
HAL Id: hal-00618006
https://u-bourgogne.hal.science/hal-00618006

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualifying Semantic graphs using Model Checking
Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle

To cite this version:
Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle. Qualifying Semantic graphs using Model
Checking. International Conference On Innovations In Information Technology 2011, Apr 2011, United
Arab Emirates. pp.1569402529. �hal-00618006�

https://u-bourgogne.hal.science/hal-00618006
https://hal.archives-ouvertes.fr

Qualifying Semantic graphs using

Model Checking

Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle

LE2I, UMR CNRS 5158

University of Bourgogne

BP 47870, 21078 Dijon Cedex, France

{Mahdi.Gueffaz, Sylvain.Rampacek, Chistophe.Nicolle}@u-bourgogne.fr

Abstract— Semantic interoperability problems have found

their solutions using languages and techniques from the

Semantic Web. The proliferation of ontologies and meta-

information has improved the understanding of information

and the relevance of search engine responses. However, the

construction of semantic graphs is a source of numerous errors

of interpretation or modeling and scalability remains a major

problem. The processing of large semantic graphs is a limit to

the use of semantics in current information systems. The work

presented in this paper is part of a new research at the border

of two areas: the semantic web and the model checking. This

line of research concerns the adaptation of model checking

techniques to semantic graphs. In this paper, we present a first

method of converting RDF graphs into NμSMV and

PROMELA languages.

Keywords: Semantic graph; Model-checking; temporal logic.

I. INTRODUCTION

W3C
1

 aims to standardize the representation and the
exchange of information on the WEB. This objective should
help make the information understandable for both
automated processes and users. The homogenization of
computer exchanges took place due to the introduction of the
XML [1] standard. This standard has enabled the program to
manipulate information through languages with hierarchical
structure mark-up defined by grammars derived from the
XML standard. However, this effort has not helped improve
the user‟s understanding of information. Thus, new standards
have been developed to enable the semantic representation of
information in the form of XML-derived languages. This
base is called Semantic Web standards and it is usually
represented as a stack of languages ranging from automatic
processes oriented languages to languages representing more
abstract concepts of formal semantics [2]. These languages
are used to represent the semantics associated with
information, whatever its form and structure. To allow the
construction of semantic graph, many tools have been
developed like Annotea [3] which is a project of the W3C
that specifies the infrastructure for the annotation of Web
documents. The main format used in the annotation is RDF
and the types of documents can be annotated are HTML
documents or XML based. However, none provides the
functionality to verify the consistency of semantics, and
reduce errors annotations.

This paper proposes a new way to check these semantic
graphs by model-checking in order to reduce errors in
annotation and make the data more relevant. Model checking

1
 World Wide Web Consortium

is an automatic verification technique, it has been applied to
many cases in industry, for example [4], in the Netherlands,
model-checking has revealed several serious flaws in the
design of control system of a barrier protection against
flooding which protects the main port of Rotterdam against
floods. The large manufacturing company processor "Intel"
has used the model-checking to detect the bug in its Pentium
II processor that caused a loss of 475 million dollars damage
to the reputation of INTEL. Finally, the model-checking was
allowed to find an error in the system of handling baggage at
the Denver airport (USA), delayed opening its doors for 9
months and a loss of 1.1 million dollars per day.

Model checking is a powerful tool for system verification
because it can reveal errors that were not discovered by other
formal methods such as testing or simulation. Model
checking uses temporal logic to describe the properties
checking the system model. As we have seen in the examples
above, the model-checking can handle complex problems
with large amounts of information, stored as a graph, in order
to verify critical systems. In comparison, in the semantic
web, the use of graphs is pervasive and serious problems of
scalability arise [5]. Thus, it is appropriate to use the
algorithms developed for model-checking to the field of
Semantic Web.

Related Work

In this section, we briefly discuss some of the researches
related to the verification of the Semantic graphs using the
model checking. There are very few researches about the use
of the model checking method to qualify a Semantic graph.
On the contrary, there are several researches that verify the
Web application. The work in [6] proposes a new way of
converting an RDF graph to the BCG

2
 format that was used

in the CADP
3
 toolbox.

The CADP toolbox is a verification toolbox for
asynchronous concurrent systems. The toolbox accepts as
input several languages and all of these languages are
compiled into LTS

4
, which are state/transition graphs

representing the behavior of concurrent systems. CADP
provides several representations for LTS; one of these
representations is the BCG format.

There are several researches in which the Web application
is modeled as a directed graph. In [7], [8], the components of
a window (e.g., a page, a frame and a link) are modeled as

2
 Binary Coded Graph

3
 Construction and Analysis of Distributed Processes

4
 Labeled Transition System

states. The reachability between states is defined as
requirements of the Web application and they are verified
using the model checking. In [9], [10], [11], they took an
approach to model the Web applications using parallel
composition of the UML diagrams. The work in [12]
proposes the way to discriminate states of interest by
introducing a specialized operator for LTL. They use it to
verify the Web applications.

In [13], the authors propose a behavioral model of the
Web application, called „Web Automata‟ based on the MVC

5

model architecture. They model the behavior of a Web
application with dynamic contents as an extension of links-
automata with the constraint-logic feature of the Extended
Finite Automata (EFA). The testing framework of Web
applications based on the behavioral model is also presented
in their research. In [14], the authors present a formal
approach for modeling Web applications using
communicating automata. They observe the external
behavior of an explored part of a Web application using a
monitoring tool. The observed behavior is then converted
into communicating automata representing all windows,
frames and framesets of the application under test by
intercepting HTTP

6
 requests and responses using a proxy

server.

II. MODEL CHECKING AND TEMPORAL LOGIC OVERVIEW

Formal methods [15] offer great potential for an early
inclusion of verification in the design process, providing
technical audit more efficiently and reduce the verification
time. Formal methods are highly recommended techniques
for the development of software. They have led to the
development of some very promising verification techniques
that facilitate early detection of defects. Two types of formal
verification methods can be distinguished: methods based on
the proof of the theorem and the methods based on models.

Methods based on the proof of the theorem verify the
correctness of systems by properties in a mathematical
theory. These properties are proven with the highest possible
precision using tools such as theorem provers and proof
checkers. Theorems proof are also called proof assistants.

Methods based on models describe the possible system
behavior in a mathematical precise and unambiguous
manner. The system models are accompanied by algorithms
that systematically explore all states of the system model.
This provides the basis for a whole range of verification
techniques ranging from an exhaustive exploration “Model
checking” to experiments with a restrictive set of scenario in
the model “Simulation”. Simulation allows the user to study
the system behavior. It is less suited to detect errors because
it is difficult to generate all possible scenarios of the system
and to simulate them all. Model checker is a verification
technique that explores all possible system state. In this way,
it can be shown that a given system model truly satisfies a
certain property.

The model checker examines all relevant system states in
order to check whether they satisfy the desired property. The
model checker gives a counter example that indicates how
the model can violate the property. With a help of a
simulator, the user can locate the error and adapt the model
or the property to prevent the violation of property (Fig. 1).

5
 Model, View, and Control

6
 Hypertext Transfer Protocol

Figure 1. The model checking approach.

For our approach we will use model checking to analyze

semantic networks. We use both linear time logic “LTL”

and computation tree logic “CTL” for describing the

specifications of the properties to be verified with model

checking.

Algorithm: Model-checking

Begin

 While stack  nil do

 P := top (stack);

 while  satisfied (p) then

 Refine the model, or property;

Else if satisfied (p) then

P := top (stack);

Else // out of memory

Try to reduce the model;

 End

End

The concepts of temporal logic used for the first time by

Pnueli [16] in the specification of formal properties are

fairly easy to use. The operators are very close in terms of

natural language. The formalization in temporal logic is

simple enough although this apparent simplicity therefore

requires significant expertise. Temporal logic allows

representing and reasoning about certain properties of the

system, so it is well-suited for the systems verification.

There are two main temporal logics, that is linear time and

branching time. In linear time temporal logic, each

execution of the system is independently analyzed. In this

case, a system satisfies a formula f, if f holds along every

execution. The branching time combines all possible

executions of the system into a single tree. Each path in the

tree is a possible representation of the system execution.

III. THE SCALESEM APPROACH

This section details our approach which consists in

transforming semantic graphs into models in order to be

verified by the model-checker. For this, we have developed

two tools called “RDF2SPIN” and “RDF2NμSMV”, that

Satisfied

System

Formalizing Modeling

Requirement

Location

error

Property
specification

Model-Checking

Violated +

Counterexample Simulation

System
model

transform semantic graphs into PROMELA
7

 and

respectively into NµSMV [17] language.

We use SPIN [18] and NµSMV as model checkers to

check the model of semantic graphs. We want to compare

them in term of capabilities. SPIN is a software tool for

verifying system models. The system is described in a

language model called PROMELA. NµSMV is the

amelioration of SMV model checker, working on the same

simple principles as SMV. SPIN verifies the correctness of

properties expressed in linear time logic; on the other side

NµSMV verifies the properties in both linear time logic and

computation tree logic.

Figure 2. The ScaleSem architecture.

In Fig. 2, we present the architecture of our approach. In

this architecture, from a natural language description, we

can get the semantic graph (RDF
8
) and its description in

temporal logic, as shown in the example found in the section

VII. We divide this architecture in two phases. The first

phase concerns the transformation of the semantic graph into

a model using our tools RDF2SPIN and RDF2NμSMV.

There are three steps in this transformation. The first step is

to explore the entire RDF graph to obtain the triplets table.

The second step is to determine a root for the graph, and the

last step is to write the model that represents the semantic

graph in the PROMELA or NµSMV languages. The second

phase concerns the verification of properties expressed in

temporal logic on the model using the model-checker SPIN

or NµSMV. The choice of model checker depends on the

tool that you use to convert the semantic graphs. For

example, when using RDF2SPIN, you must use the model-

checker SPIN to check your model.

A. Introducing RDF

RDF is a language developed by the W3C to bring a

semantic layer to the Web [19]. It allows the connection of

Web resources using directed labeled edges. The structure of

RDF documents is a complex labeled directed graph. An

RDF document is a set of triples <subject, predicate,

object>. In addition, the predicate (also called property)

connects the subject (resource) to the object (value). Thus,

the subject and the object are nodes of the graph connected

by an edge directed from the subject towards the object. The

7
 Process Meta Language

8
 Resource Description Framework

nodes and the edges belong to “resource” types. A resource

is identified by a Uniform Resource Identifier [20].

The declarations can also be represented as a graph, the

nodes as resources and values, and arcs as properties. The

resources are represented in the graph by circles; the

properties are represented by directed arcs and values by a

box (a rectangle). Values can be resources if they are

described by additional properties. For example, when a

value is a resource in another triplet, the value is represented

by a circle [21].

The RDF graphs considered here are represented as XML

verbose files, in which the information is not stored

hierarchically (so-called graph point of view). These RDF

graphs, that is, in fact, the semantic model of an RDF file,

are not necessarily connected, meaning they may have no

root vertex from which all the other vertices are reachable.

The RDF graph transformation into a model is articulated in

three steps: exploring the RDF graph, holding election of the

root vertex, generating the model of the semantic graph.

B. Exploring RDF graph

In order to exploit the RDF graphs by using SPIN or

NµSMV, we therefore have to determine whether they have

a root vertex, by analyzing RDF triples, and if this is not the

case, we must create a new root vertex by taking care to

keep the size of the resulting graph as small as possible.

We achieve this by appropriate explorations of the RDF

graphs, as explained below. Let us consider that an RDF

graph is represented as a couple (V, E), where V is the set of

vertices and VE  x V is the set of edges. For a vertex x,

we note )(xE { Vy | Eyx ),(} the set of its

successor vertices. This corresponds to the classical data

structure for representing graphs in memory, consisting of

an array indexed by the vertices and containing in each entry

the list of successor vertices of the corresponding vertex.

There are several algorithms to traverse a large graph, of

these basic algorithms include the best known, depth-first

search (DFS) and breadth-first search (BFS). We use depth-

first search algorithm, illustrated below to explore graph,

knowing that the breadth-first algorithm also works in this

context. We considered here an iterative variant of DFS

which makes use of an explicit stack, rather than the

recursive variant given in [22]; this is required in practice to

avoid overflows of the system call stack when the algorithm

is invoked for exploring large graphs.

Algorithm: procedure Dfs (x):

begin

 visited(x) := true;
 // vertex x becomes visited

 p(x) := 0; // start exploring its successors

 stack := push(x, nil);

 while stack ≠ nil do

y := top(stack);

if p(y) < |E (y)| then
 // y has some unexplored successors

 z := E (y))(yp ;

 p(y) := p(y)+1;
 // take the next successor of y

 if visited (z) then

 visited(z) := true; // visit it

 p(z) := 0;//start exploring its successors

Tool verification

Model-checker

(NµSMV or SPIN)

M‟: simplified model

of semantic graph

M: semantic graph
(RDF)

Temporal logic

description of
Semantic graph

M‟ satisfies the
temporal logic

M‟ not satisfies +
counter example

RDF2NµSMV

or RDF2SPIN

First phase

Second

phase

Natural language
description of

Semantic graph

 stack := push(z, stack)

 endif

 else //all successors of y were explored

 stack := pop(stack)

 endif

 end

end

C. Determining a Root Vertex

If the RDF graph has no vertex root, we must create a

root as to be the successors of all vertices of the graph but it

will increase the number of edges. We look forward to doing

this by adding a few edges as possible. A vertex x of a

directed graph is a partial root if it cannot be reached from

any other vertex of the graph. If the graph contains only one

partial root, all other vertices of the graph can be reached

from the root, otherwise there would be other roots in the

partial graph. If the graph has multiple partial roots, the most

economical way to provide a root is to create a new record

with all the roots as a partial successor: this will add to the

graph a minimum number of edges. We compute the set of

partial roots in two phases, each one consisting in successive

explorations of the graph. The first phase identifies a set of

candidate partial roots, and the second one refines this set in

order to determine the partial roots of the graph.

Remark: a property must always have a resource and a

value; the resource should never be a value with the same

predicate, i.e. a loop in the graph.

Algorithm: procedure RootElection(): //

precondition:  x  V.visited(x) = false

Begin // first phase

 root_list := nil;

 forall x  V do
 if visited(x) then

 Dfs(x);

 root_list := cons(x, root_list)

 endif

 endfor;
//second phase

 if |root_list|= 1 then

 root := head(root_list)
 // the single partial root is the global root

 else

 forall x  V do visited(x):= false;

 endfor;

 forall x  root_list do
 // reexplore partial roots in reverse order

 if visited(x) then Dfs(x)

 else

 root_list := root_list \ {x}
 // partial root is not a real one

 endif

 endfor;

 if |root_list| = 1 then

 root := head(root_list)
 // a single partial root is the global root

 else

 root := new_node();
 // new root predecessor of the partial roots

 E(root) := root_list

 endif

 endif

The first phase explores the graph until it is fully

explored, and inserts in root_list all vertices that have no

predecessor. If root_list contains a single vertex, so overall it

is the global root of the graph since all the other vertex are

accessible from it and it is useless to the second phase has

passed. Otherwise, any vertex contained in root_list could

also be a root of the graph: the role of the second phase is to

determine which of the partial root the root of the global

graph is.

The second phase performs a new wave of exploration of

the roots contained in partial root_list in reverse order in

which they were inserted in the list. If a root in root_list is to

be visited by a partial root, it is removed from the list

because it is not a partial root. At the end of this phase, all

partial roots of the graph are present in root_list. Indeed,

each vertex is unreachable from the partial roots which were

explored during the second phase. A new root is created (see

Fig. 3), having as successor all the partial roots of root_list,

which ensures that all vertices of the graph are accessible

from the new root. Therefore, such a summit is inaccessible

from other nodes of the graph.

A

B

C R

A

B

C

Figure 3. A root is a single node that has no predecessor. In this graph, we

have node A and node B, two roots, and then we will create a new virtual
root (blue circle "R") that points to the two roots.

The algorithm for determining a root has a complexity

O(|V|+|E|), linear in the size of the graph (number of vertices

and edges), since each phase visits every state and traverses

every edge of the graph only once. Given that the graph

must be traversed entirely in order to determine whether it

has a root or not, this complexity is optimal.

D. Generating the model

The third step is divided into three sub-steps. The first

one consists in creating the table of all triples by exploring

the entire graph; the second one consists in generating the

table of resources and values for RDF2SPIN but for

RDF2NµSMV, it generates the table of association. The last

one consists in producing the model representing the

semantic graph written in PROMELA or in NµSMV

language.

Table of triples - We will create a table consisting in

resources, properties and values, by exploring the RDF

graph. In our RDF graph, the resource and the value are

represented by nodes and the property is an edge directed

from the resource towards the value. The table of triples of

the RDF graph is useful for the next sub-step.

In this second sub-step, RDF2SPIN generates a table of

resources and values, while RDF2NµSMV generates a table

of association.

• Table of resources and values - Browsing the table

triples seen in the previous step, we attribute a unique

function for each resource and for each value. These

functions are of proctype type. We combine all these

functions in a table called table of resources and values.

• Table of association – This table contains an

identifier for each resource, property and value.

The model - In this last sub-step, we will write the model

in PROMELA language for RDF2SPIN tool or in NµSMV

language for RDF2NµSMV tool, corresponding to the RDF

graph that we want to check.

IV. EXAMPLE AND BENCHMARK

To illustrate our approach, we take the natural language

description in [23] as follows:

Ninety-three is a novel by Victor Hugo published in 1874,

whose theme is the French Revolution. Victor Hugo was

born in February 26, 1802 in Besançon.

From the description above, we can easily extract simple

propositions, see Table 1 described below, and also the

proposal described in temporal logic a little lower. Table 2

presents the RDF triples derived from the Table 1.

TABLE 1. SHORT LIST OF SIMPLE PROPOSITION

1 “Ninety-three is a novel”

2 “Ninety-three its author is Victor Hugo”

3 “Ninety-three has been published in 1874”

4 “Ninety-three‟s theme is the French revolution”

5 “Victor Hugo was born in February 26, 1802”

6 “Victor Hugo was born in Besançon”

TABLE 2. CORRESPONDING RDF TRIPLES

 Subject Predicate Object

1 Ninety-three is Novel

2 Ninety-three author Victor Hugo

3 Ninety-three Published 1874

4 Ninety-three theme French revolution

5 Victor Hugo Date_born February 26, 1802

6 Victor Hugo Place_born Besançon

From the previous description in natural language, we can

express it in temporal logic as shown in Table 3. These

temporal logics are expressed in a general way, but they can

be expressed as well in both linear time logic and

computation tree logic.

TABLE 3. EXAMPLE OF TEMPORAL LOGIC REPRESENTATION

 Temporal logic Explanation

1 Always (Ninety-three  next

novel)

We check that ninety

three is a novel

2 Always (Ninety-three  next

Victor Hugo)

We check that ninety

three is written by

Victor Hugo

3 Always (Ninety-three  next

1874)

We check that ninety

three is published in

1874

4 Always (Ninety-three  next

French revolution)

We check that ninety

three‟ them is the

French revolution

5 Always (Victor Hugo  next

26 February 1802)

We check that Victor

Hugo was born in 26

February 1802

6 Always (Victor Hugo  next

Besançon)

We check that Victor

Hugo was born in

Besançon

Figure 4. RDF graph.

Now, we will be able to transform the RDF graph in Fig.

4 with our tools "RDF2SPIN" and RDF2NμSMV" into a

model in order to check each formula of temporal logic

described in Table 3 and see if each formula is verified or

not in the model with the SPIN and NµSMV model-

checkers. In this way we can verify the semantic graphs.

Figure 5. Time of conversion of Semantic graphs.

Figure 6. Size of the models.

We tested our tools on several RDF graphs, and we

calculated the time of conversion as shown in Fig 5. Note

that RDF2SPIN tool is faster in converting semantic graphs

than the RDF2NµSMV tool. Both tools are quick in

converting semantic graphs; we have less than 15 seconds

for a graph of 53 MB size with RDF2SPIN tool and almost

21 seconds with RDF2NµSMV tool. Both transformation

tools follow a polynomial curve. In Fig. 6, we see the size of

converted semantic graphs from RDF to PROMELA

language with RDF2SPIN and NµSMV language with

RDF2NµSMV. We remark that the sizes of PROMELA

model are smaller than the NµSMV model.

Victor Hugo

Besançon

Ninety-three

1874

Novel

February 26, 1802

French revolution

is

Published

Theme

Author

Date born

Place born

V. CONCLUSION

This paper presents a new technique for the semantic

graphs verification by using a model-checker. Knowing that

the model-checker does not understand the semantic graphs,

we developed two tools RDF2SPIN and RDF2NµSMV to

convert them into PROMELA and NµSMV languages in

order to be verified with the temporal logics. There are

formulas that can be presented in LTL and not in CTL and

vice versa. The advantage of NµSMV is that the verification

can be made with both linear time logic and computation

tree logic formulas.

In future work, we would like to convert the SPARQL

query language for RDF graphs into queries using the

operator of the temporal logic, to have a better verification

of RDF graphs representing the building industry.

REFERENCE

[1] T. Bray, J. Paoli, C. Sperberg-McQueen. M., Maler, E., Yergeau, F.,
Cowan, J.: Extensible Markup Language (XML) 1.1 (second edition)
W3C recommendation. (2006)

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American. pp. 34–43. (2001)

[3] J. Kahan, M. Koivunen, E. Prud'Hommeaux, R. R. Swick. Annotea:
An Open RDF Infrastructure for Shared Web Annotations, in Proc. of
the WWW 10th International Conference, Hong Kong. (2001)

[4] J. P. Katoen: The princiapl of Model Checking. University of Twente.
(2002)

[5] K. Homma, K. Takahashi, A. Togashi. Modeling and Verification of
Web Applications Using Formal Approach. IEICE Tech. Rep., vol.
109, no. 40, SS2009-8, pp. 43-48. (2009)

[6] R. Mateescu, S. Meriot, S. Rampacek. Extending SPARQL with
Temporal logic. Technical report. (2009)

[7] E. D. Sciascio, M. F. Donini, M. Mongiello and G. Piscitelli, “Web
Applications Design and Maintenance using Symbolic Model
Checking,”in Proc. Seventh European Conference on Software
Maintenance and Reengineering (CSMR ‟03), pp. 63-72. (2003)

[8] E. D. Sciascio, M. F. Donini, M. Mongiello and G. Piscitelli,
“AnWeb: a System for Automatic Support to Web Application
Verification,” in Proc. International Conference on Software
Engineering and Knowledge Engineering (SEKE ‟02), pp. 609-616.
(2002)

[9] F. Ricca and P. Tonella, “Analysis and Testing of Web Applications,
” in Proc. International Conference on Software Engineering
(ICSE2001), pp. 25-34. (2001)

[10] F. Ricca and P. Tonella, “Web Site Analysis: Structure and Evolution,
” in Proc. International Conference on Software Maintenance
(ICSM2000), pp. 76-86. (2000)

[11] M. Han and C. Hofmeister, “Modeling and Verification of Adaptive
Navigation in Web Applications, ” in Proc. International Conference
on Web Engineering (ICWE‟06), pp. 329-336. (2006)

[12] M. Haydar, S. Boroday, A. Petrenko and H. Sahraoui, “Properties and
Scopes in Web Model Checking,” in Proc. IEEE/ACM International
Conference on Automated Software Engineering (ASE ‟05), pp. 400-
404. (2005)

[13] S. Yuen, K. Kato, D. Kato,and K. Agusa, “Web Automa A Behavioral
Model of Web applications based on the MVC model, ” Computer
Software, vol. 22, no. 2, pp. 44-57. (2005)

[14] M. Haydar, A. Petrenko, and H. Sahraoui, “Formal Verification of
Web Applications Modeled by Communicating Automata, ” in Proc.
International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE2004), LNCS 3235, pp. 115-132. (2004)

[15] J. P. Katoen. The principal of Model Checking. University of Twente.
(2002)

[16] A. Pnueli. The temporal logic of programs. In proc. 18th IEEE Symp.
Foundations of Computer Science (FOCS‟77), Providence, RI, USA.
pages 46-57. (1977)

[17] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NµSMV: a new
symbolic model checker. (2000)

[18] M. Ben-Ari. Principles of the SPIN Model Checker. Springer. ISBN:
978-1-84628-769-5. (2008)

[19] D. Becket, B. McBride: RDF/ XML Syntax Specification (Revised).
W3C recommendation. (2004)

[20] T. Berners-Lee. W3C recommandation. (2007)

[21] V. Bönström, A. Hinze, H. Schweppe: Storing RDF as a graph. Latin
American WWW conference, Santiago, Chile. (2003)

[22] R. E. Tarjan: Depth-First search and linear graph algorithm. SIAM
Journal of Computing 1, 2, 146-160. (1972).

[23] B. Vatant. Metadata to describe resources (Semantic Web
Languages). In Proceedings of the INRA Seminar : Metadata: changes
and prospects. (2008)

