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Abstract

This paper presents a generalization of the coupled-task
scheduling problem introduced by Shapiro (Shapiro 1980),
where considered tasks are subject to incompatibility con-
straint depicted by an undirected graph. The motivation of
this problem comes from data acquisition and processing in
a mono-processor torpedo used for underwater exploration.
As we add the compatibility graph, we focus on complexity
of the problem, and more precisely on the border between
P and NP-completeness when some other input parameters
are restricted (e.g. the ratio between the durations of the two
sub-tasks composing a task): we adapt the global visualiza-
tion of the complexity of scheduling problems with coupled-
task given by Orman and Potts (Orman and Potts 1997) to our
problem, determine new complexity results, and thus propose
a new visualization including incompatibility constraint. In
the end, we give a new polynomial-time approximation algo-
rithm result which completes previous works.

Introduction

Motivation

This paper deals with the problem of data acquisition subject
to incompatibility constraint in a submarine torpedo. Many
scheduling issues arise in several situations, e.g. in a radar
pulsing context (Sherali and Smith 2005; Ageev and Baburin
2007), radar system (Orman, Shahani, and Moore 1998;
Orman et al. 1996), or particular application (Brauner et
al. 2009). In our context, the torpedo is used to execute
several submarine topographic surveys, including topolog-
ical or temperature measurements. Its aim is to collect data
and to process them on a mono-processor within a minimum
timeframe. A collection of sensors acquire data for the tor-
pedo. Each data acquisition consists in an acquisition task
which is divided into two sub-tasks: a sensor first emits a
wave which propagates in the water, then he gets a corre-
sponding echo. Scheduling issues appear when several sen-
sors using different frequencies can work in parallel, while
acquisitions using the same frequency have to be delayed in
order to avoid interferences. It is necessary for robotic en-
gineers to have a good theoretical knowledge of this type of
problem. Thus, the aim of the work is to study in many sub-
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configurations and determine complexity and approximation
results on then.

Modelisation and related work

Coupled-tasks (Shapiro 1980) are a natural way to model
such data acquisition by our torpedo. Each acquisition task
can be viewed as a coupled-task Ai composed by two sub-
tasks, respectively dedicated for wave transmission and echo
reception.We note ai and bi the processing time of each sub-
task. Between these two sub-tasks there is an incompressible
and inextensible idle time Li which represents the spread of
the echo in the water. Due to hardware constraints, we do not
work in a preemptive mode: once started, a sub-task cannot
be stopped and then continued later. A valid schedule im-
plies here that for any task started at t, the first sub-task is
fully executed between t and t+ai, and the second between
t+ai+Li and t+ai+Li+bi. We note A = {A1, . . . , An}
the collection of coupled-tasks to be scheduled. Incompat-
ibility constraints also exist between tasks due to wave in-
terferences. We say two tasks Ai and Aj are compatible if
they use different wave frequencies; thus any sub-task of Ai

may be executed during the idle time of Aj , as in Figure
1. We introduce a graph Gc = (A, Ec) to model such this
compatibility, where edges from Ec link any pair of com-
patible coupled-tasks. In the torpedo problem, the conflict
graph Gc owns several strong topology constraints. In order
to achieve the best possible study and reuse presented results
in more general configurations, we do not take into account
these constraints and suppose Gc can be any graph.

A1A2 A3

a1 b1a2 b2 a3 b3

L1

L2 L3

Compatibility graph

Figure 1: Example of compatibility constraint with A1 =
(a1 = b1 = 1, L1 = 3), A2 = (a2 = b2 = 1, L2 = 2), A3 =
(a3=b3=1, L3=2)

Our contributions are the following, in such context the
trellis of complexity results are completed by several results
in complexity, and we design a polynomial-time approxima-
tion algorithm which completes previous works.

The aim is to produce a shortest schedule, ie. minimize
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Figure 2: Global visualisation of the complexity of scheduling problems with coupled-tasks described by three distinct trellis
in (Orman and Potts 1997). Triplet (ai, Li, bi) describes the type of problem studied, where each variable ai, bi and Li can take
any value or be equal to a constant. Finally, there is an arc from a specific problem to a more general problem, and an edge
between two symmetrical problems.

the date Cmax
1 when all tasks are executed, respecting the

incompatibility constraint between tasks. As this main prob-
lem is decomposable, we use the Graham’s notation scheme
α|β|γ (Graham et al. 1979) (respectively the machine envi-
ronment, job characteristic and objective function) to char-
acterize the sub-problems we study. We define the TORPEDO

main problem as 1|ai, Li, bi, Gc|Cmax. In the rest of this pa-
per, given a valid schedule σ and a task Ai, we note σ(Ai)
the date when Ai is being executed, ie. sub-tasks are exe-
cuted in respectively σ(Ai) and σ(Ai) + ai + Li.

In existing works, complexity of scheduling problems
with coupled-tasks and no incompatibility constraint has
been investigated (Blażewicz et al. 2009; Orman and Potts
1997; Ahr et al. June 2004) (note that authors focus their
studies on precedence constraint between the acquisition
tasks, which is different from the work presented in this
paper). We study here a generalization which consists in
introducing a compatibility graph Gc between tasks, and
measuring impact of Gc existence on the complexity and
approximation actual results. In particular we focus on the
limit between polynomial and NP-complete problems and
on the establishment of approximate solutions for difficult
instances.

In (Orman and Potts 1997), authors give a global visu-
alization of scheduling problems complexity with coupled-
tasks through three trellis presented in Figure 2. Our ap-
proach is to achieve the same type of study in presence of
a compatibility graph Gc. By comparing results of (Orman
and Potts 1997) with those obtained by relaxing incompat-
ibility constraint, we can measure impact of this constraint
on this kind of problem.

This paper is organized as follow:

• In the first section, we present some NP-complete and

1Cmax is the processing end of the latest executed task.

polynomial results for different sub-problem of TOR-
PEDO. This lead us to present global visualization in-
spired by the one presented in Figure 2 which takes
into account the presence of compatibility graph between
tasks, and highlights the importance of Gc on problem
complexity;

• In the second section we give a polynomial-time approxi-
mation algorithm for the first studied problem, taking into
account the values of some instance parameters.

Study of the complexity in presence of a

compatibility graph

In this section, we present several complexity results on dif-
ferent TORPEDO sub-problems. In order to perform a full
study, we reuse problems identified on Figure 2. Taking
into account incompatibility constraint make problems more
difficult than they were. Thus problems which were NP-
complete without incompatibility constraint remain trivially
NP-complete when such constraint is introduced. Consid-
ering hierarchy of our problems, we will focus our study
on adding incompatibility constraint to problems, which are
at the limit of Polynomiality and NP-completeness or still
open, and identified as problems Π1, Π2, Π3 and Π4 accord-
ing to the diagram of Figure 2. For a better visibility, we will
use the problem notation Π′

i as a reference of problem Πi on
which compatibility graph is added. Results of this section
are divided into four main parts, each part being devoted to
the complexity study of a given sub-problem: first, we will
prove the NP-completeness of two scheduling problems:

• Π′
1 : 1|ai=bi=p, Li=L,Gc|Cmax

• Π′
2 : 1|ai=a, Li=L, bi=b,Gc|Cmax

Then we show the polynomiality of following problems:

• Π′
3 : 1|ai = Li = p, bi, Gc|Cmax
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• Π′
4 : 1|ai, Li = bi = p,Gc|Cmax

We will prove in particular that NP-completeness of Π′
1

implies NP-completeness of Π′
2. For these problems, we

will set some parameters in order to measure the influence
of Gc on evolution of the complexity.

Study of Problem Π′

1

In sub-problem Π′
1 = 1|ai = bi = p, Li =L,Gc|Cmax, all

sub-tasks require the same execution time p ∈ IN∗ and idle
time is fixed to a constant L. According to Orman and Potts,
problem Π1 = 1|ai = bi = p, Li = L|Cmax is polynomial.
We are going to study the complexity of Π′

1 by varying the
value of parameter L according to the value of p. We study
three disjoint cases, respectively 0 < L < p, p ≤ L < 2p
and 2p ≤ L, and prove that the first two are polynomial
(Lemma 1 and 2), the last one NP-complete (Lemma 3):

Lemma 1. When 0<L< p, Π′
1 is solvable in polynomial-

time.

Proof. When 0 < L < p, it is easy to see that no task
can overlap with the execution of another task. An opti-
mal schedule consists in executing tasks sequentially with-
out delay side by side. This algorithm admits a linear
time complexity and produce a schedule of length Cmax =
|A| × (2p+ L).

Lemma 2. When p≤L<2p, Π′
1 is solvable in polynomial-

time.

Proof. When p ≤ L < 2p, at most one sub-task of duration
p may be scheduled during the idle time L of another task.
Thus, any scheduling of Π′

1 can be associated with a match-
ing on Gc : tasks associated with the vertices covered by the
matching edges are executed in pairs, creating "blocks" with
an inactivity time of (2L− 2p). For two tasks Ai and Aj we
have σ(Aj) = σ(Ai) + ai.

After ordering the tasks corresponding to the matching,
we execute the remaining tasks which do not belong to the
matching in the same manner as in the first case. The length
of the schedule will therefore depend on the size of the
matching, and thus finding a matching with maximum car-
dinality in Gc provides an optimal schedule. Finding a max-
imum matching in a general graph has complexity O(n3)
using Gabow’s algorithm (Gabow 1976), and therefore the
case p ≤ L < 2p is polynomial.

When L ≥ 2p, we can now overlap the execution of
more than two acquisition tasks, which leads us to search
for cliques in the compatibility graph to reduce the inac-
tivity time on the processor. We show this result in NP-
completeness of Π′

1: we restrict our study of Π′
1 to the sub-

case where Li = 2p for any task. We propose lemma 3 and
prove the NP-completeness of Π′

1 when Li = 2p; then the
generalization when Li ≥ 2p is immediate.

Lemma 3. Deciding if an instance of Π′
1 where Li = 2p

for any task has a schedule of length β=

n
∑

i=1

(ai+bi)=2np

is a NP-complete problem.

Proof. Obviously, Π′
1 is in NP . We prove the NP-

completeness of Π′
1 thanks to a polynomial time reduc-

tion from TRIANGLE PARTITION (Garey and Johnson 1979)
which consists to determinate if the vertices of a graph can
be covered by disjoint triangles:

Let I∗ be an instance of TRIANGLE PARTITION, i.e. a
graph G = (V,E) with |V | = 3q, q ∈ IN∗. From I∗

we construct in polynomial-time an instance I of Π′
1 with

a compatibility graph Gc = (A, Ec) as follows:

• ∀i ∈ V , an acquisition task Ai is introduced in A, com-
posed by two sub-tasks ai and bi of executed length
ai = bi = p and by an incompressible and inextensible
inactivity time between them of length Li = 2p.

• For each edge e = {i, j} ∈ E, an edge ec = {Ai, Aj}
is added in Ec. we have a non-exclusive relationship be-
tween the two tasks Ai and Aj .

Figure 3 illustrates such a transformation, which is clearly
computable in polynomial-time.

A1 ai bi

A2
A3

1

2
3

G Gc

pp L = 2p

∀i, Ai:

TRIANGLE PARTITION Π′

1

Figure 3: Example of the polynomial-time transformation

Let us prove that the existence of a perfect triangle-cover
on G vertices implies the existence of an optimal schedule
without idle time (then Cmax = n× 2p) , and reciprocally:

⇒ Suppose that there exists a triangles cover on G vertices.
Then, let us show that there is a schedule without idle time
of length 2np, 2np being the sum of processing times. To
do this, it is sufficient to combine the acquisitions tasks Ai

three by three in Gc according to the triangle-cover found
in G. The execution of these blocks forms a schedule
without idle time. Figure 4 presents an example of block
formed with three tasks. If all tasks can be included into
such a block, then we obtain a schedule of length 2np.

a1 a2 a3 b1 b2 b3

A1

A2 A3

L

Figure 4: Illustration of a block of three acquisition tasks,
σ(a3) = C(a2) = C(a1) + a2

⇐ Conversely, if there is a schedule of length 2np on in-
stance I , then let us show that G vertices can be covered
by exactly q triangles.
It is obvious that if Cmax = 2np, then there is no idle
time on the processor. This means that every idle slot of
length Li = 2p is bound to be filled. However, we need
three acquisition tasks carried into each other in order to
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obtain a block of three tasks without idle time. So, with
exactly q blocks, we obtain a schedule without inactivity
time. Since three acquisition tasks carried into each other
are necessarily compatible in Gc, there exists a triangles
cover on Gc vertices and G vertices by construction.

Thus, we have TRIANGLE PARTITION ∝ Π′
1. We know that

TRIANGLE PARTITION is NP-complete (Garey and John-
son 1979), So we can conclude that the problem Π′

1 is NP-
complete.

From the proof of NP-completeness of Π′
1, we note that

for L = kp with k ≥ 2, the existence of a schedule without
idle slot is equivalent to finding a partition of the Gc vertices
by disjoint cliques of size (k + 1) (which is equivalent to
the NP-complete problem PARTITION INTO SUBGRAPHS

ISOMORPHIC TO H, where H is a clique of size (k + 1)).
The approximation study of problem Π′

1 is presented on the
second section of this paper

Study of problem Π′

2

From the results obtained by Orman and Potts (Orman and
Potts 1997) (see Figure 2), we know that finding the com-
plexity of Π2 is still an open problem. We focus here on
problem Π′

2 : 1|ai = a, Li = L, bi = b,Gc|Cmax, with
a, b, L ∈ IN∗. By observing the values of parameters ai
and bi, we state the following observation: Π′

2 is a general-
ization of Π′

1. Indeed, instances of Π1 are particular cases
of Π′

2 when a = b = p. This lead us to propose Theorem 1:

Theorem 1. Decision problem Π′
2 is NP-complete by gen-

eralization.

We have shown that the problem Π′
2 : 1|ai = a, bi =

b, Li =L,Gc|Cmax was NP-complete in the general case,
a deeper complexity study has been performed in (Simonin
et al. 2010) when values of a and b are linked to each others.

Study of problem Π′

3

This problem consists of scheduling n acquisition tasks hav-
ing the same model ai = Li = p, bi. The first sub-task and
idle time are set at the same constant p, p ∈ IN∗, while the
second sub-task can take any value.

The set of these acquisition tasks contains two subsets:
the first subset denoted K is composed of all the acquisition
tasks Ai such that bi ≤ p, the second subset denoted S
is composed by all other tasks. Two tasks (ai, Li, bi) and
(aj , Lj , bj) in S cannot be executed one inside the other,
so the edge {i, j} 6∈ Gc and automatically these edges
are removed. For this section, we will use the following
reformulation: Gc is still a complete graph when K is a
clique in Gc, S is an independent set and ∀x ∈ K, ∀y ∈ S,
we have {x, y} ∈ Gc.

Theorem 2. The scheduling problem Π′
3 : 1| ai = Li =

p, bi, Gc |Cmax is polynomial.

Proof. The configuration proposed by problem Π′
3 allows

only at most one sub-task to be scheduled during the idle
time of a task. By weighting each edge of the graph with the

sequential time of the overlap of the two tasks linked by the
edge, our problem has a solution if we find a matching that
minimizes the weight of the matching edges and the isolated
vertices.

For these purposes, we will search a similar problem
which is known to be solved in polynomial time. This
problem, which is equivalent to our problem through a
polynomial-time transformation, consists in finding a mini-
mum weight perfect matching : the minimum weight perfect
matching problem consists in finding a perfect matching in
a weighted graph where the sum of perfect matching edges
is minimized, which can be done in polynomial time (Ed-
monds 1965). We propose the following polynomial-time
construction:

Let I1 be an instance of our problem with a compatibility
graph Gc = (Vc, Ec), and I2 an instance of the minimum
weight perfect matching problem in graph constructed from
I1. Let G′

c = (V ′
c , E

′
c) and G′′

c = (V ′′
c , E′′

c ) be two copies
of compatiblity graph Gc. The vertex corresponding to Ai

is denoted A′
i in G′

c and A′′
i in G′′

c . From G′
c and G′′

c we
construct a graphHc = (V ′

c∪V
′′
c , E′

c∪E
′′
c ∪E

′′′
c ) with E′′′

c =
{

{A′
i, A

′′
i }|Ai ∈ Vc

}

. We define the following weights on
the edges of Hc :

• Each edge {A′
i, A

′
j} (resp. {A′′

i , A
′′
j }), where bi > p or

bj > p, is weighted by
3p+max{bi,bj}

2 . This value repre-
sents half of the execution time used in the scheduling by
the two coupled-tasks, where the second task belongs to
S.

• Each edge {A′
i, A

′
j} (resp. {A′′

i , A
′′
j }), where bi ≤ p and

bj ≤ p, is weighted by
3p+min{bi,bj}

2 . This value rep-
resents half of the execution time used in the scheduling
by the two coupled-tasks that belong to K . The second
executed task will be the one with the smallest bi.

• Each edge {A′
i, A

′′
i } is weighted by 2p + bi. This value

represents the execution time used in the schedule by an
isolated task.

A1

A2

A3

A′

1

A′

2

A′

3

A′′

1

A′′

2

A′′

3

2p+2p

2p+3p

2p+p−3

Gc

G′

c
Gc′′

Hc

(p, p, 2p)

(p, p, 3p)

(p, p, p−3)

3p+2p

2

3p+2p

2

3p+3p

2

3p+3p

2

Figure 5: Example of the polynomial-time transformation.

Figure 5 illustrates such a construction. In order to de-
sign a polynomial-time algorithm solving the problem Π′

3,
we will prove firstly the following proposition: For a mini-
mum weight perfect matching of C, a schedule of minimum
processing times C exists and reciprocally (cf Figure 6).

Indeed, the weight of each edge e = {A′
i, A

′
j} ∈

{V ′
c , V

′
c} (resp. e = {A′′

i , A
′′
j } ∈ {V ′′

c , V ′′
c }), with i 6= j,

corresponds to half the length of the scheduling on the pro-
cessor for the acquisition tasks A′

i and A′
j (A′′

i and A′′
j ) if
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A′

1

A′

2

A′

3

A′′

1

A′′

2

A′′

3

b1b2

2p+3p

b3

Hc

3p+2p

2
3p+2p

2

a1a2 a3

p 2p

2p2p

3p

3p 3p

p−3 p−3

0 Cmax = 10p

Figure 6: Example of correspondence between a perfect matching and an optimal schedule.

they overlap. This overlap can be represented by a block.
The weight of each edge e = {A′

i, A
′′
i } ∈ {V ′

c , V
′′
c } is the

length of the scheduling on the processor for a simple acqui-
sition task.

By construction Hc contains an even number of vertices,
and the fact that each vertex of G′

c is connected to an equiv-
alent vertex in G′′

c , finding a perfect matching on the graph
Hc is possible. This means that there exists a schedule such
that each task is executed only once. Note that the matching
in G′

c is not necessarily identical to the one in G′′
c , but they

still have the same weight. So, we can take the same match-
ing in G′

c and G′′
c without lost of generality. The makespan

obtained is equal to sum of the processing times of the ob-
tained blocks and those of isolated tasks. And since each
isolated task (resp. block) has an execution time equal to
the weight of the equivalent edge (resp. the two equivalent
edges on G′

c and G′′
c ) in the perfect matching, we have the

sum of edges weights of the matching which is equal to the
blocks sum of the scheduling obtained. Thus, for a mini-
mum weight perfect matching C, there exists a schedule of
minimum length C and reciprocally.

This shows the relationship between a solution to the
problem Π3 and a solution of a minimum weight perfect
matching in Hc. This relationship is illustrated on Figure 6.
Edmonds algorithm gives a minimum weight perfect match-
ing in O(n2m) (Edmonds 1965). Thus the optimization
problem Π3 is polynomial.

The polynomial-time algorithm, which gives an optimal
solution to the problem Π3 : 1| ai=Li=p, bi, Gc |Cmax, is
decomposed into two steps: the first step consists in creating
the graph Hc then in finding a perfect matching in it, while
the second step consists in executing the acquisition tasks on
the processor according to the matching edges. Algorithm 1
gives a such solution with a complexity time of O(n2m).

Study of problem Π′

4

Problem Π′
4 : 1| ai, Li=bi=p,Gc|Cmax is composed by n

acquisition tasks which have the same model (ai, Li = bi).
Each acquisition task is different from the others, and for
each of them the two sub-tasks and the idle time have the
same execution time. In this section we announce in corol-
laries 1 that Π′

4 can be solved in a polynomial time using an
Orman and Potts’s result.

Corollary 1. Problem Π′
4 admits a polynomial-time algo-

rithm.

Algorithm 1: An optimal scheduling in polynomial time

input : A = {A1, A2, . . . , An}, Hc, Gc

output: Copt
max

begin
• Search in Hc a perfect matching M minimizing
the weight of the matching edges;
• For each edge e = (A′

i, A
′
j) ∈ Hc (resp.

e = (A′′
i , A

′′
j ) ∈ Hc) of the matching M , such that

A′
i and A′

j (resp. A′′
i et A′′

j ) belong to the same

graph G′
c (resp. G′′

c ), the acquisition tasks Ai and
Aj associated to the graph Gc are scheduled into
each other according to the edge weight.;
Two cases are possible, if p ≥ bi ≥ bj then
σ(Aj) = σ(Ai) + ai, and if bi ≥ p then
σ(Ai) = σ(Aj) + ai. ;
• For each edge e = (A′

i, A
′′
i ) ∈ Hc of the

matching M , such that A′
i ∈ G′

c and A′′
i ∈ G′′

c , the
acquisition task Ai associated to the graph Gc is
executed after the scheduling.;

Proof. Orman and Potts (Orman and Potts 1997) gave us a
theorem that says that a scheduling problem with acquisition
tasks, where the objective is makespan, have the same com-
plexity than its symmetrical problem2 (this is not true for
approximation). In Figure 2, there is a symmetry between
1|ai =Li = p, bi|Cmax and 1|ai, Li = bi = p|Cmax. By re-
laxing the incompatibility constraint, the two problems stay
symmetric. Thus, problem Π′

4 is symmetric to Π′
3, and we

deduce that problem Π′
4 is polynomial as Π′

3. The schedul-
ing is optimal with Algorithm 1 by changing bi by ai.

Summary of complexity results

We have shown the NP-completeness of Π′
1 and Π′

2, and
the polynomiality of Π′

3 and Π′
4. As we indicated in the in-

troduction of this paper, all problems which were already
NP-complete without compatibility graph (see Figure 2)
stay NP-complete when Gc is introduced.

For problems which were polynomials without a compat-
ibility graph, the introduction of Gc vary the complexity for
some problems (e.g. for Π′

1 and Π′
2) while other problems

stay polynomial (e.g. Π′
3 and Π′

4). This leads us to conclude

2Two scheduling problems defined by 1|ai, Li, bi, |Cmax and
1|bi, Li, ai, |Cmax, with i = 1, . . . , n, are said to be symmetric.
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Π1

Π2Π3

Π4

NP-COMPLETE

NP-COMPLETE

POLYNOMIAL

OPEN

Figure 7: Global visualization of the impact of the incompatibility constraint introduction on scheduling problems complexity
with acquisition tasks on single processor. The black dotted line represents results without incompatibility constraint, and the
red dotted line when we introduce it.

that the introduction of compatibility graph is an important
but not deterministic factor in the complexity of coupled-
task scheduling problems.

Figure 7 summarizes the complexity results presented in
this paper by reusing the global visualization introduced by
Orman and Potts. In the following section, we continue our
analysis by proposing a polynomial-time approximation al-
gorithm.

Approximation algorithm for problem Π
′

1

This section will be about the approximation study focal-
ized on the NP-complete problem Π′

1 : 1|ai = bi = p, Li =
L,Gc|Cmax. The problem Π′

2 has been studied in two re-
spective papers (Simonin, Giroudeau, and König July 2010;
Simonin et al. 2010).

We are interested in the approximation of NP-complete
problem Π′

1. Recall that we work with n acquisition tasks,
and when L ≥ 2p the adding of the incompatibility con-
straint means to the NP-completeness of the problem. In
order to achieve a schedule closest to the optimal, our re-
search of an heuristic with non-trivial performance guaran-
tee will focus on a study on the compatibility graph Gc. We
will give two lower bounds, and an upper bound obtained by
a maximal cliques cover of Gc vertices. In the following, let
us call Copt

max (resp. Ch
max) the length of an optimal schedule

(resp. a schedule from our heuristic) for Π′
1.

Lemma 4. By considering a maximum matching M of size
m in Gc, our lower bound will be Copt

max ≥ max{2np, (n−
2m)(L+ 2p) + 2m}.

Proof. The optimal scheduling is obtained when there is no
inactivity time, i.e. when the acquisition tasks form blocks,
each of them composed by β = (L

p
+ 1) Ai tasks, where

L = kp with k ∈ IN∗. These blocks are associated to a
cover of vertices from Gc by cliques of size β. Thus, the

lower bound satisfies the following inequation :

Copt
max ≥ Sequential Time = 2np (1)

For the second lower bound, by considering a maximum
matching M of size m in the compatibility graph, the num-
ber of isolated vertices equal (n−2m). In the worst case, the
optimal scheduling length need to be superior to the schedul-
ing length obtained by isolated vertices, which form an in-
dependent set. Furthermore, we know that a task cannot be
executed entirely into another, thus we can add at least 2m
times the execution time p of a sub-task to the scheduling
length (see Figure 8). Thus, we obtain a second lower bound
according to a maximum matching M of size m:

Copt
max ≥ (n− 2m)(L+ 2p) + 2mp (2)

0

ppp p ppp
LL

γ=(n−2m)(2p+L) γ+2mp

(n−2m) times 2m times

. . .. . .

Figure 8: Illustration of the second lower bound

Therefore, according to the parameters values in our
study, our lower bound will be the maximum between the
two lower bounds (1) and (2):

Copt
max ≥ max{2np, (n− 2m)(L+ 2p) + 2mp} (3)

Lemma 5. The heuristic, based on the research of a vertices
cover in Gc by K maximal cliques of size less than L/p,
gives an upper bound equal to K(L + p) + np.

Proof. The general idea consists in researching maximal
cliques of size less than L/p in Gc in order to fill a maxi-
mum of slots created by the acquisition tasks. Each maxi-
mal clique is associated to the execution of a block of ac-
quisition tasks as previously, but this time the block will not
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be without inactivity time. In order to compute the achieved
scheduling length Ch

max, we sum the number of obtained
blocks, which create each of them a slot of length L. We
add the number of tasks to execute which represents the se-
quential time of all sub-tasks bi to execute (See Figure 9).

A1

A2 A3
a1 a2 a3 b1 b2 b3

p 3pL = 3p

0 (p+L)+3p

Figure 9: Possible scheduling for a block

The obtained makespan with a vertices cover in Gc by K
maximal cliques gives the following upper bound:

Ch
max ≤ K(L + p) +

n
∑

i=1

bi = K(L + p) + np (4)

The relative performance ρ using this heuristic is given by
Theorem 3:

Theorem 3. This heuristic, based on the maximal cliques

covering, gives a relative performance equal to ρ ≤ 4p+L
4p .

Proof. By using the obtained bounds (equations (3) et (4)),
we obtain the following relative performance:

ρ ≤
Ch

max

Copt
max

≤
K(L + p) + np

2np
(5)

This ratio is a general result for our problem, but we can
search an other approach using the second lower bound with
the matching. We can analyze the value of the relative per-
formance ratio when the heuristic, used to approximate the
problem, consists in finding a maximum matchingM of size
m. In this case, K = (n − m) because the matching cre-
ates m blocks of size (L + 3p) and the isolated tasks form
(n − 2m) blocks of size (L+2p). By substituting K in the
obtained bound in equation (4), we find a new upper bound:

Ch
max ≤ (n−m)(L+ p) + np (6)

From the study of the max function in the lower bound
(given by equation (2)), we can analyze the behavior of
the relative performance. Since Copt

max ≥ max{2np, (n −
2m)(L + 2p) + 2mp}, following cases should be consid-
ered3:

• For m ∈ [0, Ln
2(p+L) [, C

opt
max ≥ (n− 2m)(L+ 2p) + 2mp

• For m ∈ [ Ln
2(p+L) ,

n
2 ], C

opt
max ≥ 2np

According to m values, we obtain a new upper bound for
our heuristic and a new lower bound for an optimal schedule
(see Figure 10). When m = Ln

2(p+L) , we see in Figure 10

3We search the value of m in order to obtain Copt
max ≥ (n −

2m)(L+ 2p) + 2mp or Copt
max ≥ 2np.

that the optimal ratio is obtained. The following equations
give us the researched value:

ρ ≤
Ch

max

Copt
max

≤
(n− Ln

2(p+L) )(p+ L) + np

2np

ρ =

(2(p+L)−L)
2(p+L) (p+ L) + p

2p

ρ =
2p+ L

2

2p
=

4p+ L

4p
(7)

Note that for m = 0, ρ = 1 (obviously, since the com-
patibility graph is a set of independent tasks). Moreover, for

m =
n

2
, ρ = 3p+L

4p .

m

1

0 n
2

δ

Ln
2(p+L)

δ = 4p+L

4p

ρ 3p+L

4p

Figure 10: Behavior of the relative performance ρ according
to the value of m

This ends the problem Π′
1 analysis. On negative side, we

have shown that the problem is NP-complete. On positive
side, we gave an approximation algorithm with relative per-

formance bounded by ρ < 4p+L
4p , whereL and p are problem

parameters. The fact that the value of relative performance
ρ, associated to the algorithm, depends on parameters L and
p, leads to continue our work in research of approximation
algorithms with a constant performance guarantee.

The approximation study of Π′
2 had been done in (Si-

monin et al. 2010). For this problem, we study the limit
between polynomiality and NP-completeness according to
the values of parameter L when it depends on a and b.

Conclusion

We have studied throughout this paper the scheduling prob-
lems on single processor with coupled-tasks in presence
of arbitrary compatibility graph Gc. The different prob-
lems encountered arise because we vary basic parameters
(ai, Li, bi) of coupled-tasks in the same manner as do Or-
man and Potts in their paper on the study of coupled-
tasks without incompatibility constraint. The goal sought
throughout our paper was to determine the impact of in-
compatibility constraint on these problems, and to analyze
critical cases located at the limit between polynomiality and
NP-completeness according to parameters value.

We have presented two NP-completeness proofs for
problems Π′

1 and Π′
2, and two polynomial proofs for prob-

lems Π′
3 et Π′

4. Figure 7 summarizes the complexity results
presented in this paper. The first observation is that the in-
troduction of incompatibility constraint has a significant im-
pact on the complexity of some problems: e.g. problem
Π1 which was solvable in polynomial time becomes NP
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Problem Complexity Ratio. Ref.

Π′
1 : (ai=bi=p, Li=L), Gc NP-complete 4p+L

4p this paper

(ai=Li=bi), Gc NP-complete 3
2 (Simonin, Giroudeau, and König July 2010)

Π′
2 : (ai=a, Li=L=a+b, bi=b), Gc NP-complete

[

3
2 ,

5
4

]

(Simonin et al. 2010)

Π′
3 : (ai=Li=p, bi), Gc Polynomial 1 this paper

Π′
4 : (ai, Li=bi=p), Gc Polynomial 1 this paper

Table 1: Summarize of results

in the presence of compatibility graph (problem Π′
1), lead-

ing to the NP-completeness of Π′
2 while Π2 was still open.

From these results, we deduce the NP-completeness of all
more general problems. In a second point, we have proposed
a polynomial-time algorithm for problems Π′

3 and Π′
4, and

show the polynomiality of more specific problems.
In a second part we have presented a polynomial approx-

imation algorithm for Π′
1 with a performance ratio 4p+L

4p ,

where p and L are fundamental parameters of the problem.
This heuristic completes previous approximation results in-
vestigated in previous works, summarized in Table 1.

It is interesting to observe that problems complexity de-
pends largely on link between parameter Li and one of the
other two: ai or bi. If Li is equal to ai or bi, the only way
to schedule tasks is either to overlap them two by two, or to
execute them consecutively. This configuration leads us to
search maximum matching or perfect in compatibility graph.
When Li is independent of the other two parameters, the
possible schedules of tasks lead to seek chains, or cliques
in Gc, and most of these problems are known to be NP-
complete.

General observation that we can do on approximation of
studied problems is the following: introduction of incom-
patibility constraint is fundamentally changing traditional
approach to this kind of problem, and led to study graph
problems known to be hard to approximate. As obtained ap-
proximation bounds depend on Li most of the time, perspec-
tives of this work consist in determining existence or not of
constant factor approximation algorithms for NP-complete
problems.
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