
HAL Id: hal-00617931
https://u-bourgogne.hal.science/hal-00617931

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMUN: An Object Oriented Model For Cooperative
Spatial Information Systems

Eric Leclercq, Djamal Benslimane, Kokou Yétongnon

To cite this version:
Eric Leclercq, Djamal Benslimane, Kokou Yétongnon. AMUN: An Object Oriented Model For Co-
operative Spatial Information Systems. Knowledge and Data Engineering Exchange Workshop, Nov
1997, Newport Beach CA, United States. pp.73, �10.1109/KDEX.1997.629844�. �hal-00617931�

https://u-bourgogne.hal.science/hal-00617931
https://hal.archives-ouvertes.fr

AMUN: An Object Oriented Model for Cooperative Spatial Information Systems

Eric LECLERCQ, Djamal BENSLIMANE, KokouYÉTONGNON

LE2I - Équipe Ingénierie Informatique - Université de Bourgogne

9, rue Alain Savary - BP 400

21011 DIJON Cedex - FRANCE

e-mail : fEric.Leclercq,Djamal.Benslimane,Kokou.Yetongnong@u-bourgogne.fr

Abstract
The diversity of spatial information systems promote the

need to integrate heterogeneous spatial or geographic in-
formation systems (GIS) in a cooperative environment. We
present an on going research project, called ISIS (Interop-
erable Spatial Information System), which aims to build an
environment to support interoperability of GIS by intercon-
necting spatial data repositories and spatial processing re-
sources. Our solution combines techniques from traditional
interoperable information systems, spatial data modeling
and distributed object oriented databases. While object
oriented data modeling impact has been studied in spatial
databases, research in model for distribution of both data
and operations has received little attention. We focus in this
paper on modeling problems and describe an hybrid spatial
functional OO model that provides tools to model distribu-
tion and to resolve heterogeneities.

1 Introduction
In recent years, a significant amount of research have

been directed towards spatial database management sys-
tems. They have raised several problems including spatial
data modeling, spatial data structure implementations, spa-
tial query languages, query processing and systems archi-
tectures [3, 4, 10, 14]. On the other hand, we are witnessing
the rapid development of high speed world-wide networks
which provides access to a large diversity of informations
sources, particularly spatial information systems.
This has created the need to integrate heterogeneous spa-

tial information systems in a cooperative environment. Ex-
isting spatial information systems are often designed for
specific range of applications, each system may have its
own spatial data model and spatial processing capabilities.
Users would like to query and manipulate these systems in
a uniform way, but the diversity of models and geoprocess-
ing functions specificities render the design of integrated or
cooperative GIS a very difficult task to carry out.
Traditionaly, research effort in cooperative information

system has been directed at several issues including:
- the definition of concepts and model for allowing uni-

form access to multiple heterogeneous data sources. Sheth
and Larson in [11] present a survey of solution for feder-
ating traditional heterogeneous databases systems. Many
approaches focus on the definition of techniques for resolv-
ing semantic heterogeneity and for constructing integrated
schema to support interoperability of autonomous informa-
tion systems. An alternative to federated systems based on
global integrated schema is the multidatabase language ap-
proach [9]. It avoids the problems inherent to the creation
of global integrated schemas by using a multidatabase lan-
guage to support interoperability;
- the definition of concepts and tools for searching, dis-

covering and retrieving informations distributed over a net-
work. New architectures and paradigms are being proposed
to enable designers to take advantage of existing networking
technology while designing distributed computing systems.
They range from client-server architecture to distributed ob-
ject based processing environment such as CORBA and
Web based systems. In client-server architecture, client ob-
jects communicatewith server objects to request data or pro-
cessing functions. Distributed object based environment is
a generalized client-server paradigm in which a cooperation
bus is used to allow computation across different platforms.
An intermediatemodel, typically an OOmodel, may be used
to wrap the components of the different platforms, thus pro-
viding them with a uniform interface.
In this paper we address issues relevant to GIS interoper-

ability. We present ISIS (interoperable spatial information
system) to allow users to query and manipulate these sys-
tems in a uniform way. ISIS is a first step to a cooperative
environment. Issues that must be dealt with in order to ad-
dress GIS interoperability include: 1) distributed access to
multiple heterogeneous data sources, 2) data model hetero-
geneity [15], 3)schema and query translation between com-
ponents. The key characteristic of the project are:
� a mediator/wrapper oriented architecture which pro-

vides to users a uniform access to distributed spatial
databases;
� a distributed spatial OO data model (AMUN) which

provides a uniform design of spatial data stored in differ-

ent GIS and handles localization and distribution of spatial
objects;
� an implementation build on the top of a distributed ob-

ject architecture like CORBA which provides a good frame-
work for the definition of a multilayer set of abstract and
concrete services that are mapped to mediators and wrapper.
This allow systems to share spatial data and geoprocessing
functions.
The remainder of the paper is organized as follows. First,

we summarize related approaches to GIS interoperability,
second we describe how to use mediators and wrappers to
provide interoperability between different GIS. Third, we
introduce the distributed spatial object model called AMUN.
Fourth, we present an overview of the ISIS environment and
its operational architecture. Finally, we conclude essentially
with a summary of the paper.

2 Related work
Recently, several researchers have focused on interop-

erability of GIS [1, 7, 5, 13]. Ken Gardels [5] discusses
the fundamental requirements of GIS interoperability: 1) a
generic model to support a variety of GIS functions and ca-
pabilities, 2) a set of known tools or functions necessary
for solving problems and 3) heterogeneous methods for ex-
ploring and accessing spatial information and resources in a
network of systems.
Yaser Bishr et al [1] describe different levels of GIS in-

teroperability:
� Platform level: is devoted to hardware and network

protocols interoperability. It provides support for transfer-
ring data files between systems. Users need to have prior
knowledge of remote file formats and invoke the appropri-
ate converters on the transferred files.
� Syntactic level: is concerned with data and systems

(GIS) interoperability. It allows physical data exchange be-
tween systems. Traditional solutions to GIS interoperability
are defined at this level. They are based on format conver-
sion. Software tools are defined for structure conversion be-
tween pairs of GIS, by typically using a common exchange
format to produce an intermediate structure which is later
mapped to the final structure. The identification of remote
file formats and the required conversions are transparent to
the users. Other solutions at this level, allow users to con-
nect to a remote GIS and to query the remote system using
their own local language. This solution is comparable to the
multidatabase language approach of traditional databases.
� Application level: is relevant to syntactic and applica-

tion semantics (data model) interoperability. Interoperation
at this level is based on a global virtual view of components
GIS. Users queries are formulated on this virtual view and
mapped on the remote GIS. This solution is similar to feder-
ated database approach based on global integrated schema.

Different approaches have been proposed for achieving
the above requirements and levels of interoperability. They
can be categorized as follows:

� the federation approach, which uses a global integrated
schema to represent objects contained in component GIS.
First, the spatial schema of the participating systems are
mapped into a common data model. Next, semantic con-
flicts among the schema are detected. And finally, corre-
spondence rules are used to integrate the translated schemas
to create global federated schemas;

� the persistent object approach in which each GIS or
data repository is seen as a persistent store for spatial objects
described by a common data model [7]. The localization of
the spatial objects is transparent to end users. It defines an
object environment and related tools to allow reusability of
the functionalities of the participating systems;

� the interface approach extends each GIS with an in-
terface which describes data from remote GIS in the local
model. Typically an extended application programmer in-
terface (e.g OO interface extended with query processing
capabilities) is used as local model. This allows a user to
access spatial objects from other systems as local objects.
The interface handles query translation and maps query re-
sults into local objects.

Recently, the OpenGIS consortium has defined a generic
framework and guidelines for applying classical open sys-
tem approach to geographic information processing [8]. The
primary intent of open system model is to allow sharing of
data, resources and systems services among applications;
to facilitate exchange of information among heterogeneous
systems; to enable the reuse of software components; and to
permit the design of extensible systems. The OpenGIS spec-
ification extends the above properties to geographic infor-
mation systems 1) to define an operational model in which
spatial object or features are not defined by their structural
properties, but are rather defined in terms of interfaces and
2) to allow the development of geoprocessing on different
data architectures. The OpenGIS guidelines define three
interoperation models. The essential model defines geo-
graphic formalism such as types, schema and services for
representing real world entities [5]. The open geodatamodel
can be used to define behavior or methods for geographic el-
ements and to specify a catalog of meta information and spa-
tial references. Finally, the OpenGIS service model define
functions for assembling spatial objects and their interface
to complex queries and geoprocessing operations.

Several authors have proposed solutions for GIS interop-
erability based on the OpenGIS specifications. Agnès Vois-
ard et al [13] propose a multilayer approach to the OpenGIS
design problem. Each layer correspond to a different level
of abstraction, from application level to data access level.
Their decomposition provide a good framework for facil-

itating the design of interoperable GIS. Nittel in [7] uses
OpenGIS specifications in a persistence object approach.
Their persistent object manager (geoPOM) provides a ho-
mogeneous interface to heterogeneous spatial data reposito-
ries. geoPOM’s data model is composed of two parts: an
object oriented data model based on ODMG93 and a set of
predefined spatial object types based on OpenGIS specifica-
tions.

3 An overview of ISIS’s architecture
This section presents the functional architecture of the

ISIS project. The primary goal of the project is to achieve
interoperability among GIS by allowing the realization of
distributed spatial object system. The main goal of the ar-
chitecture are: 1) to allow and facilitate access to multi-
ple spatial information sources, 2) to describe, compose and
customize information from different sources according to a
specific application domain, 3) to allow incremental defini-
tion of the system by using dynamic link between mediator
and wrapper, and composition of interface repository. Fig-
ure 1 shows the functional architecture of ISIS. It consists of
a network of software components grouped in three logical
levels devoted to mediators, wrappers and local GIS.

Wrappers

Local GIS

Mediators

Gaz Network Urban Traffic Climatic Model

Wrapper Wrapper Wrapper Wrapper

Mediator Mediator

Users Applications

Pollution Office

Arc/Info GrassIllustra Flat file

Figure 1: ISIS Mediation Architecture

The mediator level consist of a set of abstract services
which are used to provide a uniform and customized view
of different heterogeneous data sources. Each view is rep-
resented in the AMUN model and is specific to an applica-
tion domain. This allows the definition of virtual GIS at
the user application level. Virtual GIS contains virtual ob-
jects which aggregate complex structured objects existing
in one or more data sources. Mediator’s abstract services
handle the decomposition of tasks into subtasks, determine
the appropriate data sources and operations required by sub-
tasks and dispatch the subtasks to different local GIS and
recombine the results. In summary a mediator comprises
an interface repository manager, a distributed object query
service, a global transaction manager and an object man-

ager. The object interface repository consists of a set of
schemasm� sdb expressed in AMUN common data model.
A schemam� sdb corresponds to the description of hetero-
geneous data (objects classes described by their interface)
from one or more sites. The interface repository is asso-
ciated with an object specification language (ISL). It de-
scribes shared spatial object, shared spatial operations and
data sources. The distributed object query service is re-
sponsible for the decomposition and optimization of global
queries. The query decomposition phase must take into ac-
count specific geographic operators that are located on dif-
ferent sites. Thus, global decomposition is more complex
than in traditional systems. The primary intent is to maxi-
mize parallel execution of inter site spatial joins. The global
transaction manager is responsible for global concurrency
control among tasks. It maintains semantic correctness of
global transactions. Global transaction management issues
are currently not dealt with in ISIS. The distributed object
manager provides tools to create, describe and manage the
interface repository.
The wrappers level is a set of concrete services (Sys-

tem GIS Services). The goal of this level is to encapsu-
late each GIS in a generic spatial object server by a wrap-
per. A wrapper resolves heterogeneities between a spa-
tial data server and the rest of the system. This is done
by defining mappings between local schema (GIS schema)
and schema in AMUN. It also deals with invocation of ser-
vices, execution of operations and data access to and from
the underlying spatial data server. A wrapperWi contains a
schema w � sdbi obtained by translating an export schema
l�sdbi from the local data model to the common data model
AMUN, it also describe spatial operations. Contrary to me-
diator’s schemas which combine information from various
sources, a wrapper schema w � sdbi describes a single data
source. Furthermore, there is no direct relation between
w � sdbi.
The local level consist of a set of local GIS. It is devoted

to the definition of a set of export schemas l � sdbi which
correspond to partial views of data sources expressed in lo-
cal data models.
The operational architecture is presented in section 5,

AMUN is presented in the following section.

4 Definition of a common spatial data model
One of the most problem to be dealt with, when inter-

connecting heterogeneous GIS, is to provide a unique spa-
tial data model and language to access and manipulate the
spatial object stored in different repositories. In ISIS en-
vironment, we have defined a common spatial data model
called AMUN which can used to represent traditional data,
spatial data and to manage distributed objects.
As shown in figure 2, AMUN is a three levels model.

The first two levels specifies a set of concepts to represent

respectively traditional data and spatial data with attached
spatial operations. The last level is composed of new con-
cepts to manage distributed and heterogeneous objects. In
the following, we detail the AMUN’s concepts defined at
each level.

Spatial Data Types

Distribution

Core Concepts

Amun Object Model

Spatial Operators

Figure 2: The three different levels of AMUN data model

In this paper we focus on the distribution of spatial data,
a description of the concepts for distribution of spatial oper-
ation can be found in [6].
4.1 Core concepts
The basic concepts of AMUN are: type, object, class, and

the extent of a class. They are described by attributes and
operations and their respective signatures. A type interface
consists of the properties and operators associated with the
type. An interface describes the behavior of the type. At-
tributes and operations are described by their signatures.

4.1.1 Definitions

The following sets will be used throughout the remainder of
this section : O represents the set of real world objects,D is
the set of atomic domain values (integer, real, character,. . .),
OID is the set of object identifiers,C is the set of all classes,
A is the set of attribute names, OP is the set of operation
names.

Definition 1 (type system T)
A type system T is defined as follows:
� integer, string, float, boolean� T are atomic types
� if ti � T� i � �� � � � � n then tuple�t�� t�� � � � � tn� � T

is a structured type
� if t � T then Set�t� � T is collection types

Definition 2 (attribute signature)
Let a � A be an attribute name, t � T be an atomic type and
Sp be the set of attribute signatures. An attribute signature
sp � Sp, called primitive attribute signature, is defined over
the set of types T as follows:
� a � t is an attribute signature in Sp

� a � Set�t� is collection attribute signatures in Sp

� if si � Sp� i � �� � � � � n then a � tuple�s�� s�� � � � � sn� is a
tuple attribute signature
� if si � Sp� i � �� � � � � n then

a � Set�tuple�s�� s�� � � � � sn��
is a structured collection attribute signatures

Definition 3 (operation signature)
Consider an operation op � OP and a type t � T . Let SO
be the set of operation signatures. An operation signature
so � SO is defined by: op�s�� s�� � � � � sn�� t where
si � Sp� i � �� � � � � n is a sequence of attribute signatures
and t � T is the result of op.

Definition 4 (type interface)
Let I be the set of interfaces. A type interface i � I , defined
on t � T , such that t � ��i�, is a tuple
� Structure�Operations � :

Structure is a sequence of attribute signatures.
Operations is a sequence of signatures associated with
the set of operations applicable on the type t.
The function � � I � T returns the type associated with
the interface.

Definition 5 (subtype, supertype)
Consider two types t� and t�. Let i�� i� � I be the inter-
faces of t� and t� respectively. t� is a subtype of t�, noted
t� � t� if and only if Structure�t�� � Structure�t�� and
Operations�t�� � operations�t��. t� is a supertype of t�.
The relation� defines a partial order on the set T .

Definition 6 (object)
An object instance or object o � O represents a real world
entity. An object is defined by a tuple � oid� v � where
oid � OID is the identifier of o and v � V is a value of type
t � T which represents the state of the object (attributes of
o).

Definition 7 (class)
A class c � C represents a set of objects with the same type
t � T (they have the same properties and operations). A
class has an interface which is a type and an extent which is
denoted by ��c�. A class is defined by a tuple� i� extent �

where i is the interface of t. The extent of a class c � C is
the set of OID of the objects of c.

Definition 8 (subclass, superclass)
Consider two classes ci �� ii� extenti � and cj ��
ij � extentj � in C. ci is a subclass de cj (noted ci � cj) if
and only if ��ii� � ��ij� and ��ci� � ��cj�

4.1.2 An Example using ISL

We have given above a formal description of the core con-
cepts which provide a foundation for the definition of spa-
tial and distributed object types of the AMUN data model.

A complete formal description of the concepts is beyond
the scope of this paper. In the remainder of the paper, we
will use the interface specification language (ISL) and in-
terface query language (IQL) to present spatial object data
types. ISL and IQL are closed to ODL and OQL defined by
ODMG-93.
We now introduce a simple example of schema that to

illustrate the ISL syntax and underly the spatial type defi-
nitions given in the remainder of the section. The example
represents a schema which models a parcel (plot) of farm
land. The information of interest are parcel number, the
owner, the type of crop (culture), a list of values represent-
ing the harvest and eventually geographic information on
the parcel.

create interface TParcel
properties
attribute integer Parcel#;
attribute string Owner;
attribute set(float) Harvests;
attribute string CropType;

operations
void write_owner(in string name);
string read_owner()...

A class description corresponding to TParcel is given
below. The extent of the class CParcel named EParcel
is a container for the oid of parcel objects.

create class CParcel of TParcel
extent EParcel

4.2 Spatial types
The data model AMUN comprises a set of predefined spa-

tial data types and associated operators. The predefined spa-
tial data types are based on a subset of the spatial types of
the OpenGIS specifications [8]. OpenGIS spatial type are
described by well-known structures which represent their
semantic. AMUN uses a subset of the OpenGIS hierarchy.
Geom is the highest spatial type in the hierarchy. It repre-
sents general geometric information. The spatial data type
CoordinateGeometry is a subtype of Geom. It mod-
els spatial object which have coordinate informations. The
low level basic spatial types of the hierarchy are: Point,
LineString, Polygon, The spatial types can be in-
cluded in a general type to model the geometric aspect of
the corresponding object. For example, an attribute Geom-
etry with type TSIMPLEPOLYGON can be added to the
type TParcel above to model the geographic properties of
the farm land. The new definition for TParcel is shown
below.

create interface TParcel
/* A parcel with its geometry */
properties

attribute integer Parcel#;
attribute string Owner;
attribute set(float) Harvests;
attribute string CropType;
attribute TSIMPLEPOLYGON Geometry;
operations
void write_owner(in string name);
string read_owner()...

The spatial type TPOLYGON is used to model simple
polygonal surface without hole and island. The chosen rep-
resentation for polygons is by vertex.

create type interface TPOLYGON
/* Ring (simple polygon)*/
properties
attribute set(Coordinates) Vertex;
operations
float surface;
boolean intersect_poly(Polygon: TPOLYGON);
boolean intersect_line(Line: TLINE)

4.3 Distributed Spatial Object Concepts
This section presents concepts for defining virtual global

view of classes from heterogeneous spatial data sources. We
define types and concepts that can be used to: 1) restructure
the value of object, thus allowing multiple representations
derived or calculated from the values of an objet; and 2)
allow aggregation of information from different sources. To
achieve this, we define the concepts of calculated attributes,
calculated extents, concrete class and virtual class. We give
in the next subsection formal definitions of these concepts.

4.3.1 Calculated attributes and calculated extents

A calculated attribute is an attribute whose value is obtained
by the evaluation of an expression on the objects of a class.
The signature of a calculated attribute is defined as follows.

Definition 9 (calculated attribute signature)
Let Sc, sc � Sc denotes the set of calculated attribute signa-
tures and the signature of a calculated attribute respectively.
The signature of sc � Sc is defined by � s� expr � where
s � Sp is an attribute signature and expr is a well-formed
expression over the sets A and OP

For example, below is a calculated attribute to represent
the best harvest from the type TParcel define above.

calculated attribute
integer BestHarvest = Max(Harvests)

A calculated extent is a class extent obtained by evaluat-
ing a calculated attribute on the instances of a class.

Definition 10 (calculated extent)
Let e � E� ei � E� i � �� � � � � n be class extents and E
be the set of all class extents. Let f be a formula or an

expression. A calculated extend is computed from one or
more class extents as follows:
� �f �e� � E is a calculated extent from the extent of a
single class c of C as follows: It contains the objects of c
verifying the formula f . We distinguish two cases:

- if f is a logic formula, then �f �e� contains the objects of
c verifying the formula f

- if f is an expression which compute a new value for each
element of c, then �f �e� contains the same objects as
extent of C.

� �f �e� � E is calculated from two or more extents ei� i �
�� � � � � n of C, �f �e�=

S
i�������n�ei� � E is a calculated

extent defined by the set union of the concrete/calculated
extents ei.

4.3.2 Concrete and Virtual class

A concrete class implements a type interface on a local in-
formation system. It is used to describe objects really stored
in different data repository. A concrete class is defined as
follow:

Definition 11 (concrete class)
A concrete class is defined by� i� extent� w �where i � I

is an interface and extent represents the set of objects of the
concrete class. Wrapper w contains an implementation for
the interface i and is capable of retrieving the corresponding
physical objects from a local extent.

Figure 3 shows two concrete classes associated with the
type TParcel defined above. The classes are defined in
two wrappers w� and w� to represent parcel information
modeled by two GIS: GIS1 and GIS2. A definition of the
concrete classes using the ODL language is given below.

create concrete class CParcel1 of TParcel
extent EParcel1 on w1 ;
create concrete class CParcel2 of TParcel
extent EParcel2 on w2 ;

A Virtual class which is used to model distributed spatial
objects. The definition of virtual class is based on concrete
classes, calculated attributes and calculated extents. A vir-
tual class is defined as follows.
Definition 12 (virtual classes)
A virtual class vc is a class which is not implemented on
any wrapper. It is defined by � i� extent � where i is a
type interface and extent is the set of objects of the virtual
class.

In our approach, virtual classes are used, at the media-
tor level, to create global view over distributed information
sources. A virtual class enables a user to create virtual ob-
jects by restructuring 1) the state or the value of one or more

E
xt

en
t

GIS 1

E
xt

en
t

GIS 2

Wrapper w1 Wrapper w2

Imp Imp

concrete class CParcel1

Type TParcel

concrete class CParcel2

Type TParcel

Figure 3: Concrete Classes

objects; or 2) the extent of one or more concrete classes.
We distinguish two cases for the definition and creation of a
virtual class.
Case 1: restructuring attributes to create a virtual class. A
virtual class is created by restructuring attributes of exist-
ing objects. The states of the objects of the virtual class are
defined by applying an expression on the state of existing
objects. Furthermore, the state of one or more objects can
be aggregated to create virtual objects which do not exist in
any component GIS. Instead, they are created or calculated
on demand from objects in existing systems. For example,
to construct a city map, a user may have to aggregate ob-
jects from two sources: a GIS which models road traffic
information and a second GIS which contains information
on buildings.
The following example (figure 4) presents the definition

of a virtual class for the type TParcel defined above.
Two calculated attributes MeanHarvest and Surface
are used to define new values from the information con-
tained in the type TParcel. The resulting type, which
is a subtype of TParcel, is called TParcelHarvest.
CVPArvestHarvest is the created virtual class and EV-
ParcelCrop is its extent. Each object of the new virtual
class CVParcelHarvest is calculated from an element
of the concrete extent EVParcel.

create interface TParcelHarvest :: TParcel
calculated attribute float MeanHarvest
calculated attribute float Surface
create virtual class CVParcelHarvest
of TParcelHarvest
as select Parcel#: p.Parcel#, Owner: p.Owner,
CroptType: p.CropType, Harvest: p.Harvest,
MeanHarvest: Mean(p.Harvest),
Surface: surface(p.Geometry)
from p in ESelf

/* ESelf describes the extension of the class */
extent EVParcelCrop as EParcel1

Case 2: restructuring extents to create a virtual class. The
definition of a calculated attribute can be a logic expression
which is used to select the objects contained in the extent of
a virtual class. The logic expression represents an applica-

Extent

Extent

i’

i

imp

Concrete Class

Virtual Class

Figure 4: Virtual class with calculated attributes

tion semantics which must be verified by the elements of the
new virtual class. We distinguish two cases:
� The semantic associated with the calculated attribute is

applied on the elements of a given class (concrete or virtual).
In this case, the virtual class corresponds to a selection op-
eration which restricts the extent of the original class (figure
5(a)).
The following example presents the definition of a virtual
class CVParcelWheat1 for the type TParcel defined
above. The extent EVParcelWheat of the virtual class is
defined by the select query which is used to set the value of
attribute CropType to ’wheat’. EVParcelWheat is
calculated from the concrete extent EVParcel.

create virtual class CVParcelWheat1 of TParcel
extent EVParcelWheat as
select p from p in EVParcel1
where p.CropType=’wheat’

create virtual class CVAllParcel of TParcel
extent EVAllParcels as union(EVParcel, EVParcel)

� The semantic associated with calculated attributes is
applied on the elements of two classes (figure 5(b)). All
objects which verify this semantic (whether or not from
the same class) are grouped to form the extent of the vir-
tual class. Note that the original objects may have different
structural properties. The virtual class interface, which must
be compatible with the structural description of the objects,
will be used to access and manipulate the resulting virtual
objects.
The following example presents the definition of a virtual
class CVAllParcel as a union of the two concrete classes
EVParcel1 and EVParcel2 (figure 5(b)). The new class
represent all parcels modeled by GIS1 and GIS2. The result-
ing virtual extent is EVAllParcels.

5 An operational architecture based on
CORBA
Figure 6 shows the operational architecture of ISIS. It is

based on OMG distributed object management model and
its core component CORBA. The functional architecture of
ISIS is implemented on top of CORBA. The common data
model (AMUN) and a compliant OQL query language are

i

Virtual Class

ExtentMediator Level

Wrapper Level
Extent

i

Concrete Class

(a) Extent calculated by for-
mula

i

Virtual Class

Mediator Level

Extent Extent

Extent

Wrapper Level

i

imp

i

imp

Concrete Class Concrete Class

(b) Extent defined by union op-
eration

Figure 5: Virtual classes and calculated extents

used to realize the components (mediators and wrappers)
of the functional architecture. Our architecture can be used
to incorporate different GIS such as GIS Arc/Info, Illustra,
GRASS into a multi spatial information system.
To achieve GIS interoperability, we decompose the ar-

chitecture in different layers [13, 1]. The most important
layers are the physical data store layer, the GIS functional-
ities layer, and the data model layer. Each layer provides a
set of schema and services to implement the functionalities
of the next higher layer. Platform (hardware and network
layers) interoperability is handled by CORBA functions and
services. CORBA’s Object Request Broker (ORB) supports
interconnectivity for high level services. These services deal
with high level expressions over OQL and AMUN in an ho-
mogeneous environment. Thus, the different services can
reside on different machines of a network, and can be im-
plemented in different languages (e.g. ADA, C++, Java, ...).
In our approach, users applications are clients for the me-

diators. When a query formulated in a global language is
submitted to a mediator, the global query processor in the
mediator determines the data and the operations requested
by the query. The mediator sends multiple sub-queries to
the wrappers taking part in the execution of the global user
query. Each wrapper receives only sub-query that can be
processed locally, that is the required and operations are
available on the local site. The wrapper uses transforma-
tion rules to translate the query to the local GIS language
and provides secure connections to the requested data. It
submits the query to the local GIS, converts instances of the
result, and send the result to the mediator. Then results from
participant sites are combined into a final result in the medi-
ator. The data are mapped to local format and presented to
the user.

Specific layer for spatial data acces and operations

Object Interface
Repository

Operation Interface
Repository

Wrapper Repository

Meta Data Library

M
et

a
D

at
a

Li
br

ar
y

In
te

rf
ac

e

Distributed Object Query Service

Query Decomposer Service

Packaging Service

IQL Compiler

ISL Compiler

Distributed Object Manager

Transaction Manager Service

Optimization/Execution Service

Client Request

Wrapper

Arc/Info

Sub query tranlation module
Sub quey execution module
Sub query result transformation

Local object query Service

Local Meta Data Management Int.

Local object definition
Local operation definition
Mappings

Wrapper

Postgres
Geo++

Cooperation Object Bus

Mediator

Local Meta Data described in ISL (object Interface and operation)

Wrapper

Grass

Figure 6: Operational Architecture

6 Conclusion

We describe ISIS project that is specially design to ad-
dress issues relevant to the design of distributed interopera-
ble GIS.

We introduce a distributed spatial object model AMUN as
an extension of ODMG-93. The main contributions in this
paper are the following:

� concepts to deal with distribution and heterogneties:
calculated attributes, calculated extents, concrete and virtual
classes;

� spatial data types to deal with spatial objects;

� functional extensions to deal with distributed spatial
operators. While distribution is addressed with the mate-
rialization level, the first two levels (semantic and concrete
level) are used to resolve heterogeneities by grouping spatial
operation with the same semantic.

We also present the architecture allows sharing of both
data and operations. It’s major components are: 1) wrap-
pers (one per local GIS) for resolving heterogeneity in the
cooperative environment, 2) mediators for coordinating co-
operative tasks such as services communications or query
dispatching. The main advantage of the architecture is it
brings core software components to be used in different con-
texts and thus it allows flexible and extensible cooperation
in different environments such as WEB [1], federated GIS.

The initial phase of our project is devoted to the defini-
tion of the data model. Our future work will focus on spatial
query processing to handle the distribution and sharing not
only of spatial objects but also of specialized spatial opera-
tors.

References
[1] Y. Bishr, M. M. Radwan and J.Pandya, SEMWEB - A

Prototype for Seamless Sharing of Geoinformation on
The World Wide Web in a Client/Server Architecture
Proc. of the Third Joint European Conf. & Exhibition
on Geographical Information, pp.145-154, 1997.

[2] The Common Object Request Broker : Architecture
and Specifications, Object Management Group, OMG
Document Number 91.12.1, December 1991.

[3] M. Coyle, S. Shekhar, D. Liu, S. Sarkar, Experiences
with Object Data Models in Geographic Informations
Systems, Technical Report, TR 95-10, 1995.

[4] B. David and A. Voisard, A Unified Approach to Ge-
ographic Data Modeling, Technical Report 9316, Uni-
versity of Munich (LMU), September 1993.

[5] K. Gardels, Open GIS and On-Line Environmental Li-
braries, ACM SIGMOD Record, 26(1), March 1997.

[6] E. Leclercq, D. Benslimane, K. Yétongnon, A Dis-
tributed Object Oriented Model for Heterogeneous
Spatial Databases, Tenth Int. Conf. on Parallel and
Distributed Computing Systems, 1997.

[7] S. Nittel, J. Yang, R. Muntz, Mapping A Common
Geoscientific Object Model to Heterogeneous Spa-
tial Data Repositories, Fourth ACM Workshop on Ad-
vances in Geographic Information Systems, November
1996.

[8] OGIS Consortium, The OpenGIS Abstract Specifica-
tion: An Object Model for Interoperable Geoprocess-
ing, Revision 1, OpenGIS Consortium, TC Document
96-015R1, 1996.

[9] E. Pitoura, O. Bukhres, and A. Elmagarmid, Object
Orientation in multidatabase systems, ACM Comput-
ing Surveys, 27(2), pp.141-195, June 1995.

[10] M. Scholl and A. Voisard. Object-Oriented Database
Systems for Geographic Applications: An Experiment
with O2, in The O2Book, F. Bancilhon, C. Delobel and
P. Kanellakis (Eds.), Morgan Kaufmann, San Mateo,
California, 1992.

[11] A. Sheth and J. Larson, Federated database systems,
ACMComputing Surveys, 22(3), pp. 183-236, Septem-
ber 1990.

[12] N. Tryfona and J. Sharma, On Information Model-
ing to Support Interoperable Spatial Databases, Proc.
of the 8th Int. Conf. on Advances Information Sys-
tems Engineering, CAiSE’96, Vol. 1080, pp. 210-221,
Springer, 1996.

[13] A. Voisard and H. Schweppe, A Multilayer Approach
to the Open GIS Design Problem, Proc. of the 2nd
ACM GIS Workshop, pp. 23-29, 1994.

[14] M. Worboys, H. Hearnshaw, D. Maguire, Object-
oriented data modelling for spatial databases, Int. J.
of Geographical Information Systems, Vol. 4, Num. 4,
pp. 396-383, 1990.

[15] M. Worboys and S.M. Deen, Semantic Heterogene-
ity in Distributed Geographic Database, SIGMOD
Record, Vol. 20, Num. 4, pp. 30-34 , 1991.

