
HAL Id: hal-00639255
https://u-bourgogne.hal.science/hal-00639255

Submitted on 8 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping SPARQL Query to temporal logic query based
on NµSMV Model Checker to Query Semantic Graphs

Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle

To cite this version:
Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle. Mapping SPARQL Query to temporal logic
query based on NµSMV Model Checker to Query Semantic Graphs. International journal of digital
information and wireless communications (IJDIWC), 2012, 1 (2), pp.366-380. �hal-00639255�

https://u-bourgogne.hal.science/hal-00639255
https://hal.archives-ouvertes.fr

 1

Mapping SPARQL Query to temporal logic query based on NµSMV

Model Checker to Query Semantic Graphs

Mahdi Gueffaz
1
, Sylvain Rampacek

1
, Christophe Nicolle

1
,

1 LE2I, UMR CNRS 5158

University of Bourgogne,

21000 Dijon, France

{Mahdi.Gueffaz, Sylvain.Rampacek, Christophe.Nicolle}@u-bourgogne.fr

ABSTRACT

The RDF (W3C standard for meta-

modeling) language is the most frequently

used to represent the semantic graphs. This

paper presents a new research combining

different fields that are: the semantic web

and the model checking. We developed a

tool, RDF2NµSMV, which converts RDF

graphs into NµSMV language. This

conversion aims checking the semantic

graphs that have numerous errors of

interpretation with the model checker

NµSMV in order to verify the consistency of

the data. The SPARQL query language is

the standard for querying the semantic graph

but have a lot of limitations. To this

purpose, we define a translation from the

SPARQL query language into the temporal

logic query language. This language is a

graph manipulation language implemented

in our toolbox. This translation makes it

possible to extend the expressive power of

SPARQL naturally by adding temporal logic

formulas characterizing sequences, trees, or

general sub-graphs of the RDF graph. Our

approach exhibits a performance comparable

to dedicated SPARQL query evaluation

engines, as illustrated by experiments on

large RDF graphs. We developed the STL

Resolver tool to resolve the temporal logic

query. This tool is based on the model

checker NµSMV algorithms.

KEYWORDS

Semantic graph, RDF, Model Checking,

Temporal logic, NµSMV, Query checking,

SPARQL, temporal logic query.

1 INTRODUCTION

The increasing development of networks

and especially the internet has greatly

developed the heterogeneous gap

between information systems. In

glancing over the studies about

interoperability of disparate information

systems, we discover that all works tend

to the resolution of semantic

heterogeneity problems. The W3C1

suggests norms to represent the semantic

by ontology. Ontology is becoming an

inescapable support for information

system's interoperability and particularly

in the Semantic. Literature now

generally agrees on the Gruber’s terms

to define an ontology: explicit

specification of a shared

conceptualization of a domain [1]. The

physical structure of ontology is a

combination of concepts, properties and

relationships. This combination is also

called a semantic graph.

Several languages have been

developed in the context of Semantic

Web, and most of these languages use

1 World Wide Web Consortium

 2

XML2 as syntax [2]. The OWL3 [3] and

RDF4 [4] are the most important

languages of the semantic web, they are

based on XML. OWL allows

representing the ontology, and it offers

large-capacity machines performing

web content. RDF enhances the ease of

automatic processing of Web resources.

The RDF (Resource Description

Framework) is the first W3C standard

for enriching resources on the web with

detailed descriptions. The descriptions

may be characteristics of resources, such

as author or content of a website. These

descriptions are metadata. Enriching the

Web with metadata allows the

development of so-called Semantic Web

[5]. The RDF is also used to represent a

semantic graph corresponding to a

specific knowledge modeling. In this

paper, we propose a new way using

formal verification, which consists in the

transformation of semantic graphs into a

model and verifying them with a Model

Checker [6].

We developed two tools. The first one

called “RDF2NµSMV” that transforms

semantic graphs into a model

represented in NµSMV [7] language.

After this transformation, NµSMV

verifies the correctness of the model

written in NµSMV language with

temporal logic in order to verify the

consistency of the data described in the

model of the huge semantic graphs. The

second tool, called “STL RESOLVOR”,

aims resolving the queries destined to

the model of the semantic graph. This

query was introduced the first time by

William Chan in his innovative work

[8]. These requests are not used to verify

the model representing the RDF graph,

but rather to recognize it.

2 eXtensible Markup Language
3 Web Ontology Language
4 Resource Description Framework

Our primary goal in this paper is to

define a powerful and expressive query

language for semantic graphs and to

align with SPARQL [9], in order to

improve the interoperability of

applications on the Semantic Web. The

other rather competing goal is to keep

the query language simple enough that it

can be easily built. To satisfy these

requirements, we define a new query

language that uses the operators of the

temporal logic.

The rest of this paper is organized as

follows. In Section 2 we present an

overview of the semantic graphs,

especially the structure of the RDF

graphs and the model checking. Then, in

section 3, we describe the SPARQL

query. Section 4 presents, the temporal

logic and the query checking. Section 5

refers to the mapping of the semantic

graphs into models, section 6 to the

transformation of SPARQL query to

temporal logic query. Section 7 defines

the functionalities of the STL Resolver

tool, and we present some benchmarks

in section 9. Finally, we end with a

conclusion.

2 AN OVERVIEW OF SEMANTIC

GRAPHS AND MODEL CHECKING

Semantic graphs - The RDF is also

used to represent semantic graphs

corresponding to a specific knowledge

modeling. It is a language developed by

the W3C to bring a semantic layer to the

Web [10]. It allows the connection of the

Web resources using directed labeled

edges. The structure of the RDF

documents is a complex directed labeled

graph. An RDF document is a set of

triples <subject, predicate, object> as

shown in the Figure1. In addition, the

predicate (also called property) connects

the subject (resource) to the object

 3

(value). Thus, the subject and the object

are nodes of the graph connected by an

edge directed from the subject towards

the object. The nodes and the edges

belong to the “resource” types. A

resource is identified by an URI5 [11,

12].

Ressource Property Value

Figure 1. RDF triplet.

The declarations can also be

represented as a graph, the nodes as

resources and values, and the arcs as

properties. The resources are represented

in the graph by circles; the properties are

represented by directed arcs and the

values by a box (a rectangle). Values can

be resources if they are described by

additional properties. For example, when

a value is a resource in another triplet,

the value is represented by a circle.

Figure 2. Example of partial RDF graph.

The RDF graph in the Figure 2 defines

a node “University of Bourgogne”

located at “Dijon”, having as country

“France” and as a department named

“Cote d’Or”. RDF documents can be

written in various syntaxes, e.g., N3

[13], N-Triple [14], and RDF/XML.

Below, we present the RDF\XML

document corresponding to Figure 2.

5 Uniform Resource Identifier

<rdf:Description

rdf:about="http://example.org/univer

sity of Bourgogne">

<ex:Location>

<rdf:Description

rdf:about="http://example.org/Dijon"

>

<ex:Country>

France</ex:Country>

<ex:Department>Cote

d'or</ex:Department>

</rdf:Description>

 </ex:Location>

</rdf:Description>

Model checking - The model checking

[15] described in Figure 3 is a

verification technique that explores all

possible system states in a brute-force

manner. Similar to a computer chess

program that checks all possible moves,

a model checker, the software tool that

performs the model checking, examines

all possible system scenarios in an

organized manner. In this way, it can be

shown that a given system model truly

satisfies a certain property. Even the

subtle errors that remain undiscovered

using emulation, testing and simulation

can potentially be revealed using model

checking.

To make a rigorous verification

possible, properties should be described

in a precise unambiguous way. It is the

temporal logic that is used in order to

express these properties. The temporal

logic is a form of modal logic that is

appropriate to specify relevant properties

of the systems. It is basically an

extension of traditional propositional

logic with operators that refer to the

behavior of systems over time.

http://example.org/University_of_Bourgogne

http://example.org/Dijon

http://example.org/Cote_d’or

http://example.org/France

http://example.org/Location

http://example.org/Country

http://example.org/Department

http://example.org/University_of_Bourgogne
http://example.org/Dijon
http://example.org/Cote_d'or
http://example.org/France

 4

Figure 3. Model Checking approach.

The following algorithm explains the

way that the model checking works.

First, we put in the stack all the

properties expressed in the temporal

logic. All of them are verified one by

one in the model and if a property does

not satisfy the model, it is whether the

model or the property that we must

refine. In case of a memory overflow,

the model must be reduced. Whereas

formal verification techniques such as

simulation and model checking are

based on model description from which

all possible system states can be

generated, the test, that is a type of

verification technique, is unvarying

applicable in cases where it is hard or

even impossible to obtain a system

model.

3 THE SPARQL QUERY

SPARQL [9] is a query language for

querying metadata and extraction data

from an RDF graph or, more precisely a

query language for RDF triples.

In SPARQL, different query forms are

available:

 Select: return the value of

variables, which may be bound

by a matching query pattern.

 Ask: return true if a given

query match and false if not.

 Construct: return an RDF

graph by substituting the

values in given templates.

 Describe: return an RDF graph

which defines the matching

resource.

The Select form is the most used. In

this article, we showed only the

SPARQL query with the select form. A

basic SPARQL query has the following

form:

Select ?variable1, ?variable2,…

Where {pattern1.pattern2. …}

Where each pattern consists of subject,

predicate, object, and each of these is

either a variable or a literal. The query

model is query-by-example style: the

query specifies the known literals and

leaves the unknowns as variables.

Variables can occur in multiple patterns

and thus imply joins. The query

processor needs to find all possible

variable bindings that satisfy the given

patterns and return the bindings from the

projection clause to the application. Note

that not all variables are necessarily

bound (e.g., if a variable only occurs in

the projection and not in a pattern),

which results in NULL values.

Relational algebra [16] is introduced

to facilitate the mapping of SPARQL

query to the applications in temporal

logic. We define the operators in RDF

relations.

2.1 Selection

Selection)( , sometimes also called

restriction, is an unary operator that

selects only those tuples of a relation for

which a propositional formula holds.

 5

The propositions are assumed to have

the expressivity of SPARQL Filter

expressions.

2.1 Projection

The projection operator)( restricts a

relation to a subset of its attributes.

2.1 Inner Join and Left Outer Join

The inner join () joins two relations

on their shared attributes. A B

contains all combinations of a tuple from

A and a tuple from B, minus those where

the shared attributes are not equal.

The left outer join () additionally

contains all those tuples from the first

relation that have no matching tuple in

the second.

2.1 Union

The union)( of two relations A and B

is the set of union of the tuples of A and

B. unlike in regular relational algebra,

the headings of A and B do not need to

be identical.

4 TEMPORAL LOGIC AND THE

QUERY CHECKING

The concepts of temporal logic used for

the first time by Pnueli [17] in the

specification of formal properties are

fairly easy to use. The operators are very

close in terms of natural language. The

formalization in temporal logic is simple

enough although this apparent simplicity

therefore requires significant expertise.

Temporal logic allows representing and

reasoning about certain properties of the

system, so it is well-suited for the

systems verification. There are two main

temporal logics that are linear time and

branching time. In linear time temporal

logic, each execution of the system is

independently analyzed. In this case, a

system satisfies a formula f, if f holds

along every execution. The branching

time combines all possible executions of

the system into a single tree. Each path

in the tree is a possible representation of

the system execution [18].

 Linear Temporal Logic or LTL

allow representing the behavior of

reactive systems using properties that

describe the system in which time

proceeds linearly. Clearly, we

specify the expected behavior of a

system, by specifying the only

possible future as a sequence of

actions that follow, LTL uses for that

temporal operators: X (Next), F

(Finally), G (Always), U (Until).

 Computation Tree Logic or CTL

suggests several possible futures

from a system state rather than

having a linear view of the system

considered. The operators of CTL

are obtained by adding A (for any

execution) or E (there is an

execution) before the operators of

linear temporal logic that are: AX φ

(all successor states immediately

satisfy φ), EX φ (there is an

execution whose next state satisfies

φ), AF φ (for any execution, there is

a state where φ is true), EF φ (there

is an execution, leading to a true

state φ), AG φ (for any execution, φ

is always true), EG (there is an

execution, where φ is always true),

AφUψ (for any execution φ is true

until ψ is true), EφUψ (there is an

execution in which φ is true until ψ

is true).

The Model-Checking was proposed as a

verification technique, it is valuable for

understanding the model: The user

 6

formulates a hypothesis of the system

behavior, expressed as a formula in

temporal logic, and tries to use the

Model Checker to validate this

hypothesis. This use of the model

checking has not been sufficiently

emphasized in the literature. So, in order

to help the user to understand the system

behavior, Chan [8] introduced the

queries in temporal logic and used a

technique similar to the Model-Checking

to determine the temporal properties in

contrast to simply verifying them.

The query checking is an extension of

the Model checking who, instead of

asking “does the system satisfy a

temporal logic formula ”, allows us to

ask “for what value of X does the system

satisfy)(X ?” Here, X is not a system

parameter, but a property setting, that we

seek to satisfy. These queries do not

allow the verification of a specific

property of the model, but they allow the

examination of the model by questioning

it. The technique of query-checking can

also be used to provide more information

to the user in the Model Checking.

The query checking allows the writing of

temporal logic formulas easily and can

therefore verify any properties on both

the data contained in the graph and the

structure of the data.

Figure 4. The query execution time.

In the graph of the Figure 4, we can see

that there are two RDF triples (B1,

name, Paul) and (B1, Phone, 111-111).

The following SPARQL query:

SELECT ?x

WHERE {

?x Name

"Paul"}

whose representation in relational

algebra is:

Triples
Paulobject

Namepredicatex 



?
?? 

looks for a subject ?x which has the

predicate "Name" and an object "Paul"

(?x, name, Paul). The equivalent of the

previous query in query using the

temporal logic operators is:

Finally (?x  Next "Paul") (1)

This temporal logic query looks for the

same subject ?x, as defined in the

SPARQL query above.

5 THE RDF GRAPH

TRANSFORMATION

This section speaks about our approach,

which consists in the transformation of

semantic graphs into a model in order to

verify them with the model-checker. For

this, we developed "RDF2NμSMV" tool

that transforms a semantic graph into

NµSMV [7] language for the Model-

checker NµSMV.

NµSMV is the amelioration of SMV

model checker; it works on the sample

principles as SMV. NµSMV verifies the

properties in both linear time logic and

computation tree logic.

The RDF graphs considered here are

represented as XML verbose files, in

which the information is not stored

hierarchically (so-called graph point of

view). On the one hand, these RDF

graphs are not necessarily connected,

meaning they may have no root vertex

from which all the other vertices are

reachable. On the other hand, the

NµSMV language manipulated by the

B1

Paul 111-111

Name Phone

 7

verification tools of NµSMV always has

a root vertex, which corresponds to the

initial state of the system whose

behavior is represented by the NµSMV

language. The RDF graph

transformation into NµSMV language is

articulated in three steps: exploring the

RDF graph, determining a root vertex

and final step, generating the Model of

the RDF graph. This final step is divided

into three sub-steps. The first and the

second steps consist in generating two

tables (triples table and correspondence

table). Firstly, the table of all triples is

built by exploring the entire graph. The

graph traversal algorithms go through

the RDF graph and create a table

consisting of resources, properties and

values. In the source RDF graph, the

resource is a vertex. The property

represents the edge, and the value is the

successor vertex corresponding to the

edge of the vertex. The table of triples of

RDF graph is useful for the next sub-

step.

Secondly, a correspondence table is

generated. To build the table of

correspondence, the algorithm associates

an identifier for each resource, property

and value.

The last step consists in producing

from these tables the model writing in

NµSMV language for the Model checker

NµSMV [19]. This transformation is

very useful to qualify RDF graph that

their construction is a source of

numerous errors of interpretation [20].

Example of Transformation.

Consider the graph RDF of the figure

below that represent a. From this graph,

we generate a table of triplets. This table

is composed of RDF triples i.e.

"resource - property - value".

Figure 5. RDF graph

Table 1

Resource Property Value

ISBN2253160784 Name Ninety three

ISBN2253160784 Published 1874

ISBN2253160784 Is Novel

ISBN2253160784 Author Author1

Author1 Name Victor Hugo

Author1 Date born February 26,

1802

Author1 Place born Besançon

The next step is to generate a table of

association. This table is represented by

two tables. The table 2 contains all the

state of the RDF graph and its messages.

The table 3 gives for each state and

message the next state. In our example,

the tables are represented in the tables

below. We notice that the names of the

states are changed comparing with the

RDF graph. All the black space is

replaced by the symbol “_”.

Table 2

State Message

ISBN2253160784 Name, Published, Is,

Author

Author1 Name, Date_born,

Place_born

Ninty_three Nil

1874 Nil

Novel Nil

Victor Hugo Nil

February_26_1802 Nil

Besançon Nil

Author1

Besançon

ISBN2253160

784

1874

February 26, 1802

Ninety three

Victor Hugo

Novel

is Published
Name Author

Date born Place born Name

 8

Table 3

State Message Next state

ISBN2253160784 Name Ninty_three

ISBN2253160784 Published 1874

ISBN2253160784 Is Novel

ISBN2253160784 Author Author1

Author1 Name Victor_Hugo

Author1 Date_born February_26_

1802

Author1 Place_born Besançon

The last step of processing is the

generation of the NµSMV language that

uses the previous tables. You can see

below the representation of the RDF

graph in figure 5 written in NµSMV

language.

/* Declaration of all states and

messages that represent the node

and property of the RDF graph

*/

MODULE main

VAR

state : { ISBN2253160784,

Ninety_three, 1874, Novel,

Author1, Victor_Hugo,

February_26_1802, Besançon};

msg : {Name, published, is,

author, Date_born, Place_born};

/* Initialisation of the

variable state by the root node

of the RDF graph and the

variable message by nop

*/

INIT

state = ISBN2253160784;

INIT

msg = nop;

ASSIGN

/* For each state we give its

messages

*/

next(msg):=

case

state= ISBN2253160784 : {Name,

published, is, Author};

state= Ninety_three: nop;

state= 1874 : nop;

state= Novel : nop;

state= Author1: {Name,

Date_born, Place_born};

state= Victor_Hugo: nop;

state= February_26_1802: nop;

state= Besançon : nop;

TRUE : msg;

esac;

/* For each state and message we

give the next state

*/

next(state) :=

case

state= ISBN2253160784 & msg=Name

: Ninety_three;

state= ISBN2253160784 &

msg=published : 1874;

state= ISBN2253160784 & msg=is :

Novel;

state= ISBN2253160784 &

msg=Author : Author1;

state= Author1 & msg=Name :

Victor_Hugo;

state= Author1 & msg=Date_born :

February_26_1802;

state= Author1 & msg=Place_born

: Besançon;

TRUE : state;

esac;

We can use this graph represented in

NµSMV language to verify the data

consistency by using the temporal logic

formula.

Example of verification. We use

also the same RDF graph of the figure 5.

The NµSMV model checker use both

linear temporal logic and computation

tree logic (see section 4). In this example

we use only the computation tree logic.

The temporal logic formulas are

summarized in the table below.

 9

Table 4.

Temporal logic Temporal logic

NµSMV

Always

(ISBN2253160784 

next Ninety-three and

ISBN2253160784  next

Novel)

AF (state =

ISBN2253160784 

EX state= Ninety-

three & state =

ISBN2253160784 

EX state= Novel)

Always

(ISBN2253160784 

next next Victor Hugo)

AF (state=

ISBN2253160784 

EX EX state=

Victor_Hugo)

The table 4 is divided into two

columns. The first one described the

temporal logic formula, but the second

one described the formula with the

operators of the NµSMV model checker.

The first formula checks if the Ninety-

three is a Novel with the ISBN6

“ISBN2253160784” and the second

checks if the author of the ISBN

“ISBN2253160784” is “Victor Hugo”.

We put all this formula in the bottom of

the NµSMV file. The result of this

formula is presented below.

C:\Program

Files\NuSMV\2.5.2\bin>NuSMV.exe

journal.smv

*** This is NuSMV 2.5.2

(compiled on Fri Oct 29 11:33:56

UTC 2010)

*** Enabled addons are: compass

*** For more information on

NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-

users@list.fbk.eu>.

*** Please report bugs to

<nusmv-users@fbk.eu>

*** Copyright (c) 2010,

Fondazione Bruno Kessler

*** This version of NuSMV is

linked to the CUDD library

version 2.4.1

6 International Standard Book Number

*** Copyright (c) 1995-2004,

Regents of the University of

Colorado

*** This version of NuSMV is

linked to the MiniSat SAT

solver.

*** See

http://www.cs.chalmers.se/Cs/Res

earch/FormalMethods/MiniSat

*** Copyright (c) 2003-2005,

Niklas Een, Niklas Sorensson

-- specification AF (((state =

ISBN2253160784 & EX (EX state =

Ninety_three)) &

state = ISBN2253160784) & EX (EX

state = Novel)) is true

-- specification AF (state =

ISBN2253160784 & EX (EX (EX (EX

state = Victor_Hugo

)))) is true

6 SPARQL QUERY TO TEMPORAL

LOGIC QUERY

This section gives an overview of

SPARQL query transformation into

Temporal Logic query. We focus on the

SELECT form. To illustrate this section,

we use the RDF example shown in

Figure 6.

Figure 6. RDF graph for SPARQL query.

From the graph in Figure 6, we

construct SPARQL queries and their

query equivalent in temporal logic. The

SPARQL query below selects the

subject with the variable ?x which has

Paul as object.

 10

SPARQL SELECT ?x WHERE { ?x nom

“Paul”}

LT query Finally (?x  Next "Paul")

Relation

al

algebra

Triples
Paulobject

Namepredicatex 



?
?? 

The SPARQL query below selects the

subject ?x which has the variable ?y as

object, who, at its turn, has “Bob Dylan”

as object.

SPARQL SELECT ?x WHERE { ?x

composed_by ?y. ?y name “Bob

Dylan”}

LT query Finally (?x  Next Next "Bob

Dylan")

The purpose of an optional pattern is

to supplement the solution with

additional information. If the pattern

within an OPTIONAL clause matches,

the variables defined within that pattern

are bound to one or to many solutions. If

the pattern does not match, the solution

remains unchanged. The SPARQL query

represented below selects the subject ?x

that has “Paul” and/or “paul@yahoo.fr”

as object.

SPARQL SELECT ?x WHERE { ?x name

"Paul" OPTIONAL

{?x email paul@yahoo.com"}}

LT query Finally (?x  Next "Paul"
 Finally ?x 

"paul@yahoo.com")

A SPARQL FILTER function can be

added to a basic graph pattern in order to

restrict the result according to Boolean

conditions. The SPARQL query below

selects the subject ?x which has a word

that contains at least the letter P as

object.

SPARQ

L

SELECT ?x WHERE { ?x name ?y

FILTER regex (?y, "P") }

LT

query

Finally (?x  Next *P*)

Relation

al

algebra

Triples
Pyregexyobject

Namepredicatex 



),(???

?? 

The SPARQL query below selects the

subjects ?x and ?y that have “John” and

respectively “Paul” as objects.

SPARQL SELECT ?x ?y WHERE { {?x name

"John"}

 UNION

{ ?y name "Paul"}}

LT query Finally (?x  Next "John"  ?y 

Next "Paul")

The SPARQL query below selects the

objects ?x where “name” is the

predicate.

SPARQL SELECT ?x WHERE {

?y name ?x }

LT query Finally (?y  Next ?x)

where

predicate=name/ ?x

Relation

al

algebra

Triples
ysubject
Namepredicatex 




??
?? 

The SPARQL query below selects the

object ?y. This query represents a

SPARQL’s join.

SPARQL SELECT ?y WHERE { ?x name ?y. ?z

performed_by ?x.

?z composed_by ?p. ?p name "Bob

Dylan"}

LT query Finally (?z  Next Next ?y  ?z 

Next Next "Bob Dylan") where

predicate=nom/ ?y

The transformation of SPARQL

queries into queries using operators of

temporal logic was based on the

representation of SPARQL queries in the

relational algebra seen above.

The advantage of temporal logic

queries is their simplicity to write. That

means that the temporal logic is closer to

the natural language and in addition, one

mailto:paul@yahoo.fr
mailto:paul@yahoo.com

 11

of the great advantages of the temporal

logic queries is that they are more

expressive than the SPARQL queries

using the temporal logic operators. [21]

We developed a tool called

“SPARQL2LTQ” which aims to

transform SPARQL queries into queries

using operators of the temporal logic.

Figure 7. The architecture of the transformation

tool “SPARQL2RLT”.

For the development of this tool, we

use LEX & YACC to decompose the

SPARQL query in order to facilitate the

processing. LEX is used to recognize the

lexical entities and replace them with

keywords that will be recognized in the

grammar of the language defined in

YACC; then YACC will recognize and

respect the expressions and will verify if

they belong to the grammar. LEX &

YACC are two very powerful tools,

facilitating the lexical and respectively

the syntactic analysis, which represents

two stages of compilation difficult to

program.

In order to demonstrate the usefulness

of temporal logic queries, we will

illustrate an example. Here are two

tables in a relational database, table 1

and table 2.

Table 1 Table 2

Person Name

id1 Alice

id3 Christophe

id2 Bob

Name Age

Alice 33

Bob 42

Christophe 15

SELECT ?x

WHERE {

id1 ex :Name ?z

?z ex :HasAge ?x

}

The SPARQL query above seeks the

age of the person identified by id1,

corresponding to “Alice” in our case.

To answer this SPARQL query we

must first make a join between the two

previous relational database tables. A

join is used for joining two multi sets

with a constraint. In our example, the

constraint is the name, see table 3 below.

Table 3

Person Name Age

1 Alice 33

2 Bob 42

3 Christophe 15

Figure 8. The RDF graph model showing the

movement to be done to achieve results.

The equivalent of the previous

SPARQL query in a query using

operators of the temporal logic is as

follows:

Finally (id  next next ?x)

In this query, in order to retrieve the

age of the person identified by id1, one

just moves two states (two “next”

operators in our query represented by X)

in the semantic graph model to find the

result, as shown in Figure 8.

Temporal logic

query

SPARQL

query

SPARQL2TLQ

.exe

Compiler

Programme en C

Ya

cc

Le

x

y.tab.c

Lex.yy.
c

F1.

y

F2.

l

Grammar

Lexical rules

 12

For results with temporal logic query

one just moves around the graph with

the operators of temporal logic. The new

interrogation technique will allow us to

avoid scanning the graph several times

as with SPARQL queries.

7 THE STL RESOLVER

The ScaleSem toolbox contains a tool

used to resolve queries in temporal logic

that we have previously seen. This tool

is called STL RESOLVOR, it takes as

input the temporal logic query and the

NμSMV graph representing the semantic

graph.

The query checking is an extension of

the Model checking. A temporal logic

query is a formula with a missing

propositional formula, designated by a

placeholder (“?”). A solution to a

temporal logic query is the set of all

propositional formulas that satisfy the

query, in our case the formulas are the

states represented in the NµSMV graph.

Figure 9. An example of NµSMV graph.

TABLE 4

 Query Result

1 Finally (?x  X State

3)

?x ={State 1, State

2}

2 Finally (?x  X X

state 3)

?x={State 1}

The table above gives some example

of temporal logic queries and their

results.

8 BENCHMARCK

We tested several RDF graphs on our

tool “RDF2NµSMV”, using a machine

that runs on a processor with a capacity

of 2.4 GHz and 4 GB of RAM,

calculating the time of conversion as

shown in Figure 10. Note that the

RDF2NµSMV tool is faster in

converting semantic graphs. We have

almost 22 seconds for a graph of 53 MB

size. The transformation tool follows a

polynomial curve. In Figure 11, we see

the size of the converted semantic graphs

from RDF to NµSMV language.

Figure 10. Time conversion of Semantic graphs.

Figure 11. Size of the Models.

We calculate the time of

transformation of the SPRAQL query

into a query using the operators of the

temporal logic with the SPARQL2TLQ

tool. The graph of the Figure 12 shows

that for 50 000 queries, we have over

than 2 minutes and for 100 000 queries,

we have 17 minutes. This transformation

follows a polynomial curve. In Figure

13, we notice that the size of the queries

in temporal logic is smaller than the size

of the equivalent SPARQL queries.

 13

Figure 12. Time conversion of SPARQL query.

Figure 13. Comparison of size in both SPARQL

query and temporal logic query.

9 CONCLUSION

This paper presents how to transform

a semantic graph into a model for

verification by using a powerful formal

method, that is the “model checking."

Knowing that the model checker does

not understand the semantic graphs, we

developed a tool called “RDF2NµSMV”

to convert them into NµSMV graph in

order to be verified with the temporal

logics. This transformation is made for

the purpose of classifying large semantic

graphs in order to verify the consistency

of the data from a different ontology. We

notice the advantage of NµSMV, whose

verification can be made with both linear

time logic and computation tree logic

formulas.

We also introduce a new tool called

“STL RESOLVOR” that is used to find

the solution of temporal logic queries to

know better the model of the RDF graph

used by the model checker NµSMV.

These temporal logic queries are

obtained from SPARQL query by using

“SPARQL2RLT” tool. This paper

described also this transformation.

We continue our research,

understanding the SPARQL queries and

trying to convert them into queries using

the operators of the temporal logic. The

goal of this transformation is to study a

modern way of expressing a new

possibility to explore the semantic

graphs.

6 REFERENCES

1. Gruber, T. R.: Toward principles for the

design of ontologies used for knowledge

sharing. Presented at the Padua workshop on

Formal Ontology, later published in

International Journal of Human-Computer

Studies, Vol. 43, Issues 4-5, November

1995, pp. 907-928. March 1993.

2. Bray, T., Paoli, J., Sperberg-McQueen, C.

M., Maler, E., Yergeau, F., Cowan, J.:

Extensible Markup Language (XML) 1.1

(second edition) W3C recommendation,

http://www.w3.org/TR/2006/REC-xml11-

20060816/. (2006)

3. Bechhofer, S., van Harmelen, F., Hendler J.,

Horrocks, I., McGuinness, D., Patel-

Schneijder, P., Andrea Stein, L., OWL Web

Ontology Language Reference, World Wide

Web Consortium (W3C),

http://www.w3.org/TR/owl-ref/, (2004).

4. Becket, D., McBride, B.: RDF/ XML Syntax

Specification (Revised). W3C

recommendation.

http://www.w3.org/TR/2004/REC-rdf-

syntax-grammar-20040210/. (2004)

5. Berners-Lee, T., Hendler, J., and Lassila, O.

The Semantic Web. Scientific American. pp.

34–43. 2001.

6. Clarke, E.M. The birth of Model checking.

25 Years of Model Checking Lecture Notes

in Computer Science, Volume 5000, pp. 1-

26, 2008.

7. Cimatti, A., Clarke, E.M, Giunchiglia, F.,

Roveri, M. NuSMV: a new symbolic model

checker, pp 410-425. 2000.

8. Chan, W. Temporal-logic queries. In

Proceedings of Computer Aided

Verification, LNCS 1855, pp 450-463. 2000.

9. Chebotko, C., Lu, S., Fotouhi, F. Semantics

preserving SPARQL-to-SQL translation.

Data & Knowledge Engineering, Elsevier.

2009.

http://www.springerlink.com/content/978-3-540-69849-4/

 14

10. Klyne, J. J. C. G.: Resource Description

Framework (rdf): Concepts and abstract

syntax. Tech. rep., W3C. (2004)

11. Bönström, V., Hinze, A., Schweppe, H.:

Storing RDF as a graph. Latin American

WWW conference, Santiago, Chile. (2003)

12. Berners-Lee, T. W3C recommendation.

http://www.w3.org/DesignIssues/ HTTP-

URI. 2007.

13. Berners-Lee, T., Connolly, D.: Notation3

(N3): A readable RDF syntax. W3C

recommendation,

http://www.w3.org/TeamSubmission/n3/.

(2008)

14. Becket, D., McBride, B.: RDF test cases.

W3C Working draft.

http://www.w3.org/TR/rdf-testcases/ (2004)

15. Katoen, J. P., 2002. The principal of Model

Checking. University of Twente.

16. Cyganiak, R. A relational algebra for

SPARQL. Digital Media Systems

Laboratory, HP Laboratories Bristol.

September 2005.

17. Pnueli, A. The temporal logic of programs.

In proc. 18th IEEE Symp. Foundations of

Computer Science (FOCS’77), Providence,

RI, USA. Pages 46-57. 1977.

18. Mukund, M. Model Checking, Automated

Verification of Computational Systems, pp.

667-681. 2009.

19. Gueffaz, M., Rampacek, S., Nicolle, C.

ScaleSem: Evaluation of semantic graph

based on Model Checking", Webist 2011-

The 7th International Conference on Web

Information Systems and Technologies,

Noordwijkerhout, Hollande, May 2011.

20. Gueffaz, M., Rampacek, S., Nicolle, C.

Qualifying Semantic Graphs Using Model

Checking, 7th International Conference on

Innovations in Information Technology

(Innovations'11), Abu Dhabi, United Arab

Emirates, April 2011.

21. Mateescu, R., Meriot, S., Rampacek, S.

Extending SPARQL with Temporal logic.

Technical report. 2009.

