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Abstract—The dimensionality reduction of spectral images for
visualization has been a quite active area of research recently.
Given the variety of existing approaches, it can be very chal-
lenging to understand the actual advantages of one over another,
especially in the absence of a very specific application. Moreover,
there is no consensus on how to evaluate the general efficiency
of such a method. In this paper, we propose a comparison
framework not only to compare such techniques, but also to
measure their intrinsic properties in terms of naturalness and
informative content.

I. INTRODUCTION

Dimensionality reduction aims at reducing the number of
spectral channels in an image. There are several motivation
behind this. First, high-dimensional spaces are known to
spawn rather particular properties [1] such as the decreas-
ing meaningfulness of the euclidean distance, which can be
problematic in many classification-related applications. Com-
putational burden is another problem that is involved. Indeed,
high spectral resolution often yields a large amount of data and
therefore relatively large files. It can thus be seen as a means
for compression. Sampling the spectrum with high precision
also results in potential redundancy between “neighboring”
channels (that is, with small wavelength step between them).
This unnecessary information, as well as any kind of noise
can be handled by dimensionality reduction. Last but not
least, when it comes to display a spectral image, one does
not have many options. If we set aside the not-so-common
spectral display technologies, most of today’s visualization
devices are based on the paradigm that a combination of three
primary colors (generally red, green and blue) is sufficient for
the human eye to characterize any color [2]. Hence the need to
extract only three channels from the high-dimensional images.
Generally speaking and without a very specific application, the
resulting composite must convey as much information from
the initial data as possible, while being relatively appealing to
ease viewing and/or interpretation.

Dimensionality reduction methods can be roughly cate-
gorized into two categories, which, although one being an
extension of the other, are based on two very different philoso-
phies. Band transformation consists in linearly or nonlinearly
combining spectral bands while band selection constraint the
resulting composite to be a subset of the initial image. The
latter technique somehow allows for a better interpretation of
the dimensionality reduction by keeping the relation between
one channel and its range of wavelengths intact.

The remaining of this paper is as follow: first, we review
the state-of-the art methods for dimensionality reduction of
spectral images. Secondly, we describe more explicitly 6 of
them that we aim at comparing. Evaluation metrics are then
presented as well as the data used in this study. Finally, results
are presented and discussed before conclusion.

II. A STATE OF THE ART IN DIMENSIONALITY REDUCTION
FOR SPECTRAL IMAGES

Tri-stimulus representation of multi/hyperspectral images
for visualization is an active field of research that has been
thoroughly investigated over the past decades. One of the
most common approaches is probably the one referred to as
“true color”. It can basically be achieved in two different
ways: one consists of selecting the bands at 700.0nm, 546.1nm
and 435.8nm (or the closest) and mapping them to the three
primaries: R,G and B, respectively. The other one uses the
CMF-based band transformation [3] (each primary R,G and B
is the result of a linear combination of spectral channels in
the visible range of wavelengths). Even though it generally
yields a natural visual rendering, this approach does not take
the data itself into account at all, and thus noise, redundancy,
etc. are not accurately handled.

Another very common approach for dimensionality reduc-
tion is Principal Components Analysis (PCA), which has been
extensively used for visualization purposes. Tyo et al. [4],
investigated PCA for N-to-3 dimensionality reduction into the
HSV color space. An automatic method to find the origin of
the HSV cone is also proposed in order to enhance the final
color representation. Later, Tsagaris et al. [5] proposed to
use the fact that the red, green and blue channels, as they are
interpreted by the human eye, contain some correlation, which
is in contradiction to the underlying decorrelation engendered
by PCA. For that reason, the authors proposed a constrained
PCA-based technique in which the eigendecomposition of the
correlation matrix is forced with non-zero elements in its
non-diagonal elements. Several other PCA-based visualization
techniques can be found in the literature [6], [7], [8].

In order to alleviate the computational burden of the tra-
ditional PCA, Jia et al. [9] proposed a correlation-based
spectrum segmentation technique so that principal components
are extracted from different segments and then used for visu-
alization. Other segmented PCA approaches are investigated
in [10] including equal subgroups, maximum energy and
spectral-signature-based partitioning.



In [11], Du et al. compared seven feature extraction
techniques in terms of class separability, including PCA,
Independent Components Analysis (ICA) and Linear Discrim-
inant Analysis (LDA). ICA has also been studied by Zhu
et al. [12] for spectral image visualization. They used
several spectrum segmentation techniques (equal subgroups,
correlation coefficients and RGB-based) to extract the first IC
in each segment. The use of different color spaces for mapping
of the PCs or ICs has been investigated by Zhang et al. [13].

In [14], [15], Jacobson et al. presented a band trans-
formation method allowing the CMF to be extended to the
whole image spectrum, and not only to the visible part. They
proposed a series of criteria to assess the quality of a spectral
image visualization. Later, Cui et al. [16] proposed to derive
the dimensionality reduction problem into a simple convex
optimization problem. In their paper, class separability is
considered and manipulations on the HSV cone allow for
color adjustments on the visualization. More recently, we have
proposed a method based on class-separability in the CIELAB
space for improved spectral image visualization [17].

All the previously presented approaches are band trans-
formation techniques inasmuch as they produce combinations
of the original spectral channels to create an enhanced rep-
resentative triplet. As stated earlier, the often mentioned
drawback of this kind of approach is the loss of physical
meaning attached to a channel. That is, if, initially, a spectral
band is implicitly linked to a range of wavelengths, what can
we tell about a combination of them ? A particular case
of band transformation is called band selection and consists
of linearly combining the channels while constraining the
weighting coefficients in the duet {0,1}. In other words, the
resulting triplet is a subset of the original dataset. By doing
this, one preserves the underlying physical meaning of the
spectral channels, thus allowing for an easier interpretation by
the human end user.

In [18], Bajcsy investigated several supervised and unsuper-
vised criteria for band selection, including entropy, spectral
derivatives, contrast, etc. Many signal processing techniques
have been applied to band selection: Constrained Energy Min-
imization (CEM) and Linear Constrained Minimum Variance
(LCMYV) [19], Orthogonal Subspace Projection (OSP) [20],
[21] or the One-Bit Transform (1BT) [22]. Also information
measures based on Shannon’s theory of communication [23]
have been proven to be very powerful in the identification of
redundancy in high-dimensional datasets. Mutual information
was first used for band selection by Conese et al. [24]. In
[25] and [26], two metrics based on mutual information are
introduced in the context of image fusion evaluation. They
measure how much information is shared by the original and
the reduced datasets. In [27], mutual information is used to
measure the similarity of each band with an estimated ground
truth. Hence, irrelevant bands for classification purpose are
removed. In [28], a normalized mutual information measures
is used for hierarchical spectrum segmentation.

III. BENCHMARKING METHODS

We have selected 8 methods to compare, 5 are based on
band transformation and 3 on band selection. Although not

all of them are specifically dedicated to visualization, we have
applied them in this context:

e CMF-based True Color (TCCMF). The Color Matching
Functions model the tri-stimulus human perception of
colors. They are applied as weighing functions over the
spectrum to linearly combine channels.

e BS-based True Color (TCBS). Another method which
is referred to as true color, but this time it is based
on a selection of three channels at specific wavelengths
roughly corresponding to the respective centers of the red,
green and blue ranges.

e PCAj,. Principal Components Analysis (PCA) is one of
the most used approaches for dimensionality reduction. It
is also known as Principal Components Transform (PCT)
or Karhunen-Lo¢ve Transform (KLT). It is based on a
eigendecomposition of the correlation matrix of the data.
For the readers who are unfamiliar with this technique,
we suggest the very good tutorial by Smith [29]. We have
used the following mapping to the HSV colorspace(PC;
being the i-th principal component): PCy; — V, PCy —
H, P 03 — S.

e PCA,,. We have used the following mapping to the
CIELAB colorspace: PCy — L, PCy — a, PC5 — b.

o sPCA. Segmented PCA, as first suggested by Jia et al.
[9]. RGB-based segmentation has been used, then PCA
has been applied in each of the 3 resulting segments,
allowing for the creation of an RGB composite (of course,
the extracted PCs have been ranked by descending wave-
length of their corresponding segments before mapping
to RGB).

e ICA;,, (Independent Components Analysis). We have
applied the FastICA [30] algorithm to the spectral images
and sorted them by decreasing entropy before mapping
to the HSV colorspace.

e LP-based band selection (LPBS) [21] performs Linear
Projections to measure dissimilarity between spectral
channels. A progressive algorithm allows to avoid an ex-
haustive search over all the possible band combinations.

e 1BT-based band selection (1IBTBS) [22] makes use of
the One-Bit-Transform, which can be seen as a measure
of the edge density of an image. The technique proposed
by Demir et al. aims at being implemented in an embed-
ded system and is therefore focused on computational
efficiency. It involves a preprocessing step aiming at
coarsely removing correlated channels.

Note that for both the True Color techniques, the reflectance
data has been converted into radiance by multiplying the
spectral data by the D65 illuminant.

IV. METRICS

In order to compare the benchmarking methods, we propose
to study their properties in terms of both perceptual appealing
(naturalness) and informative content. At this aim, we propose
to use the following metrics:

o Similarity with the True Color composite (TCCMF). The
latter is used as a ground truth for naturalness. We used
the mutual information computed independently over the



three components of the CIELAB color space and then
fused as follows: NR = M, + MadMh with M1,
being the mutual information in the L dimension and NR
standing for Natural Rendering.

o Preservation of saliency. In [31], we have introduced a
metric referred to as Saliency Discrepancy (SD) which
allows to assess how much saliency is conveyed by the
dimensionality reduction process. It uses the normalized
Mutual Information between the saliency maps in the
original high-dimensional image and from the corre-
sponding color composite.

o Preservation of Classification Performances (PCP). We
have used the K-means classifier in both the original and
the reduced spaces and computed their discrepancy in
percentage. The same starting point has been used to
initialize both classifications to allow comparison.

V. RESULTS
A. Datasets

In this study, we have used the 8 images from the online
database available at [32] and used in [33]. Images contain
31 spectral channels covering the visible range of wavelengths
(400-720nm). For more information about the acquisition sys-
tem, calibration and processings, please refer to the database
webpage.

B. Pre-processing and normalization

In the raw reflectance data R, all pixels above a thresh-
old w = R + 3 * std(R) has been clipped to w, to remove
the influence of outliers and noisy pixels. The result has been
divided by its maximal value so that it fits in the range [0..1].

C. Results

Table I gives, for each aforementioned metrics and di-
mensionality reduction techniques, the average and standard
deviation values over the database. Figure 1 depicts the
resulting composites obtained for 4 images from the database.

NR SD PCP
mean std mean std mean std
TCCMF / / 3.0011 0.1663 | 84.91% | 10.59%
TCBS 0.4670 | 0.0621 4.5749 2.0093 | 80.22% | 12.27%
PCAjs, | 0.3936 | 0.0691 3.9868 0.4381 | 78.70% 7.83%
PCA;.p, | 0.4181 | 0.0394 6.3068 3.2765 | 82.19% 9.04%
sPCA 0.5608 | 0.0407 2.9893 0.3452 | 88.43% | 13.14%
ICAps, | 03442 | 0.0518 | 11.5661 | 8.4652 | 74.15% | 11.56%
LPBS 0.3651 | 0.0512 | 4.8280 2.3273 | 80.27% | 10.41%
1BTBS 0.3560 | 0.1375 4.5175 22140 | 74.93% | 15.39%
Table I
RESULTS

In terms of naturalness, the worst results are achieved by
ICAj;,. This is due to the simplicity of the normalization
process used to convert ICs to reflectance data (that is, fitting
in the range [0..1]). Indeed, the ICA transformation matrix
can drastically change the range of the initial pixels values
and even produce negative values, hence the need to map them
back to the initial range. By doing so, one must particularly

take care of hue shifts which can indeed decrease naturalness.
The same remark applies on PCA-based transformations [4].

Surprisingly, it is not the TCBS method that gives the best
NR rates (even though it ranks second), but the segmented
PCA approach. Indeed, the spectrum segmentation allows for
a local analysis over the spectral dimension and is hence better
suited for energy-based dimensionality reduction techniques
such as PCA. By seeking the maximum energy independently
in the Red, Green and Blue ranges of wavelengths, one then
obtains better naturalness than with a global approach.

If we now look at the saliency discrepancies, we observe
a certain correlation with NR. Indeed, SPCA and TCCMF,
which obtain the best NR rates also outperform the other
benchmarking techniques in terms of preservation of saliency.
On the other hand, ICA;,5, once again gives the worst results.
However, we believe that this observation is due to the fact
that, by stretching the hue as in ICA or PCA-based approaches,
one drastically modifies the visual attention properties of the
composite, resulting in high saliency discrepancies.

Finally, in terms of PCP, once again naturalness influences
the results. The segmented PCA achieves the best result
(88.43%). Even though the ICA-based approach allows for
maximizing the informative content of the resulting composite,
the colorspace transformation applied (HSV to RGB) affects
this property, hence a bad result (74.15%).
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VII. CONCLUSIONS

We have presented a general comparison of several state-
of-the-art dimensionality reduction techniques for the visual-
ization of spectral images. Both appealing and informative
content have been objectively measured via five different
metrics. Results show that naturalness is a prevalent feature
that allows to better the visual informative content of a given
composite. Moreover, among the 8 dimensionality reduction
techniques applied on the database, we came to the conclusion
that the segmented PCA outperforms the others in terms of
each metric. However, the variety of normalization processes
which are specific to each technique makes it quite challenging
to maintain the comparison on a generic level. Further
investigation will focus on the influence of normalization as
well as other kind of data to be able to draw more general
conclusions.
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