l < lc, D = 1

and α = 0.2.

Fig9: Simulation of the propagation phenomenon with parameters l > lc,

D = 1 and α = 0.2.

Fig10: Time ta versus the width of the strand expressed in cell numbers with

parameters D = 0.5 and α = 0.4.
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