
HAL Id: hal-00617975
https://u-bourgogne.hal.science/hal-00617975v1

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new approach based on NµSMV Model to query
semantic graph

Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle

To cite this version:
Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle. A new approach based on NµSMV Model to
query semantic graph. International Conference on Digital Information Processing and Communica-
tions, Jul 2011, Ostrava, Czech Republic. pp.510-524. �hal-00617975�

https://u-bourgogne.hal.science/hal-00617975v1
https://hal.archives-ouvertes.fr

1

A new approach based on NµSMV Model to query

semantic graph

Mahdi Gueffaz1, Sylvain Rampacek
1
, Christophe Nicolle1,

1 LE2I, UMR CNRS 5158

University of Bourgogne,

21000 Dijon, France

{Mahdi.Gueffaz, Sylvain.Rampacek, Christophe.Nicolle}@u-bourgogne.fr

Abstract. The language most frequently used to represent the semantic graphs

is the RDF (W3C standard for meta-modeling). The construction of semantic

graphs is a source of numerous errors of interpretation. Processing of large

semantic graphs can be a limit to use semantics in modern information systems.

The work presented in this paper is part of a new research at the border between

two areas: the semantic web and the model checking. For this, we developed a

tool, RDF2NµSMV, which converts RDF graphs into NµSMV language. This

conversion aims checking the semantic graphs with the model checker NµSMV

in order to verify the consistency of the data. The data integration and sharing

activities carried on the framework of the Semantic Web lead to large

knowledge databases that must be queried, analyzed, and exploited efficiently.

Many representation languages of the knowledge of the Semantic Web, starting

with RDF, are based on directed, labeled graphs, which can be also manipulated

using graph algorithms and tools coming from other domains. In this paper, we

propose an analysis approach of RDF graphs by reusing the verification

technology developed for concurrent systems. To this purpose, we define a

translation from the SPARQL query language into temporal logic query, a

general-purpose graph manipulation language implemented in the ScaleSem

verification toolbox. This translation makes it possible to extend the expressive

power of SPARQL naturally by adding temporal logic formulas characterizing

sequences, trees, or general sub-graphs of the RDF graph. Our approach

exhibits a performance comparable to dedicated SPARQL query evaluation

engines, as illustrated by experiments on large RDF graphs.

Keywords: Semantic graph, RDF, Model Checking, Temporal logic, NµSMV,

Query checking, SPARQL, temporal logic query.

1 Introduction

The increasing development of networks and especially the internet has greatly

developed the heterogeneous gap between information systems. In glancing over the

studies about interoperability of heterogeneous information systems we discover that

all works tend to the resolution of semantic heterogeneity problems. The W3C1

suggest norms to represent the semantic by ontology. Ontology is becoming an

1 World Wide Web Consortium

2

inescapable support for information systems interoperability and particularly in the

Semantic. Literature now generally agrees on the Gruber’s terms to define an

ontology: explicit specification of a shared conceptualization of a domain [1]. The

physical structure of ontology is a combination of concepts, properties and

relationships. This combination is also called a semantic graph.

Several languages have been developed in the context of Semantic Web and most

of these languages use XML2 as syntax [2]. The OWL3 [3] and RDF4 [4] are the most

important languages of the semantic web, they are based on XML. OWL allows

representing the ontology, and it offers large capacity machines performing web

content. RDF enhances the ease of automatic processing of Web resources. The RDF

(Resource Description Framework) is the first W3C standard for enriching resources

on the web with detailed descriptions. The descriptions may be characteristics of

resources, such as author or content of a website. These descriptions are metadata.

Enriching the Web with metadata allows the development of so-called Semantic Web

[5]. The RDF is also used to represent semantic graph corresponding to a specific

knowledge modeling. In this paper, we propose a new way using formal verification,

which consists in the transformation of semantic graphs into model and verifying

them with a Model Checker [6].

We developed two tools, the first one called “RDF2NµSMV” that transforms

semantic graphs into a model represented in NµSMV [7] language. After this

transformation, NµSMV verifies the correctness of the model written in NµSMV

language with temporal logic in order to verify the consistency of the data described

in the model of the huge semantic graphs. The second tool, called “STL

RESOLVOR”, aims resolving the queries destined to the model of the semantic

graph. This query was introduced the first time by William Chan in his innovative

work [8].These requests are not used to verify the model representing the RDF graph,

but rather to recognize it.

Our primary goal in this paper is to define a powerful and expressive query

language for semantic graphs and to align with SPARQL [9], in order to improve the

interoperability of applications on the Semantic Web. The other rather competing goal

is to keep the query language simple enough that it can be easily built. To satisfy these

requirements, we define a new query language that uses the operators of the temporal

logic.

The rest of this paper is organized as follows. In Section 2 we present an overview

of the semantic graphs, especially the structure of the RDF graphs and the model

checking. Then, in section 3, we describe the SPARQL query. The Section 4 presents

the temporal logic and the query checking. Section 5 refers to the mapping of the

semantic graphs into models, section 6 to the transformation of SPARQL query to

temporal logic query. Section 7 defines the functionalities of the STL Resolver tool

and we present some benchmarks in section 9. Finally, we end with a conclusion.

2 eXtensible Markup Language
3 Web Ontology Language
4 Resource Description Framework

3

2 An overview of Semantic graphs and Model Checking

Semantic graphs - The RDF is also used to represent semantic graphs corresponding

to a specific knowledge modelling. It is a language developed by the W3C to bring a

semantic layer to the Web [10]. It allows the connection of the Web resources using

directed labelled edges. The structure of the RDF documents is a complex directed

labelled graph. An RDF document is a set of triples <subject, predicate, object> as

shown in the Figure1. In addition, the predicate (also called property) connects the

subject (resource) to the object (value). Thus, the subject and the object are nodes of

the graph connected by an edge directed from the subject towards the object. The

nodes and the edges belong to the “resource” types. A resource is identified by an

URI5 [11, 12].

Figure 1. RDF triplet.

The declarations can also be represented as a graph, the nodes as resources and

values, and the arcs as properties. The resources are represented in the graph by

circles; the properties are represented by directed arcs and the values by a box (a

rectangle). Values can be resources if they are described by additional properties. For

example, when a value is a resource in another triplet, the value is represented by a

circle.

Figure 2. Example of a partial RDF graph.

The RDF graph in the Figure 2 defines a node “University of Bourgogne” located

at “Dijon”, having as country “France” and as department “Cote d’Or”. RDF

documents can be written in various syntaxes, e.g., N3 [13], N-Triple [14], and

RDF/XML. Below, we present the RDF\XML document corresponding to Figure 2.

<rdf:Description rdf:about="http://example.org/university of

Bourgogne">

<ex:Location>

<rdf:Description rdf:about="http://example.org/Dijon">

<ex:Country> France</ex:Country>

5 Uniform Resource Identifier

Ressource Property Value

http://example.org/University_of_Bourgogne

http://example.org/Dijon

http://example.org/Cote_d’or

http://example.org/France

http://example.org/Location

http://example.org/Country

http://example.org/Department

http://example.org/University_of_Bourgogne
http://example.org/Dijon
http://example.org/Cote_d'or
http://example.org/France

4

<ex:Department>Cote d'or</ex:Department>

</rdf:Description>

 </ex:Location>

</rdf:Description>

Model checking - The model checking [15] described in Figure 3 is a verification

technique that explores all possible system states in a brute-force manner. Similar to a

computer chess program that checks all possible moves, a model checker, the

software tool that performs the model checking, examines all possible system

scenarios in a systematic manner. In this way, it can be shown that a given system

model truly satisfies a certain property. Even the subtle errors that remain

undiscovered using emulation, testing and simulation can potentially be revealed

using model checking.

To make a rigorous verification possible, properties should be described in a

precise unambiguous way. It is the temporal logic that is used in order to express

these properties. The temporal logic is a form of modal logic that is appropriate to

specify relevant properties of the systems. It is basically an extension of traditional

propositional logic with operators that refer to the behaviour of systems over time.

Figure 3. Model checking approach

The following algorithm explains the way that the model checking works. First we

put in the stack all the properties expressed in the temporal logic. All of them are

verified one by one in the model and if a property does not satisfy the model, it is

whether the model or the property that we must refine. In case of a memory overflow,

the model must be reduced. Whereas formal verification techniques such as

simulation and model checking are based on model description from which all

possible system states can be generated, the test, that is a type of verification

technique, is even applicable in cases where it is hard or even impossible to obtain a

system model.

5

3 The SPARQL query

SPARQL [9] is a query language for querying metadata and extraction data form an

RDF graph or, more precisely a query language for RDF triples.

In SPARQL different query form are available:

 Select: return the value of variables which may be bound by a matching

query pattern.

 Ask: return true if a given query matches and false if not.

 Construct: return an RDF graph by substituting the values in given

templates.

 Describe: return an RDF graph which defines the matching resource.

The Select form is the most used. In this article we showed only the SPARQL

query with the select form. A basic SPARQL query has the following form:

Select ?variable1, ?variable2,…

Where {pattern1.pattern2. …}

Where each pattern consists of subject, predicate, object, and each of these is either a

variable or a literal. The query model is query-by-example style: the query specifies

the known literals and leaves the unknowns as variables. Variables can occur in

multiple patterns and thus imply joins. The query processor needs to find all possible

variable bindings that satisfy the given patterns and return the bindings from the

projection clause to the application. Note that not all variables are necessarily bound

(e.g., if a variable only occurs in the projection and not in a pattern), which results in

NULL values.

Relational algebra [16] is introduced to facilitate the mapping of SPARQL query to

the applications in temporal logic. We define the operators in RDF relations.

3.1 Selection

Selection , sometimes also called restriction, is an unary operator that selects only

those tuples of a relation for which a propositional formula holds. The propositions

are assumed to have the expressivity of SPARQL Filter expressions.

3.2 Projection

The projection operator)(restricts a relation to subset of its attributes.

)(

6

3.3 Inner Join and Left Outer Join

The inner join () joins two relations on their shared attributes. A B contains all

combinations of a tuple from A and a tuple from B, minus those where the shared

attributes are not equal.

The left outer join () additionally contains all those tuples from the first relation

that have no matching tuple in the second.

3.3 Union

The union of two relations A and B is the set of union of the tuples of A and B.

unlike in regular relational algebra, the headings of A and B do not need to be

identical.

4 Temporal logic and the query checking

The concepts of temporal logic used for the first time by Pnueli [17] in the

specification of formal properties are fairly easy to use. The operators are very close

in terms of natural language. The formalization in temporal logic is simple enough

although this apparent simplicity therefore requires significant expertise. Temporal

logic allows representing and reasoning about certain properties of the system, so it is

well-suited for the systems verification. There are two main temporal logics, that is

linear time and branching time. In linear time temporal logic, each execution of the

system is independently analyzed. In this case, a system satisfies a formula f, if f

holds along every execution. The branching time combines all possible executions of

the system into a single tree. Each path in the tree is a possible representation of the

system execution [18].

 Linear Temporal Logic or LTL allow representing the behavior of reactive

systems using properties that describe the system in which time proceeds linearly.

Clearly, we specify the expected behavior of a system, by specifying the only

possible future as a sequence of actions that follow, LTL uses for that temporal

operators: X (Next), F (Finally), G (Always), U (Until).

 Computation Tree Logic or CTL suggest several possible futures from a system

state rather than having a linear view of the system considered. The operators of

CTL are obtained by adding A (for any execution) or E (there is an execution)

before the operators of linear temporal logic that are: AX φ (all successor states

immediately satisfy φ), EX φ (there is an execution whose next state satisfies φ),

AF φ (for any execution, there is a state where φ is true), EF φ (there is an

execution, leading to a true state φ), AG φ (for any execution, φ is always true),

EG (there is an execution, where φ is always true), AφUψ (for any execution φ

is true until ψ is true), EφUψ (there is an execution in which φ is true until ψ is

true).

)(

7

The Model-Checking was proposed as a verification technique, it is valuable for

understanding the model: The user formulates a hypothesis of the system behavior,

expressed as a formula in temporal logic, and tries to use the Model Checker to

validate this hypothesis. This use of the model checking has not been sufficiently

emphasized in the literature. So in order to help the user understand the system

behavior, Chan [8] introduced the queries in temporal logic and used a technique

similar to the Model-Checking to determine the temporal properties as opposed to

simply verifying them.

The query checking is an extension of the Model checking who, instead of asking

“does the system satisfy a temporal logic formula ”, allows us to ask “for what

value of X does the system satisfy ?” Here, X is not a system parameter, but a

property setting, that we seek to satisfy. These queries do not allow the verification of

a specific property of the model but they allow the examination of the model by

questioning it. The technique of query-checking can also be used to provide more

information to the user in the Model Checking.

The query checking allows the writing of temporal logic formulas easily and can

therefore verify any properties on both the data contained in the graph and the

structure of the data.

Figure 4. The query execution time.

In the graph of the Figure 4, we can see that there are two RDF triples (B1, name,

Paul) and (B1, Phone, 111-111). The following SPARQL query:

SELECT ?x

WHERE {

?x Name "Paul"}

whose representation in relational algebra is:

Triples
Paulobject

Namepredicatex

?
??

looks for a subject ?x which has the predicate "Name" and an object "Paul" (?x, name,

Paul). The equivalent of the previous query in query using the temporal logic

operators is:

Finally (?x Next "Paul") (1)

This temporal logic query looks for the same subject ?x, as defined in the SPARQL

query above.

)(X

B

1

Paul 111-111

Name Phone

8

5 The RDF graph transformation

This section speaks about our approach which consists in the transformation of

semantic graphs into model in order to verify them with the model-checker. For this,

we developed "RDF2NμSMV" tool that transform semantic graph into NµSMV [7]

language for the Model-checker NµSMV.

NµSMV is the amelioration of SMV model checker; it works on the sample

principles as SMV. NµSMV verify the properties in both linear time logic and

computation tree logic.

The RDF graphs considered here are represented as XML verbose files, in which

the information is not stored hierarchically (so-called graph point of view). On the

one hand, these RDF graphs are not necessarily connected, meaning they may have no

root vertex from which all the other vertices are reachable. On the other hand, the

NµSMV language manipulated by the verification tools of NµSMV always have a

root vertex, which corresponds to the initial state of the system whose behavior is

represented by the NµSMV language. The RDF graph transformation into NµSMV

language is articulated in three steps: exploring the RDF graph, determining a root

vertex and, final step, generating the Model of the RDF graph. This final step is

divided into three sub-steps. The first and the second steps consist in generating two

tables (triples table and correspondence table). Firstly, the table of all triples is built

by exploring the entire graph. The graph traversal algorithms go through the RDF

graph and create a table consisting of resources, properties and values. In the source

RDF graph, the resource is a vertex, the property represents the edge and the value is

the successor vertex corresponding of the edge of the vertex. The table of triples of

RDF graph is useful for the next sub-step.

Secondly, a correspondence table is generated. To build the table of

correspondence, the algorithm associates an identifier for each resource, property and

value.

The last step consists in producing from these tables the model writing in NµSMV

language for the Model checker NµSMV. [19]

6 SPARQL query to temporal logic query

This section gives an overview of SPARQL query transformation into Temporal

Logic query. We focus on the SELECT form. To illustrate this section, we use the

RDF example shown in Figure 5.

9

Figure 5. RDF graph for SPARQL query.

From the graph in Figure 5, we construct SPARQL queries and their query

equivalent in temporal logic. The SPARQL query bellow selects the subject with the

variable ?x which has Paul as object.

SPARQL SELECT ?x WHERE { ?x nom “Paul”}

LT query Finally (?x Next "Paul")

Relational

algebra

The SPARQL query bellow selects the subject ?x which has the variable ?y as

object, who, at its turn, has “Bob Dylan” as object.

SPARQL SELECT ?x WHERE { ?x composed_by ?y. ?y name “Bob Dylan”}

LT query Finally (?x Next Next "Bob Dylan")

The purpose of an optional pattern is to supplement the solution with additional

information. If the pattern within an OPTIONAL clause matches, the variables

defined within that pattern are bound to one or to many solutions. If the pattern does

not match, the solution remains unchanged. The SPARQL query represented bellow

selects the subject ?x that has “Paul” and/or “paul@yahoo.fr” as object.

SPARQL SELECT ?x WHERE { ?x name "Paul" OPTIONAL

{?x email paul@yahoo.com"}}

LT query Finally (?x Next "Paul" Finally ?x "paul@yahoo.com")

A SPARQL FILTER function can be added to a basic graph pattern in order to

restrict the result according to Boolean conditions. The SPARQL query bellow selects

the subject ?x which has a word that contains at least the letter P as object.

SPARQL SELECT ?x WHERE { ?x name ?y FILTER regex (?y, "P") }

LT query Finally (?x Next *P*)

Triples
Paulobject

Namepredicatex

?
??

mailto:paul@yahoo.fr
mailto:paul@yahoo.com

10

Relational

algebra

The SPARQL query bellow selects the subjects ?x and ?y that have “John” and

respectively “Paul” as objects.

SPARQL SELECT ?x ?y WHERE { {?x name "John"} UNION

{ ?y name "Paul"}}

LT query Finally (?x Next "John" ?y Next "Paul")

The SPARQL query bellow selects the objects ?x where “name” is the predicate.

SPARQL SELECT ?x WHERE { ?y name ?x }

LT query Finally (?y Next ?x) where predicate=name/ ?x

Relational

algebra

The SPARQL query bellow selects the object ?y. This query represents a SPARQL’s

join.

SPARQL SELECT ?y WHERE { ?x name ?y. ?z performed_by ?x.

?z composed_by ?p. ?p name "Bob Dylan"}
LT query Finally (?z Next Next ?y ?z Next Next "Bob

Dylan") where predicate=nom/ ?y

The transformation of SPARQL queries into queries using operators of temporal

logic was based on the representation of SPARQL queries in the relational algebra

seen above.

The advantage of temporal logic queries is their simplicity to write. That means

that the temporal logic is closer to the natural language and in addition, one of the

great advantages of the temporal logic queries is that they are more expressive than

the SPARQL queries using the temporal logic operators. [20]

We developed a tool called “SPARQL2LTQ” which aims to transform SPARQL

queries into queries using operators of the temporal logic.

Triples
Pyregexyobject

Namepredicatex

),(???

??

Triples
ysubject
Namepredicatex

??
??

11

Figure 6. The architecture of the transformation tool “SPARQL2RLT”.

For the development of this tool, we use LEX & YACC to decompose the

SPARQL query in order to facilitate the processing. LEX is used to recognize the

lexical entities and replace them with keywords that will be recognized in the

grammar of the language defined in YACC; then YACC will recognize and respect

the expressions and will verify if they belong to the grammar. LEX & YACC are two

very powerful tools, facilitating the lexical and respectively the syntactic analysis,

which represent two stages of compilation difficult to program.

In order to demonstrate the usefulness of temporal logic queries we will illustrate

an example. Here are two tables in a relational database, table 1 and table 2.

Table 1 Table 2

Person Name

id1 Alice

id3 Christophe

id2 Bob

Name Age

Alice 33

Bob 42

Christophe 15

SELECT ?x

WHERE {

id1 ex :Name ?z

?z ex :HasAge ?x

}

The SPARQL query above seeks the age of the person identified by id1,

corresponding to “Alice” in our case.

To answer this SPARQL query we must first make a join between the two previous

relational database tables. A join is used for joining two multi sets with a constraint.

In our example the constraint is the name, see table 3 bellow.

TABLE 3

Person Name Age

1 Alice 33

2 Bob 42

3 Christophe 15

Temporal logic

query

SPARQL query

SPARQL2TLQ.exe

Compiler

Programme en C

Yacc

Lex

y.tab.c

Lex.yy.c

F1.y

F2.l

Grammar

Lexical rules

12

Figure 7. The RDF graph model showing the movement to be done to achieve results.

The equivalent of the previous SPARQL query in a query using operators of the

temporal logic is as follows:

Finally (id X X ?x)

In this query, in order to retrieve the age of the person identified by id1, one just

moves two states (two “next” operators in our query represented by X) in the

semantic graph model to find the result, as shown in Figure 7.

For results with temporal logic query one just moves around the graph with the

operators of temporal logic. The new interrogation technique will allow us to avoid

scanning the graph several times as with SPARQL queries.

7 The STL Resolver

The ScaleSem toolbox contains a tool used to resolve queries in temporal logic that

we have previously seen. This tool is called STL RESOLVOR, it takes as input the

temporal logic query and the NμSMV graph representing the semantic graph.

The query checking is an extension of the Model checking. A temporal logic query

is a formula with a missing propositional formula, designated by a placeholder (“?”).

A solution to a temporal logic query is the set of all propositional formulas that satisfy

the query, in our case the formula are the states represented in the NµSMV graph.

Figure 8. An example of NµSMV graph.

TABLE 4

 Query Result

1 Finally (?x X State 3) ?x ={State 1, State 2}

2 Finally (?x X X state 3) ?x={State 1}

13

The table above gives some example of temporal logic queries and their results.

9 Benchmark

We tested several RDF graphs on our tool “RDF2NµSMV”, using a machine that

runs on a processor with a capacity of 2.4 GHz and 4 GB of RAM, calculating the

time of conversion as shown in Figure 9. Note that the RDF2NµSMV tool is faster in

converting semantic graphs. We have almost 22 seconds for a graph of 53 MB size.

The transformation tool follows a polynomial curve. In Figure 10, we see the size of

the converted semantic graphs from RDF to NµSMV language.

Figure 9. Time conversion of semantic graphs.

Figure 10. Size of the models.

We calculate the time of transformation of the SPRAQL query into a query using

the operators of the temporal logic with the SPARQL2TLQ tool. The graph of the

Figure 11 shows that for 50 000 queries, we have over then 2 minutes and for 100 000

queries, we have 17 minutes. This transformation follows a polynomial curve. In

Figure 12, we notice that the size of the queries in temporal logic is smaller than the

size of the equivalent SPARQL queries.

14

Figure 11. Time conversion of SPARQL query.

Figure 12. Comparison of size in both SPARQL query and temporal logic query.

10 Conclusion

This paper presents how to transform a semantic graph into a model for verification

by using a powerful formal method, that is the “model checking”. Knowing that the

model checker does not understand the semantic graphs, we developed a tool called

“RDF2NµSMV” to convert them into NµSMV graph in order to be verified with the

temporal logics. This transformation is made for the purpose of classifying large

semantic graphs in order to verify the consistency of the data from a different

ontology. We notice the advantage of NµSMV, whose verification can be made with

both linear time logic and computation tree logic formulas.

We also introduce a new tool called “STL RESOLVOR” that is used to find the

solution of temporal logic queries to better know the model used by the model

checker NµSMV.

We continue our research, understanding the SPARQL queries and trying to

convert them into queries using the operators of the temporal logic. The goal of this

transformation is to study a new way of expressing a new possibility to explore the

semantic graphs.

15

References

1. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge

sharing. Presented at the Padua workshop on Formal Ontology, later published in

International Journal of Human-Computer Studies, Vol. 43, Issues 4-5, November

1995, pp. 907-928. March 1993.

2. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Cowan, J.:

Extensible Markup Language (XML) 1.1 (second edition) W3C recommendation,

http://www.w3.org/TR/2006/REC-xml11-20060816/. (2006)

3. Bechhofer, S., van Harmelen, F., Hendler J., Horrocks, I., McGuinness, D., Patel-

Schneijder, P., Andrea Stein, L., OWL Web Ontology Language Reference, World

Wide Web Consortium (W3C), http://www.w3.org/TR/owl-ref/, (2004).

4. Becket, D., McBride, B.: RDF/ XML Syntax Specification (Revised). W3C

recommendation. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

(2004)

5. Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific American.

pp. 34–43. 2001.

6. Clarke, E.M. The birth of Model checking. 25 Years of Model Checking Lecture

Notes in Computer Science, Volume 5000, pp. 1-26, 2008.

7. Cimatti, A., Clarke, E.M, Giunchiglia, F., Roveri, M. NuSMV: a new symbolic

model checker, pp 410-425. 2000.

8. Chan, W. Temporal-logic queries. In Proceedings of Computer Aided Verification,

LNCS 1855, pp 450-463. 2000.

9. Chebotko, C., Lu, S., Fotouhi, F. Semantics preserving SPARQL-to-SQL translation.

Data & Knowledge Engineering, Elsevier. 2009.

10. Klyne, J. J. C. G.: Resource Description Framework (rdf): Concepts and abstract

syntax. Tech. rep., W3C. (2004)

11. Bönström, V., Hinze, A., Schweppe, H.: Storing RDF as a graph. Latin American

WWW conference, Santiago, Chile. (2003)

12. Berners-Lee, T. W3C recommendation. http://www.w3.org/DesignIssues/ HTTP-

URI. 2007.

13. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C

recommendation, http://www.w3.org/TeamSubmission/n3/. (2008)

14. Becket, D., McBride, B.: RDF test cases. W3C Working draft.

http://www.w3.org/TR/rdf-testcases/ (2004)

15. Katoen, J. P., 2002. The principal of Model Checking. University of Twente.

16. Cyganiak, R. A relational algebra for SPARQL. Digital Media Systems Laboratory,

HP Laboratories Bristol. September 2005.

17. Pnueli, A. The temporal logic of programs. In proc. 18th IEEE Symp. Foundations of

Computer Science (FOCS’77), Providence, RI, USA. Pages 46-57. 1977.

18. Mukund, M. Model Checking, Automated Verification of Computational Systems,

pp. 667-681. 2009.

19. Gueffaz, M., Rampacek, S., Nicolle, C. ScaleSem: Evaluation of semantic graph

based on Model Checking", Webist 2011- The 7th International Conference on Web

Information Systems and Technologies, Noordwijkerhout, Hollande, May 2011.

20. Mateescu, R., Meriot, S., Rampacek, S. Extending SPARQL with Temporal logic.

Technical report. 2009.

http://www.springerlink.com/content/978-3-540-69849-4/

