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Abstract. The language most frequently used to represent the semantic graphs 

is the RDF (W3C standard for meta-modeling). The construction of semantic 

graphs is a source of numerous errors of interpretation. Processing of large 

semantic graphs can be a limit to use semantics in modern information systems. 

The work presented in this paper is part of a new research at the border between 

two areas: the semantic web and the model checking. For this, we developed a 

tool, RDF2NµSMV, which converts RDF graphs into NµSMV language. This 

conversion aims checking the semantic graphs with the model checker NµSMV 

in order to verify the consistency of the data. The data integration and sharing 

activities carried on the framework of the Semantic Web lead to large 

knowledge databases that must be queried, analyzed, and exploited efficiently. 

Many representation languages of the knowledge of the Semantic Web, starting 

with RDF, are based on directed, labeled graphs, which can be also manipulated 

using graph algorithms and tools coming from other domains. In this paper, we 

propose an analysis approach of RDF graphs by reusing the verification 

technology developed for concurrent systems. To this purpose, we define a 

translation from the SPARQL query language into temporal logic query, a 

general-purpose graph manipulation language implemented in the ScaleSem 

verification toolbox. This translation makes it possible to extend the expressive 

power of SPARQL naturally by adding temporal logic formulas characterizing 

sequences, trees, or general sub-graphs of the RDF graph. Our approach 

exhibits a performance comparable to dedicated SPARQL query evaluation 

engines, as illustrated by experiments on large RDF graphs. 

Keywords: Semantic graph, RDF, Model Checking, Temporal logic, NµSMV, 

Query checking, SPARQL, temporal logic query.  

1   Introduction 

The increasing development of networks and especially the internet has greatly 

developed the heterogeneous gap between information systems. In glancing over the 

studies about interoperability of heterogeneous information systems we discover that 

all works tend to the resolution of semantic heterogeneity problems. The W3C1 

suggest norms to represent the semantic by ontology. Ontology is becoming an 
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inescapable support for information systems interoperability and particularly in the 

Semantic. Literature now generally agrees on the Gruber’s terms to define an 

ontology: explicit specification of a shared conceptualization of a domain [1]. The 

physical structure of ontology is a combination of concepts, properties and 

relationships. This combination is also called a semantic graph.  

Several languages have been developed in the context of Semantic Web and most 

of these languages use XML2 as syntax [2]. The OWL3 [3] and RDF4 [4] are the most 

important languages of the semantic web, they are based on XML. OWL allows 

representing the ontology, and it offers large capacity machines performing web 

content. RDF enhances the ease of automatic processing of Web resources. The RDF 

(Resource Description Framework) is the first W3C standard for enriching resources 

on the web with detailed descriptions. The descriptions may be characteristics of 

resources, such as author or content of a website. These descriptions are metadata. 

Enriching the Web with metadata allows the development of so-called Semantic Web 

[5]. The RDF is also used to represent semantic graph corresponding to a specific 

knowledge modeling. In this paper, we propose a new way using formal verification, 

which consists in the transformation of semantic graphs into model and verifying 

them with a Model Checker [6].  

We developed two tools, the first one called “RDF2NµSMV” that transforms 

semantic graphs into a model represented in NµSMV [7] language. After this 

transformation, NµSMV verifies the correctness of the model written in NµSMV 

language with temporal logic in order to verify the consistency of the data described 

in the model of the huge semantic graphs. The second tool, called “STL 

RESOLVOR”, aims resolving the queries destined to the model of the semantic 

graph. This query was introduced the first time by William Chan in his innovative 

work [8].These requests are not used to verify the model representing the RDF graph, 

but rather to recognize it. 

Our primary goal in this paper is to define a powerful and expressive query 

language for semantic graphs and to align with SPARQL [9], in order to improve the 

interoperability of applications on the Semantic Web. The other rather competing goal 

is to keep the query language simple enough that it can be easily built. To satisfy these 

requirements, we define a new query language that uses the operators of the temporal 

logic.  

The rest of this paper is organized as follows. In Section 2 we present an overview 

of the semantic graphs, especially the structure of the RDF graphs and the model 

checking. Then, in section 3, we describe the SPARQL query. The Section 4 presents 

the temporal logic and the query checking. Section 5 refers to the mapping of the 

semantic graphs into models, section 6 to the transformation of SPARQL query to 

temporal logic query. Section 7 defines the functionalities of the STL Resolver tool 

and we present some benchmarks in section 9. Finally, we end with a conclusion. 
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2 An overview of Semantic graphs and Model Checking 

Semantic graphs - The RDF is also used to represent semantic graphs corresponding 

to a specific knowledge modelling. It is a language developed by the W3C to bring a 

semantic layer to the Web [10]. It allows the connection of the Web resources using 

directed labelled edges. The structure of the RDF documents is a complex directed 

labelled graph.  An RDF document is a set of triples <subject, predicate, object> as 

shown in the Figure1. In addition, the predicate (also called property) connects the 

subject (resource) to the object (value). Thus, the subject and the object are nodes of 

the graph connected by an edge directed from the subject towards the object. The 

nodes and the edges belong to the “resource” types. A resource is identified by an 

URI5 [11, 12]. 

 

Figure 1. RDF triplet. 

 

The declarations can also be represented as a graph, the nodes as resources and 

values, and the arcs as properties. The resources are represented in the graph by 

circles; the properties are represented by directed arcs and the values by a box (a 

rectangle). Values can be resources if they are described by additional properties. For 

example, when a value is a resource in another triplet, the value is represented by a 

circle. 

 
Figure 2. Example of a partial RDF graph. 

 
The RDF graph in the Figure 2 defines a node “University of Bourgogne” located 

at “Dijon”, having as country “France” and as department “Cote d’Or”. RDF 

documents can be written in various syntaxes, e.g., N3 [13], N-Triple [14], and 

RDF/XML. Below, we present the RDF\XML document corresponding to Figure 2. 

 
<rdf:Description rdf:about="http://example.org/university of 

Bourgogne"> 

<ex:Location> 

<rdf:Description rdf:about="http://example.org/Dijon"> 

<ex:Country> France</ex:Country> 

                                                           
5 Uniform Resource Identifier 

Ressource Property Value

http://example.org/University_of_Bourgogne 

 

http://example.org/Dijon 

 

http://example.org/Cote_d’or 

 
http://example.org/France 
 

http://example.org/Location 
 

http://example.org/Country 
 

http://example.org/Department 
 

http://example.org/University_of_Bourgogne
http://example.org/Dijon
http://example.org/Cote_d'or
http://example.org/France
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<ex:Department>Cote d'or</ex:Department> 

</rdf:Description> 

 </ex:Location> 

</rdf:Description> 

 

Model checking - The model checking [15] described in Figure 3 is a verification 

technique that explores all possible system states in a brute-force manner. Similar to a 

computer chess program that checks all possible moves, a model checker, the 

software tool that performs the model checking, examines all possible system 

scenarios in a systematic manner. In this way, it can be shown that a given system 

model truly satisfies a certain property. Even the subtle errors that remain 

undiscovered using emulation, testing and simulation can potentially be revealed 

using model checking. 

To make a rigorous verification possible, properties should be described in a 

precise unambiguous way. It is the temporal logic that is used in order to express 

these properties. The temporal logic is a form of modal logic that is appropriate to 

specify relevant properties of the systems. It is basically an extension of traditional 

propositional logic with operators that refer to the behaviour of systems over time. 

 

 

Figure 3. Model checking approach 

 

The following algorithm explains the way that the model checking works. First we 

put in the stack all the properties expressed in the temporal logic. All of them are 

verified one by one in the model and if a property does not satisfy the model, it is 

whether the model or the property that we must refine. In case of a memory overflow, 

the model must be reduced. Whereas formal verification techniques such as 

simulation and model checking are based on model description from which all 

possible system states can be generated, the test, that is a type of verification 

technique, is even applicable in cases where it is hard or even impossible to obtain a 

system model.  
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3 The SPARQL query 

SPARQL [9] is a query language for querying metadata and extraction data form an 

RDF graph or, more precisely a query language for RDF triples. 

 

In SPARQL different query form are available:  

 Select:  return the value of variables which may be bound by a matching 

query pattern. 

 Ask: return true if a given query matches and false if not.  

 Construct: return an RDF graph by substituting the values in given 

templates. 

 Describe: return an RDF graph which defines the matching resource. 

 

The Select form is the most used. In this article we showed only the SPARQL 

query with the select form. A basic SPARQL query has the following form: 

 

Select ?variable1, ?variable2,… 

Where {pattern1.pattern2. …} 

 

Where each pattern consists of subject, predicate, object, and each of these is either a 

variable or a literal. The query model is query-by-example style: the query specifies 

the known literals and leaves the unknowns as variables. Variables can occur in 

multiple patterns and thus imply joins. The query processor needs to find all possible 

variable bindings that satisfy the given patterns and return the bindings from the 

projection clause to the application. Note that not all variables are necessarily bound 

(e.g., if a variable only occurs in the projection and not in a pattern), which results in 

NULL values. 

Relational algebra [16] is introduced to facilitate the mapping of SPARQL query to 

the applications in temporal logic. We define the operators in RDF relations.  

3.1   Selection 

Selection , sometimes also called restriction, is an unary operator that selects only 

those tuples of a relation for which a propositional formula holds. The propositions 

are assumed to have the expressivity of SPARQL Filter expressions.  

3.2   Projection 

The projection operator )(  restricts a relation to subset of its attributes.  

)(
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3.3   Inner Join and Left Outer Join 

The inner join ( ) joins two relations on their shared attributes. A B contains all 

combinations of a tuple from A and a tuple from B, minus those where the shared 

attributes are not equal.  

The left outer join ( ) additionally contains all those tuples from the first relation 

that have no matching tuple in the second.  

3.3   Union 

The union of two relations A and B is the set of union of the tuples of A and B. 

unlike in regular relational algebra, the headings of A and B do not need to be 

identical.  

4   Temporal logic and the query checking 

The concepts of temporal logic used for the first time by Pnueli [17] in the 

specification of formal properties are fairly easy to use. The operators are very close 

in terms of natural language. The formalization in temporal logic is simple enough 

although this apparent simplicity therefore requires significant expertise. Temporal 

logic allows representing and reasoning about certain properties of the system, so it is 

well-suited for the systems verification. There are two main temporal logics, that is 

linear time and branching time. In linear time temporal logic, each execution of the 

system is independently analyzed. In this case, a system satisfies a formula f, if f 

holds along every execution. The branching time combines all possible executions of 

the system into a single tree. Each path in the tree is a possible representation of the 

system execution [18].    

 

 Linear Temporal Logic or LTL allow representing the behavior of reactive 

systems using properties that describe the system in which time proceeds linearly. 

Clearly, we specify the expected behavior of a system, by specifying the only 

possible future as a sequence of actions that follow, LTL uses for that temporal 

operators: X (Next), F (Finally), G (Always), U (Until).  

 Computation Tree Logic or CTL suggest several possible futures from a system 

state rather than having a linear view of the system considered. The operators of 

CTL are obtained by adding A (for any execution) or E (there is an execution) 

before the operators of linear temporal logic that are: AX φ (all successor states 

immediately satisfy φ), EX φ (there is an execution whose next state satisfies φ), 

AF φ (for any execution, there is a state where φ is true), EF φ (there is an 

execution, leading to a true state φ), AG φ (for any execution, φ is always true), 

EG  (there is an execution, where φ is always true), AφUψ (for any execution φ 

is true until ψ is true), EφUψ (there is an execution in which φ is true until ψ is 

true).  

)(
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The Model-Checking was proposed as a verification technique, it is valuable for 

understanding the model: The user formulates a hypothesis of the system behavior, 

expressed as a formula in temporal logic, and tries to use the Model Checker to 

validate this hypothesis. This use of the model checking has not been sufficiently 

emphasized in the literature. So in order to help the user understand the system 

behavior, Chan [8] introduced the queries in temporal logic and used a technique 

similar to the Model-Checking to determine the temporal properties as opposed to 

simply verifying them. 

The query checking is an extension of the Model checking who, instead of asking 

“does the system satisfy a temporal logic formula ”, allows us to ask “for what 

value of X does the system satisfy  ?” Here, X is not a system parameter, but a 

property setting, that we seek to satisfy. These queries do not allow the verification of 

a specific property of the model but they allow the examination of the model by 

questioning it. The technique of query-checking can also be used to provide more 

information to the user in the Model Checking.  

The query checking allows the writing of temporal logic formulas easily and can 

therefore verify any properties on both the data contained in the graph and the 

structure of the data. 

 

 

Figure 4. The query execution time. 

In the graph of the Figure 4, we can see that there are two RDF triples (B1, name, 

Paul) and (B1, Phone, 111-111). The following SPARQL query: 

 

SELECT ?x  

WHERE {  

?x Name "Paul"} 

whose representation in relational algebra is: 

Triples
Paulobject

Namepredicatex 



?
??   

looks for a subject ?x which has the predicate "Name" and an object "Paul" (?x, name, 

Paul). The equivalent of the previous query in query using the temporal logic 

operators is: 

 

Finally ( ?x  Next "Paul") (1) 

 

This temporal logic query looks for the same subject ?x, as defined in the SPARQL 

query above. 



)(X

B

1 

Paul 111-111 

Name Phone 
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5   The RDF graph transformation 

This section speaks about our approach which consists in the transformation of 

semantic graphs into model in order to verify them with the model-checker. For this, 

we developed "RDF2NμSMV" tool that transform semantic graph into NµSMV [7] 

language for the Model-checker NµSMV.  

NµSMV is the amelioration of SMV model checker; it works on the sample 

principles as SMV. NµSMV verify the properties in both linear time logic and 

computation tree logic. 

The RDF graphs considered here are represented as XML verbose files, in which 

the information is not stored hierarchically (so-called graph point of view). On the 

one hand, these RDF graphs are not necessarily connected, meaning they may have no 

root vertex from which all the other vertices are reachable. On the other hand, the 

NµSMV language manipulated by the verification tools of NµSMV always have a 

root vertex, which corresponds to the initial state of the system whose behavior is 

represented by the NµSMV language. The RDF graph transformation into NµSMV 

language is articulated in three steps: exploring the RDF graph, determining a root 

vertex and, final step, generating the Model of the RDF graph. This final step is 

divided into three sub-steps. The first and the second steps consist in generating two 

tables (triples table and correspondence table). Firstly, the table of all triples is built 

by exploring the entire graph. The graph traversal algorithms go through the RDF 

graph and create a table consisting of resources, properties and values. In the source 

RDF graph, the resource is a vertex, the property represents the edge and the value is 

the successor vertex corresponding of the edge of the vertex. The table of triples of 

RDF graph is useful for the next sub-step. 

Secondly, a correspondence table is generated. To build the table of 

correspondence, the algorithm associates an identifier for each resource, property and 

value. 

The last step consists in producing from these tables the model writing in NµSMV 

language for the Model checker NµSMV. [19]  

6   SPARQL query to temporal logic query 

This section gives an overview of SPARQL query transformation into Temporal 

Logic query. We focus on the SELECT form. To illustrate this section, we use the 

RDF example shown in Figure 5. 
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Figure 5. RDF graph for SPARQL query. 

From the graph in Figure 5, we construct SPARQL queries and their query 

equivalent in temporal logic. The SPARQL query bellow selects the subject with the 

variable ?x which has Paul as object. 

 

SPARQL SELECT ?x WHERE { ?x nom “Paul”} 

LT query Finally (?x  Next "Paul") 

Relational 

algebra  
 

 

The SPARQL query bellow selects the subject ?x which has the variable ?y as 

object, who, at its turn, has “Bob Dylan” as object. 

 

SPARQL SELECT ?x WHERE { ?x composed_by ?y. ?y name “Bob Dylan”} 

LT query Finally ( ?x  Next Next "Bob Dylan") 

 

The purpose of an optional pattern is to supplement the solution with additional 

information. If the pattern within an OPTIONAL clause matches, the variables 

defined within that pattern are bound to one or to many solutions. If the pattern does 

not match, the solution remains unchanged. The SPARQL query represented bellow 

selects the subject ?x that has “Paul” and/or “paul@yahoo.fr” as object. 

 

SPARQL SELECT ?x WHERE { ?x name "Paul" OPTIONAL  

{?x email paul@yahoo.com"}} 

LT query Finally ( ?x  Next "Paul" Finally ?x  "paul@yahoo.com") 

 

A SPARQL FILTER function can be added to a basic graph pattern in order to 

restrict the result according to Boolean conditions. The SPARQL query bellow selects 

the subject ?x which has a word that contains at least the letter P as object. 

 

SPARQL SELECT ?x WHERE { ?x name ?y FILTER regex (?y, "P") } 

LT query Finally (?x  Next *P*) 

Triples
Paulobject

Namepredicatex 



?
?? 



mailto:paul@yahoo.fr
mailto:paul@yahoo.com
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Relational 

algebra 
 

 

The SPARQL query bellow selects the subjects ?x and ?y that have “John” and 

respectively “Paul” as objects. 

 

SPARQL SELECT ?x ?y WHERE { {?x  name "John"} UNION  

{ ?y name "Paul"}} 

LT query Finally ( ?x  Next "John"  ?y  Next "Paul") 

 

The SPARQL query bellow selects the objects ?x where “name” is the predicate. 

 

SPARQL SELECT ?x WHERE { ?y name ?x } 

LT query Finally ( ?y  Next ?x) where predicate=name/ ?x 

Relational 

algebra 
 

 

The SPARQL query bellow selects the object ?y. This query represents a SPARQL’s 

join.  

 
SPARQL SELECT ?y WHERE { ?x name ?y. ?z performed_by ?x. 

?z composed_by ?p. ?p name "Bob Dylan"} 
LT query Finally ( ?z  Next Next ?y  ?z  Next Next "Bob 

Dylan") where predicate=nom/ ?y 
 

The transformation of SPARQL queries into queries using operators of temporal 

logic was based on the representation of SPARQL queries in the relational algebra 

seen above. 

The advantage of temporal logic queries is their simplicity to write. That means 

that the temporal logic is closer to the natural language and in addition, one of the 

great advantages of the temporal logic queries is that they are more expressive than 

the SPARQL queries using the temporal logic operators. [20] 

We developed a tool called “SPARQL2LTQ” which aims to transform SPARQL 

queries into queries using operators of the temporal logic. 

 

Triples
Pyregexyobject

Namepredicatex 



),(???

?? 



Triples
ysubject
Namepredicatex 




??
?? 
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Figure 6. The architecture of the transformation tool “SPARQL2RLT”.  

For the development of this tool, we use LEX & YACC to decompose the 

SPARQL query in order to facilitate the processing. LEX is used to recognize the 

lexical entities and replace them with keywords that will be recognized in the 

grammar of the language defined in YACC; then YACC will recognize and respect 

the expressions and will verify if they belong to the grammar. LEX & YACC are two 

very powerful tools, facilitating the lexical and respectively the syntactic analysis, 

which represent two stages of compilation difficult to program. 

In order to demonstrate the usefulness of temporal logic queries we will illustrate 

an example. Here are two tables in a relational database, table 1 and table 2. 

Table 1 Table 2 

Person Name 

id1 Alice 

id3 Christophe 

id2  Bob 
 

Name Age 

Alice  33 

Bob 42 

Christophe 15 
 

 

SELECT ?x 

WHERE { 

id1 ex :Name ?z 

?z ex :HasAge ?x 

} 

The SPARQL query above seeks the age of the person identified by id1, 

corresponding to “Alice” in our case. 

To answer this SPARQL query we must first make a join between the two previous 

relational database tables. A join is used for joining two multi sets with a constraint. 

In our example the constraint is the name, see table 3 bellow. 

TABLE 3 

Person Name Age 

1 Alice  33 

2 Bob 42 

3 Christophe 15 

 

Temporal logic 

query 

SPARQL query 

SPARQL2TLQ.exe 

Compiler 

Programme en C 

Yacc 

Lex 

y.tab.c 

Lex.yy.c 

F1.y 

F2.l 

Grammar 

Lexical rules 
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Figure 7.  The RDF graph model showing the movement to be done to achieve results.    

The equivalent of the previous SPARQL query in a query using operators of the 

temporal logic is as follows: 

  

Finally (id  X X ?x) 

 

In this query, in order to retrieve the age of the person identified by id1, one just 

moves two states (two “next” operators in our query represented by X) in the 

semantic graph model to find the result, as shown in Figure 7. 

For results with temporal logic query one just moves around the graph with the 

operators of temporal logic. The new interrogation technique will allow us to avoid 

scanning the graph several times as with SPARQL queries.  

7   The STL Resolver 

The ScaleSem toolbox contains a tool used to resolve queries in temporal logic that 

we have previously seen. This tool is called STL RESOLVOR, it takes as input the 

temporal logic query and the NμSMV graph representing the semantic graph. 

The query checking is an extension of the Model checking. A temporal logic query 

is a formula with a missing propositional formula, designated by a placeholder (“?”). 

A solution to a temporal logic query is the set of all propositional formulas that satisfy 

the query, in our case the formula are the states represented in the NµSMV graph.  

 

Figure 8. An example of NµSMV graph. 

TABLE 4 

 Query  Result  

1 Finally (?x  X State 3) ?x ={State 1, State 2}  

2 Finally (?x  X X state 3) ?x={State 1} 
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The table above gives some example of temporal logic queries and their results.  

9   Benchmark 

We tested several RDF graphs on our tool “RDF2NµSMV”, using a machine that 

runs on a processor with a capacity of 2.4 GHz and 4 GB of RAM, calculating the 

time of conversion as shown in Figure 9. Note that the RDF2NµSMV tool is faster in 

converting semantic graphs. We have almost 22 seconds for a graph of 53 MB size. 

The transformation tool follows a polynomial curve. In Figure 10, we see the size of 

the converted semantic graphs from RDF to NµSMV language. 

 

Figure 9. Time conversion of semantic graphs. 

 

Figure 10. Size of the models. 

We calculate the time of transformation of the SPRAQL query into a query using 

the operators of the temporal logic with the SPARQL2TLQ tool. The graph of the 

Figure 11 shows that for 50 000 queries, we have over then 2 minutes and for 100 000 

queries, we have 17 minutes. This transformation follows a polynomial curve.  In 

Figure 12, we notice that the size of the queries in temporal logic is smaller than the 

size of the equivalent SPARQL queries. 
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Figure 11. Time conversion of SPARQL query. 

 

Figure 12. Comparison of size in both SPARQL query and temporal logic query.   

10   Conclusion 

This paper presents how to transform a semantic graph into a model for verification 

by using a powerful formal method, that is the “model checking”. Knowing that the 

model checker does not understand the semantic graphs, we developed a tool called 

“RDF2NµSMV” to convert them into NµSMV graph in order to be verified with the 

temporal logics. This transformation is made for the purpose of classifying large 

semantic graphs in order to verify the consistency of the data from a different 

ontology. We notice the advantage of NµSMV, whose verification can be made with 

both linear time logic and computation tree logic formulas.  

We also introduce a new tool called “STL RESOLVOR” that is used to find the 

solution of temporal logic queries to better know the model used by the model 

checker NµSMV. 

We continue our research, understanding the SPARQL queries and trying to 

convert them into queries using the operators of the temporal logic. The goal of this 

transformation is to study a new way of expressing a new possibility to explore the 

semantic graphs.   
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