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ABSTRACT 

 
The RDF (W3C standard for meta-

modeling) language is the most frequently 

used to represent the semantic graphs. This 

paper presents a new research combining 

different fields that are: the semantic web 

and the model checking. We developed a 

tool, RDF2NµSMV, which converts RDF 

graphs into NµSMV language. This 

conversion aims checking the semantic 

graphs that have numerous errors of 

interpretation with the model checker 

NµSMV in order to verify the consistency of 

the data. The SPARQL query language is 

the standard for querying the semantic graph 

but have a lot of limitations.  To this 

purpose, we define a translation from the 

SPARQL query language into the temporal 

logic query language. This language is a 

graph manipulation language implemented 

in our   toolbox. This translation makes it 

possible to extend the expressive power of 

SPARQL naturally by adding temporal logic 

formulas characterizing sequences, trees, or 

general sub-graphs of the RDF graph. Our 

approach exhibits a performance comparable 

to dedicated SPARQL query evaluation 

engines, as illustrated by experiments on 

large RDF graphs. We developed the STL 

Resolver tool to resolve the temporal logic 

query. This tool is based on the model 

checker NµSMV algorithms.   
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1 INTRODUCTION 
 

The increasing development of networks 

and especially the internet has greatly 

developed the heterogeneous gap 

between information systems. In 

glancing over the studies about 

interoperability of disparate information 

systems, we discover that all works tend 

to the resolution of semantic 

heterogeneity problems. The W3C1 

suggests norms to represent the semantic 

by ontology. Ontology is becoming an 

inescapable support for information 

system's interoperability and particularly 

in the Semantic. Literature now 

generally agrees on the Gruber’s terms 

to define an ontology: explicit 

specification of a shared 

conceptualization of a domain [1]. The 

physical structure of ontology is a 

combination of concepts, properties and 

relationships. This combination is also 

called a semantic graph.   

Several languages have been 

developed in the context of Semantic 

Web, and most of these languages use 

                                                 
1 World Wide Web Consortium 
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XML2 as syntax [2]. The OWL3 [3] and 

RDF4 [4] are the most important 

languages of the semantic web, they are 

based on XML. OWL allows 

representing the ontology, and it offers 

large-capacity  machines performing 

web content. RDF enhances the ease of 

automatic processing of Web resources. 

The RDF (Resource Description 

Framework) is the first W3C standard 

for enriching resources on the web with 

detailed descriptions. The descriptions 

may be characteristics of resources, such 

as author or content of a website. These 

descriptions are metadata. Enriching the 

Web with metadata allows the 

development of so-called Semantic Web 

[5]. The RDF is also used to represent a 

semantic graph corresponding to a 

specific knowledge modeling. In this 

paper, we propose a new way using 

formal verification, which consists in the 

transformation of semantic graphs into a 

model and verifying them with a Model 

Checker [6].   

We developed two tools. The first one 

called “RDF2NµSMV” that transforms 

semantic graphs into a model 

represented in NµSMV [7] language. 

After this transformation, NµSMV 

verifies the correctness of the model 

written in NµSMV language with 

temporal logic in order to verify the 

consistency of the data described in the 

model of the huge semantic graphs. The 

second tool, called “STL RESOLVOR”, 

aims resolving the queries destined to 

the model of the semantic graph. This 

query was introduced the first time by 

William Chan in his innovative work 

[8]. These requests are not used to verify 

the model representing the RDF graph, 

but rather to recognize it. 

                                                 
2 eXtensible Markup Language 
3 Web Ontology Language 
4 Resource Description Framework 

Our primary goal in this paper is to 

define a powerful and expressive query 

language for semantic graphs and to 

align with SPARQL [9], in order to 

improve the interoperability of 

applications on the Semantic Web. The 

other rather competing goal is to keep 

the query language simple enough that it 

can be easily built. To satisfy these 

requirements, we define a new query 

language that uses the operators of the 

temporal logic.  

The rest of this paper is organized as 

follows. In Section 2 we present an 

overview of the semantic graphs, 

especially the structure of the RDF 

graphs and the model checking. Then, in 

section 3, we describe the SPARQL 

query. Section 4 presents, the temporal 

logic and the query checking. Section 5 

refers to the mapping of the semantic 

graphs into models, section 6 to the 

transformation of SPARQL query to 

temporal logic query. Section 7 defines 

the functionalities of the STL Resolver 

tool, and we present some benchmarks 

in section 9. Finally, we end with a 

conclusion. 

 

2 AN OVERVIEW OF SEMANTIC 

GRAPHS AND MODEL CHECKING 
 

Semantic graphs - The RDF is also 

used to represent semantic graphs 

corresponding to a specific knowledge 

modeling. It is a language developed by 

the W3C to bring a semantic layer to the 

Web [10]. It allows the connection of the 

Web resources using directed labeled 

edges. The structure of the RDF 

documents is a complex directed labeled 

graph.  An RDF document is a set of 

triples <subject, predicate, object> as 

shown in the Figure1. In addition, the 

predicate (also called property) connects 

the subject (resource) to the object 
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(value). Thus, the subject and the object 

are nodes of the graph connected by an 

edge directed from the subject towards 

the object. The nodes and the edges 

belong to the “resource” types. A 

resource is identified by an URI5 [11, 

12]. 

 

Ressource Property Value

 
Figure 1. RDF triplet. 

 

The declarations can also be 

represented as a graph, the nodes as 

resources and values, and the arcs as 

properties. The resources are represented 

in the graph by circles; the properties are 

represented by directed arcs and the 

values by a box (a rectangle). Values can 

be resources if they are described by 

additional properties. For example, when 

a value is a resource in another triplet, 

the value is represented by a circle. 

 

 
 

Figure 2. Example of partial RDF graph. 
 

The RDF graph in the Figure 2 defines 

a node “University of Bourgogne” 

located at “Dijon”, having as country 

“France” and as a department named 

“Cote d’Or”. RDF documents can be 

written in various syntaxes, e.g., N3 

[13], N-Triple [14], and RDF/XML. 

Below, we present the RDF\XML 

document corresponding to Figure 2. 

 

                                                 
5 Uniform Resource Identifier 

<rdf:Description 

rdf:about="http://example.org/univer

sity of Bourgogne"> 

<ex:Location> 

<rdf:Description 

rdf:about="http://example.org/Dijon"

> 

<ex:Country> 

France</ex:Country> 

<ex:Department>Cote 

d'or</ex:Department> 

</rdf:Description> 

 </ex:Location> 

</rdf:Description> 

 

Model checking - The model checking 

[15] described in Figure 3 is a 

verification technique that explores all 

possible system states in a brute-force 

manner. Similar to a computer chess 

program that checks all possible moves, 

a model checker, the software tool that 

performs the model checking, examines 

all possible system scenarios in an 

organized manner. In this way, it can be 

shown that a given system model truly 

satisfies a certain property. Even the 

subtle errors that remain undiscovered 

using emulation, testing and simulation 

can potentially be revealed using model 

checking. 

To make a rigorous verification 

possible, properties should be described 

in a precise unambiguous way. It is the 

temporal logic that is used in order to 

express these properties. The temporal 

logic is a form of modal logic that is 

appropriate to specify relevant properties 

of the systems. It is basically an 

extension of traditional propositional 

logic with operators that refer to the 

behavior of systems over time. 

http://example.org/University_of_Bourgogne 

 

http://example.org/Dijon 

 

 

 

 

 

 

 

 

 

 

 

http://example.org/Cote_d’or 
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Figure 3. Model Checking approach. 

 

The following algorithm explains the 

way that the model checking works. 

First, we put in the stack all the 

properties expressed in the temporal 

logic. All of them are verified one by 

one in the model and if a property does 

not satisfy the model, it is whether the 

model or the property that we must 

refine. In case of a memory overflow, 

the model must be reduced. Whereas 

formal verification techniques such as 

simulation and model checking are 

based on model description from which 

all possible system states can be 

generated, the test, that is a type of 

verification technique, is unvarying 

applicable in cases where it is hard or 

even impossible to obtain a system 

model.   

 

3 THE SPARQL QUERY 

 

SPARQL [9] is a query language for 

querying metadata and extraction data 

from an RDF graph or, more precisely a 

query language for RDF triples. 

 

In SPARQL, different query forms are 

available:   

 

 Select:  return the value of 

variables, which may be bound 

by a matching query pattern. 

 Ask: return true if a given 

query match and false if not.   

 Construct: return an RDF 

graph by substituting the 

values in given templates. 

 Describe: return an RDF graph 

which defines the matching 

resource. 

 

The Select form is the most used. In 

this article, we showed only the 

SPARQL query with the select form. A 

basic SPARQL query has the following 

form: 

 

Select ?variable1, ?variable2,… 

Where {pattern1.pattern2. …} 

 

Where each pattern consists of subject, 

predicate, object, and each of these is 

either a variable or a literal. The query 

model is query-by-example style: the 

query specifies the known literals and 

leaves the unknowns as variables. 

Variables can occur in multiple patterns 

and thus imply joins. The query 

processor needs to find all possible 

variable bindings that satisfy the given 

patterns and return the bindings from the 

projection clause to the application. Note 

that not all variables are necessarily 

bound (e.g., if a variable only occurs in 

the projection and not in a pattern), 

which results in NULL values. 

Relational algebra [16] is introduced 

to facilitate the mapping of SPARQL 

query to the applications in temporal 

logic. We define the operators in RDF 

relations.  

 

2.1 Selection 
 

Selection )( , sometimes also called 

restriction, is an unary operator that 

selects only those tuples of a relation for 

which a propositional formula holds. 
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The propositions are assumed to have 

the expressivity of SPARQL Filter 

expressions.  

 

2.1 Projection 
 

The projection operator )(  restricts a 

relation to a subset of its attributes.   

 

2.1 Inner Join and Left Outer Join 
 

The inner join ( ) joins two relations 

on their shared attributes. A B 

contains all combinations of a tuple from 

A and a tuple from B, minus those where 

the shared attributes are not equal.  

The left outer join ( ) additionally 

contains all those tuples from the first 

relation that have no matching tuple in 

the second.  

 

2.1 Union 
 

The union )( of two relations A and B 

is the set of union of the tuples of A and 

B. unlike in regular relational algebra, 

the headings of A and B do not need to 

be identical.  

 

4 TEMPORAL LOGIC AND THE 

QUERY CHECKING 

 

The concepts of temporal logic used for 

the first time by Pnueli [17] in the 

specification of formal properties are 

fairly easy to use. The operators are very 

close in terms of natural language. The 

formalization in temporal logic is simple 

enough although this apparent simplicity 

therefore requires significant expertise. 

Temporal logic allows representing and 

reasoning about certain properties of the 

system, so it is well-suited for the 

systems verification. There are two main 

temporal logics that are linear time and 

branching time. In linear time temporal 

logic, each execution of the system is 

independently analyzed. In this case, a 

system satisfies a formula f, if f holds 

along every execution. The branching 

time combines all possible executions of 

the system into a single tree. Each path 

in the tree is a possible representation of 

the system execution [18].    

 

 Linear Temporal Logic or LTL 

allow representing the behavior of 

reactive systems using properties that 

describe the system in which time 

proceeds linearly. Clearly, we 

specify the expected behavior of a 

system, by specifying the only 

possible future as a sequence of 

actions that follow, LTL uses for that 

temporal operators: X (Next), F 

(Finally), G (Always), U (Until).  

 Computation Tree Logic or CTL 

suggests several possible futures 

from a system state rather than 

having a linear view of the system 

considered. The operators of CTL 

are obtained by adding A (for any 

execution) or E (there is an 

execution) before the operators of 

linear temporal logic that are: AX φ 

(all successor states immediately 

satisfy φ), EX φ (there is an 

execution whose next state satisfies 

φ), AF φ (for any execution, there is 

a state where φ is true), EF φ (there 

is an execution, leading to a true 

state φ), AG φ (for any execution, φ 

is always true), EG  (there is an 

execution, where φ is always true), 

AφUψ (for any execution φ is true 

until ψ is true), EφUψ (there is an 

execution in which φ is true until ψ 

is true).   
 

The Model-Checking was proposed as a 

verification technique, it is valuable for 

understanding the model: The user 
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formulates a hypothesis of the system 

behavior, expressed as a formula in 

temporal logic, and tries to use the 

Model Checker to validate this 

hypothesis. This use of the model 

checking has not been sufficiently 

emphasized in the literature. So, in order 

to help the user to understand the system 

behavior, Chan [8] introduced the 

queries in temporal logic and used a 

technique similar to the Model-Checking 

to determine the temporal properties in 

contrast to simply verifying them. 

The query checking is an extension of 

the Model checking who, instead of 

asking “does the system satisfy a 

temporal logic formula ”, allows us to 

ask “for what value of X does the system 

satisfy )(X  ?” Here, X is not a system 

parameter, but a property setting, that we 

seek to satisfy. These queries do not 

allow the verification of a specific 

property of the model, but they allow the 

examination of the model by questioning 

it. The technique of query-checking can 

also be used to provide more information 

to the user in the Model Checking.   

The query checking allows the writing of 

temporal logic formulas easily and can 

therefore verify any properties on both 

the data contained in the graph and the 

structure of the data. 

 
 

Figure 4. The query execution time. 

 

In the graph of the Figure 4, we can see 

that there are two RDF triples (B1, 

name, Paul) and (B1, Phone, 111-111). 

The following SPARQL query: 

 

 

SELECT ?x  

WHERE {  

?x Name 

"Paul"} 

 

whose representation in relational 

algebra is: 

Triples
Paulobject

Namepredicatex 



?
??   

looks for a subject ?x which has the 

predicate "Name" and an object "Paul" 

(?x, name, Paul). The equivalent of the 

previous query in query using the 

temporal logic operators is: 

 

Finally ( ?x  Next "Paul") (1) 

 

This temporal logic query looks for the 

same subject ?x, as defined in the 

SPARQL query above. 

 

5 THE RDF GRAPH 

TRANSFORMATION 

 

This section speaks about our approach, 

which consists in the transformation of 

semantic graphs into a model in order to 

verify them with the model-checker. For 

this, we developed "RDF2NμSMV" tool 

that transforms a semantic graph into 

NµSMV [7] language for the Model-

checker NµSMV.  

NµSMV is the amelioration of SMV 

model checker; it works on the sample 

principles as SMV. NµSMV verifies the 

properties in both linear time logic and 

computation tree logic. 

The RDF graphs considered here are 

represented as XML verbose files, in 

which the information is not stored 

hierarchically (so-called graph point of 

view). On the one hand, these RDF 

graphs are not necessarily connected, 

meaning they may have no root vertex 

from which all the other vertices are 

reachable. On the other hand, the 

NµSMV language manipulated by the 

B1 

Paul 111-111 

Name Phone 
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verification tools of NµSMV always has 

a root vertex, which corresponds to the 

initial state of the system whose 

behavior is represented by the NµSMV 

language. The RDF graph 

transformation into NµSMV language is 

articulated in three steps: exploring the 

RDF graph, determining a root vertex 

and final step, generating the Model of 

the RDF graph. This final step is divided 

into three sub-steps. The first and the 

second steps consist in generating two 

tables (triples table and correspondence 

table). Firstly, the table of all triples is 

built by exploring the entire graph. The 

graph traversal algorithms go through 

the RDF graph and create a table 

consisting of resources, properties and 

values. In the source RDF graph, the 

resource is a vertex. The property 

represents the edge, and the value is the 

successor vertex corresponding to the 

edge of the vertex. The table of triples of 

RDF graph is useful for the next sub-

step. 

Secondly, a correspondence table is 

generated. To build the table of 

correspondence, the algorithm associates 

an identifier for each resource, property 

and value. 

The last step consists in producing 

from these tables the model writing in 

NµSMV language for the Model checker 

NµSMV [19]. This transformation is 

very useful to qualify RDF graph that 

their construction is a source of 

numerous errors of interpretation [20]. 

Example of Transformation. 

Consider the graph RDF of the figure 

below that represent a. From this graph, 

we generate a table of triplets. This table 

is composed of RDF triples i.e. 

"resource - property - value". 

 

 

 
 

Figure 5. RDF graph 

 
Table 1 

Resource Property Value 

ISBN2253160784 Name Ninety three 

ISBN2253160784 Published 1874 

ISBN2253160784 Is  Novel  

ISBN2253160784 Author  Author1 

Author1  Name  Victor Hugo 

Author1 Date born February 26, 

1802 

Author1 Place born Besançon 

 

The next step is to generate a table of 

association. This table is represented by 

two tables. The table 2 contains all the 

state of the RDF graph and its messages. 

The table 3 gives for each state and 

message the next state. In our example, 

the tables are represented in the tables 

below. We notice that the names of the 

states are changed comparing with the 

RDF graph. All the black space is 

replaced by the symbol “_”.  

 
Table 2 

State Message 

ISBN2253160784 Name, Published, Is, 

Author 

Author1 Name, Date_born, 

Place_born 

Ninty_three Nil 

1874 Nil 

Novel Nil 

Victor Hugo Nil 

February_26_1802 Nil 

Besançon Nil 

 

 

 

Author1 

Besançon 

ISBN2253160

784 

1874 

February 26, 1802 

Ninety three 

Victor Hugo 

Novel 

is Published 
Name Author 

Date born Place born Name 
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Table 3 

State  Message Next state 

ISBN2253160784 Name  Ninty_three 

ISBN2253160784 Published 1874 

ISBN2253160784 Is  Novel 

ISBN2253160784 Author Author1 

Author1 Name  Victor_Hugo 

Author1 Date_born February_26_

1802 

Author1 Place_born Besançon  

 

The last step of processing is the 

generation of the NµSMV language that 

uses the previous tables. You can see 

below the representation of the RDF 

graph in figure 5 written in NµSMV 

language. 

 
/* Declaration of all states and 

messages that represent the node 

and property of the RDF graph 

*/ 

 
MODULE main 

 

VAR 

 

state : { ISBN2253160784, 

Ninety_three, 1874, Novel, 

Author1, Victor_Hugo, 

February_26_1802, Besançon}; 

msg : {Name, published, is, 

author, Date_born, Place_born}; 

 

/* Initialisation of the 

variable state by the root node 

of the RDF graph and the 

variable message by nop 

*/ 

 

INIT 

state = ISBN2253160784; 

INIT 

msg = nop; 
 

ASSIGN 

 

/* For each state we give its 

messages  

*/ 

 

next(msg):= 

case 

state= ISBN2253160784 : {Name, 

published, is, Author}; 

state= Ninety_three: nop; 

state= 1874 : nop; 

state= Novel : nop; 

state= Author1: {Name, 

Date_born, Place_born}; 

state= Victor_Hugo: nop; 

state= February_26_1802: nop; 

state= Besançon : nop; 

TRUE : msg; 

esac; 

 

/* For each state and message we 

give the next state   

*/ 

 

next(state) := 

case 

state= ISBN2253160784 & msg=Name 

: Ninety_three; 

state= ISBN2253160784 & 

msg=published : 1874; 

state= ISBN2253160784 & msg=is : 

Novel; 

state= ISBN2253160784 & 

msg=Author : Author1; 

state= Author1 & msg=Name : 

Victor_Hugo; 

state= Author1 & msg=Date_born : 

February_26_1802; 

state= Author1 & msg=Place_born 

: Besançon; 

TRUE : state; 

esac; 

 

We can use this graph represented in 

NµSMV language to verify the data 

consistency by using the temporal logic 

formula. 

Example of verification. We use 

also the same RDF graph of the figure 5. 

The NµSMV model checker use both 

linear temporal logic and computation 

tree logic (see section 4). In this example 

we use only the computation tree logic. 

The temporal logic formulas are 

summarized in the table below.   
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Table 4. 

 
Temporal logic Temporal logic 

NµSMV 

Always 

(ISBN2253160784  

next Ninety-three and 

ISBN2253160784  next 

Novel)  

AF (state = 

ISBN2253160784  

EX state= Ninety-

three & state = 

ISBN2253160784  

EX state= Novel) 

Always 

(ISBN2253160784  

next next Victor Hugo )  

AF (state= 

ISBN2253160784  

EX EX state= 

Victor_Hugo ) 

 

The table 4 is divided into two 

columns. The first one described the 

temporal logic formula, but the second 

one described the formula with the 

operators of the NµSMV model checker. 

The first formula checks if the Ninety-

three is a Novel with the ISBN6 

“ISBN2253160784” and the second 

checks if the author of the ISBN 

“ISBN2253160784” is “Victor Hugo”. 

We put all this formula in the bottom of 

the NµSMV file. The result of this 

formula is presented below.   

 
C:\Program 

Files\NuSMV\2.5.2\bin>NuSMV.exe 

journal.smv 

*** This is NuSMV 2.5.2 

(compiled on Fri Oct 29 11:33:56 

UTC 2010) 

*** Enabled addons are: compass 

*** For more information on 

NuSMV see <http://nusmv.fbk.eu> 

*** or email to <nusmv-

users@list.fbk.eu>. 

*** Please report bugs to 

<nusmv-users@fbk.eu> 

 

*** Copyright (c) 2010, 

Fondazione Bruno Kessler 

 

*** This version of NuSMV is 

linked to the CUDD library 

version 2.4.1 

                                                 
6 International Standard Book Number 

*** Copyright (c) 1995-2004, 

Regents of the University of 

Colorado 

 

*** This version of NuSMV is 

linked to the MiniSat SAT 

solver. 

*** See 

http://www.cs.chalmers.se/Cs/Res

earch/FormalMethods/MiniSat 

*** Copyright (c) 2003-2005, 

Niklas Een, Niklas Sorensson 

 

-- specification AF (((state = 

ISBN2253160784 & EX (EX state = 

Ninety_three)) & 

state = ISBN2253160784) & EX (EX 

state = Novel))  is true 

-- specification AF (state = 

ISBN2253160784 & EX (EX (EX (EX 

state = Victor_Hugo 

))))  is true 

  

6 SPARQL QUERY TO TEMPORAL 

LOGIC QUERY 

 

This section gives an overview of 

SPARQL query transformation into 

Temporal Logic query. We focus on the 

SELECT form. To illustrate this section, 

we use the RDF example shown in 

Figure 6. 

 

 
Figure 6. RDF graph for SPARQL query. 

 

From the graph in Figure 6, we 

construct SPARQL queries and their 

query equivalent in temporal logic. The 

SPARQL query below selects the 

subject with the variable ?x which has 

Paul as object. 

 



 10 

SPARQL SELECT ?x WHERE { ?x nom 

“Paul”} 

LT query Finally (?x  Next "Paul") 

Relation

al 

algebra  

Triples
Paulobject

Namepredicatex 



?
??   

 

The SPARQL query below selects the 

subject ?x which has the variable ?y as 

object, who, at its turn, has “Bob Dylan” 

as object. 

 
SPARQL SELECT ?x WHERE { ?x 

composed_by ?y. ?y name “Bob 

Dylan”} 

LT query Finally ( ?x  Next Next "Bob 

Dylan") 

 

The purpose of an optional pattern is 

to supplement the solution with 

additional information. If the pattern 

within an OPTIONAL clause matches, 

the variables defined within that pattern 

are bound to one or to many solutions. If 

the pattern does not match, the solution 

remains unchanged. The SPARQL query 

represented below selects the subject ?x 

that has “Paul” and/or “paul@yahoo.fr” 

as object. 

 
SPARQL SELECT ?x WHERE { ?x name 

"Paul" OPTIONAL  

{?x email paul@yahoo.com"}} 

LT query Finally ( ?x  Next "Paul" 
 Finally ?x  

"paul@yahoo.com") 

 

A SPARQL FILTER function can be 

added to a basic graph pattern in order to 

restrict the result according to Boolean 

conditions. The SPARQL query below 

selects the subject ?x which has a word 

that contains at least the letter P as 

object. 

 
SPARQ

L 

SELECT ?x WHERE { ?x name ?y 

FILTER regex (?y, "P") } 

LT 

query 

Finally (?x  Next *P*) 

Relation

al 

algebra 

Triples
Pyregexyobject

Namepredicatex 



),(???

??   

 

The SPARQL query below selects the 

subjects ?x and ?y that have “John” and 

respectively “Paul” as objects. 

 
SPARQL SELECT ?x ?y WHERE { {?x  name 

"John"} 

 UNION  

{ ?y name "Paul"}} 

LT query Finally ( ?x  Next "John"   ?y  

Next "Paul") 

 

The SPARQL query below selects the 

objects ?x where “name” is the 

predicate. 
 

SPARQL SELECT ?x WHERE { 

?y name ?x } 

LT query Finally ( ?y  Next ?x) 

where 

predicate=name/ ?x 

Relation

al 

algebra 

Triples
ysubject
Namepredicatex 




??
??   

 

The SPARQL query below selects the 

object ?y. This query represents a 

SPARQL’s join.  
 

SPARQL SELECT ?y WHERE { ?x name ?y. ?z 

performed_by ?x. 

?z composed_by ?p. ?p name "Bob 

Dylan"} 

LT query Finally ( ?z  Next Next ?y   ?z  

Next Next "Bob Dylan") where 

predicate=nom/ ?y 

 

The transformation of SPARQL 

queries into queries using operators of 

temporal logic was based on the 

representation of SPARQL queries in the 

relational algebra seen above. 

The advantage of temporal logic 

queries is their simplicity to write. That 

means that the temporal logic is closer to 

the natural language and in addition, one 

mailto:paul@yahoo.fr
mailto:paul@yahoo.com
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of the great advantages of the temporal 

logic queries is that they are more 

expressive than the SPARQL queries 

using the temporal logic operators. [21] 

We developed a tool called 

“SPARQL2LTQ” which aims to 

transform SPARQL queries into queries 

using operators of the temporal logic. 

 

 

Figure 7. The architecture of the transformation 

tool “SPARQL2RLT”.  

For the development of this tool, we 

use LEX & YACC to decompose the 

SPARQL query in order to facilitate the 

processing. LEX is used to recognize the 

lexical entities and replace them with 

keywords that will be recognized in the 

grammar of the language defined in 

YACC; then YACC will recognize and 

respect the expressions and will verify if 

they belong to the grammar. LEX & 

YACC are two very powerful tools, 

facilitating the lexical and respectively 

the syntactic analysis, which represents 

two stages of compilation difficult to 

program. 

In order to demonstrate the usefulness 

of temporal logic queries, we will 

illustrate an example. Here are two 

tables in a relational database, table 1 

and table 2. 
 

Table 1 Table 2 

Person Name 

id1 Alice 

id3 Christophe 

id2  Bob 
 

Name Age 

Alice  33 

Bob 42 

Christophe 15 
 

SELECT ?x 

WHERE { 

id1 ex :Name ?z 

?z ex :HasAge ?x 

} 

 

The SPARQL query above seeks the 

age of the person identified by id1, 

corresponding to “Alice” in our case. 

To answer this SPARQL query we 

must first make a join between the two 

previous relational database tables. A 

join is used for joining two multi sets 

with a constraint. In our example, the 

constraint is the name, see table 3 below. 
 

Table 3 

 

Person Name Age 

1 Alice  33 

2 Bob 42 

3 Christophe 15 

 

 

 

Figure 8.  The RDF graph model showing the 

movement to be done to achieve results.    

The equivalent of the previous 

SPARQL query in a query using 

operators of the temporal logic is as 

follows: 
  

Finally (id  next next ?x) 

 

In this query, in order to retrieve the 

age of the person identified by id1, one 

just moves two states (two “next” 

operators in our query represented by X) 

in the semantic graph model to find the 

result, as shown in Figure 8. 

Temporal logic 

query 

SPARQL 

query 

SPARQL2TLQ

.exe 

Compiler 

Programme en C 

Ya

cc 

Le

x 

y.tab.c 

Lex.yy.
c 

F1.

y 

F2.

l 

Grammar 

Lexical rules 
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For results with temporal logic query 

one just moves around the graph with 

the operators of temporal logic. The new 

interrogation technique will allow us to 

avoid scanning the graph several times 

as with SPARQL queries.  

 

7 THE STL RESOLVER 

 

The ScaleSem toolbox contains a tool 

used to resolve queries in temporal logic 

that we have previously seen. This tool 

is called STL RESOLVOR, it takes as 

input the temporal logic query and the 

NμSMV graph representing the semantic 

graph. 

The query checking is an extension of 

the Model checking. A temporal logic 

query is a formula with a missing 

propositional formula, designated by a 

placeholder (“?”). A solution to a 

temporal logic query is the set of all 

propositional formulas that satisfy the 

query, in our case the formulas are the 

states represented in the NµSMV graph.   

 

 
Figure 9. An example of NµSMV graph. 

 

TABLE 4 

 Query  Result  

1 Finally (?x  X State 

3) 

?x ={State 1, State 

2}  

2 Finally (?x  X X 

state 3) 

?x={State 1} 

 

The table above gives some example 

of temporal logic queries and their 

results.  

 

8 BENCHMARCK 

 

We tested several RDF graphs on our 

tool “RDF2NµSMV”, using a machine 

that runs on a processor with a capacity 

of 2.4 GHz and 4 GB of RAM, 

calculating the time of conversion as 

shown in Figure 10. Note that the 

RDF2NµSMV tool is faster in 

converting semantic graphs. We have 

almost 22 seconds for a graph of 53 MB 

size. The transformation tool follows a 

polynomial curve. In Figure 11, we see 

the size of the converted semantic graphs 

from RDF to NµSMV language. 

 

 
Figure 10. Time conversion of Semantic graphs. 

 

 
Figure 11. Size of the Models. 

 

We calculate the time of 

transformation of the SPRAQL query 

into a query using the operators of the 

temporal logic with the SPARQL2TLQ 

tool. The graph of the Figure 12 shows 

that for 50 000 queries, we have over 

than 2 minutes and for 100 000 queries, 

we have 17 minutes. This transformation 

follows a polynomial curve.  In Figure 

13, we notice that the size of the queries 

in temporal logic is smaller than the size 

of the equivalent SPARQL queries. 
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Figure 12. Time conversion of SPARQL query. 

 

 
Figure 13. Comparison of size in both SPARQL 

query and temporal logic query.   

 

9 CONCLUSION 

 

This paper presents how to transform 

a semantic graph into a model for 

verification by using a powerful formal 

method, that is the “model checking." 

Knowing that the model checker does 

not understand the semantic graphs, we 

developed a tool called “RDF2NµSMV” 

to convert them into NµSMV graph in 

order to be verified with the temporal 

logics. This transformation is made for 

the purpose of classifying large semantic 

graphs in order to verify the consistency 

of the data from a different ontology. We 

notice the advantage of NµSMV, whose 

verification can be made with both linear 

time logic and computation tree logic 

formulas.   

We also introduce a new tool called 

“STL RESOLVOR” that is used to find 

the solution of temporal logic queries to 

know better the model of the RDF graph 

used by the model checker NµSMV. 

These temporal logic queries are 

obtained from SPARQL query by using 

“SPARQL2RLT” tool. This paper 

described also this transformation.   

We continue our research, 

understanding the SPARQL queries and 

trying to convert them into queries using 

the operators of the temporal logic. The 

goal of this transformation is to study a 

modern way of expressing a new 

possibility to explore the semantic 

graphs.   
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