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The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way

that each colour class is an induced matching. In this paper, we present bounds for the strong chromatic index of three

different products of graphs in terms of the strong chromatic index of each factor. For the Cartesian product of paths,

cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids

and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized

hypercubes.

Keywords: Strong edge colouring; induced matching; Cartesian product; Kronecker product; strong product.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. An edge between vertex x and vertex

y will be denoted by xy.

A proper edge-colouring is a mapping c : E(G) → N satisfying c(xy) 6= c(yz),∀xy, yz ∈ E. For any

vertex x ∈ V , let Sc(x) denote the set of the colours of all edges incident to x. A proper edge-colouring

c is said to be strong if no two edges of the same colour lie on a path of length 3; that is, for any edge

xy of G, Sc(x) ∩ Sc(y) = {c(xy)}. Equivalently, a strong colouring also corresponds to a partition of

the edges into induced matchings. The strong chromatic index of G, denoted by χ′

s(G), is the minimum

number of colours of any strong colouring of G. A strong colouring of a graph G corresponds to a vertex

colouring of L(G)2, the square of the line-graph of G; where the square of a graph is obtained by adding

edges between vertices at distance 2 in the graph. A colouring of the square of a graph is also referred to

as a distance-2 or L(1, 1) colouring in some works.

These problems of strong edge-colouring and distance colouring have interesting applications, specifi-

cally for channel assignment in mobile multi-hop radio networks [10] and in cellular networks [4].

The problem of determining the strong chromatic index of a graph is proved to be NP-complete, even

for bipartite graphs of girth at least g, for any fixed g [6]. In 1985, Erdős and Nešetřil conjectured (see [2])

that the strong chromatic index of every graph of maximum degree ∆ is at most 5
4∆2. Later, Faudree et al.

conjectured in [2] that χ′

s(G) ≤ ∆2 for bipartite graphs G of maximum degree ∆. In [7], a probabilistic

argument is used to show that χ′

s(G) ≤ 1.998∆(G)2. Other approximation results exist, for instance for

cubic graphs [1], multigraphs [3] and C4-free graphs [5]. Exact values for specific graphs are presented

in [2, 8, 9].
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In this paper, we study the strong chromatic index of graphs obtained by Cartesian, Kronecker and

strong products (definitions are given below). In Section 2, we derive upper bounds for each of them

in terms of the strong chromatic index of the two factors along with two lower bounds for the Cartesian

product. In Section 3, we turn our attention on the Cartesian product to present improved bounds for

products of paths, cycles or cliques. In particular, these results allow to find the exact value of the strong

chromatic index for d-dimensional grids and some d-dimensional toroidal grids and approximate results

for other toroidal grids and generalized hypercubes.

The following notation will be used throughout this paper. For a graph G, denote by nG its order, by

∆(G) its maximum degree and by χ(G) its chromatic number.

The Cartesian product G✷H of two graphs G and H has vertex set V (G) × V (H) and edge set

{(a, x)(b, y) : ab ∈ E(G) and x = y or xy ∈ E(H) and a = b}.

The Kronecker (sometimes called direct or categorical) product G × H has vertex set V (G) × V (H)
and edge set {(a, x)(b, y) : ab ∈ E(G) and xy ∈ E(H)}.

The strong product G ⊠ H has vertex set V (G) × V (H) and edge set E(G✷H) ∪ E(G × H).

2 General bounds

2.1 Cartesian product

Theorem 1 For any graph G and for any graph H that contains two adjacent vertices of maximum

degree, we have

χ′

s(G✷H) ≥ 2∆(G✷H).

Proof: Let ab be an edge of G, with a being a vertex of maximum degree and let xy be an edge of H ,

with both x and y being a vertex of maximum degree. Denote by S the set of all edges incident to (a, x)
or (a, y) plus the edge (b, x)(b, y). Then all edges of S must be coloured by distinct colours in any strong

colouring. A simple count gives |S| = 2∆(G) + 2∆(H) = 2∆(G✷H). ✷

Theorem 2 Let G and H be two graphs. For the Cartesian product, we have

χ′

s(G✷H) ≤ χ′

s(G)χ(H) + χ′

s(H)χ(G).

Proof: Let G′ = G✷H and let kG = χ′

s(G) and kH = χ′

s(H). Denote by cG a strong colouring

of G with colours from 0, 1, . . . kG − 1 and denote by cH a strong colouring of H with colours from

0, 1, . . . kH − 1. Let vG be a proper vertex colouring of G using the χ(G) colours 0, 1, . . . χ(G) − 1 and

let vH be a proper vertex colouring of H using the χ(H) colours 0, 1, . . . χ(H) − 1 .

A colouring c′ of G′ is defined as follows:

For any edge ab of G, for any vertex x of H , set

c′((a, x)(b, x)) = cG(ab) + kGvH(x),

for any edge xy of H , for any vertex a of G, set

c′((a, x)(a, y)) = cH(xy) + kHvG(a) + kGχ(H).
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As cG and cH are proper colourings and c′((a, x)(b, x)) < kGχ(H), then c′ is a proper colouring

too. So it remains to show that c′ is strong. For any vertex a of G and for any vertex x of H , let

I(a, x) = {s + kGvH(x) : s ∈ ScG
(a)} and let J(a, x) = {s + kHvG(a) + kGχ(H) : s ∈ ScH

(x)}.

First, consider two vertices (a, x) and (b, x) of G′, with ab ∈ E(G). By the definition of the colouring

c′, we have Sc′((a, x)) = I(a, x) ∪ J(a, x), and Sc′((b, x)) = I(b, x) ∪ J(b, x). Since cG is strong,

we have that ScG
(a) ∩ ScG

(b) = {cG(ab)}. Thus I(a, x) ∩ I(b, x) = {cG(ab) + kGvH(x)}. Since vG

is a proper colouring, we have vG(a) 6= vG(b). Thus J(a, x) ∩ J(b, x) = ∅. Therefore Sc′((a, x)) ∩
Sc′((b, x)) = {cG(ab) + kGvH(x)} = {c′((a, x)(b, x))}.

Next, consider two vertices (a, x) and (a, y) of G′, with xy ∈ E(H). By a similar argument, as vH is

a proper colouring and cH is a strong colouring, we have Sc′((a, x)) ∩ Sc′((a, y)) = {c′((a, x)(a, y))}.

Hence we have proved that c′ is a strong colouring of G′ = G✷H with χ′

s(G)χ(H) + χ′

s(H)χ(G)
colours. ✷

To see how tight the above theorem is, we present the following lower bound in relation with the

fractional chromatic number. The fractional chromatic number of a graph G is χf (G) = min k
p

for

which G has a p-tuple k-colouring, that is an assignment of p positive integers from a set of k integers

(colours) to each vertex of G such that adjacent vertices receive disjoint sets of colours. It is known that

ω(G) ≤ χf (G) ≤ χ(G) for any graph G, where ω(G) is the clique number of G.

Theorem 3 Let G and H be two graphs, then

χ′

s(G✷H) ≥ χf (G)∆(H).

Proof: Let x ∈ V (H) be a vertex of degree d(x) = ∆(H) and let Sx be the subgraph of H consisting of

the star of order ∆(H) + 1 and center x. Remember that the product G✷H contains n = |V (G)| copies

H1, . . . ,Hn of H . Denote by Sx
i the copy of Sx in each copy Hi of H and let S =

⋃m

i=1 Sx
i .

As each edge of a star Sx
i must be coloured with a different colour in any strong colouring of G✷H ,

and the colours on two adjacent stars Sx
i and Sx

i′ must be distinct too, one can see that finding a strong

edge colouring of S is equivalent to finding a ∆(H)-tuple colouring of G. Assume that there exists a

∆(H)-tuple k-colouring of G. Then,

χ′

s(G✷H) ≥ χ′

s(S) ≥ k ≥ χf (G)∆(H),

since by definition, χf (G) ≤ k
∆(H) . ✷

In view of this theorem, we can deduce that Theorem 2 gives a upper bound close to the optimal if

χf (G) is close to χ(G) and χ′

s(H) is close to ∆(H). For instance, Theorem 2 gives the exact value of the

strong chromatic index of the product of a star Sn on n + 1 vertices by a K2. For the product Kn✷Sm,

with Theorem 2 and Theorem 3, we obtain nm ≤ χ′

s(Kn✷Sm) ≤ n(m + n− 1). Also, for the Cartesian

product of a bipartite graph by itself, if χ′

s(G) ≤ ∆(G)2 then χ′

s(G✷G) ≤ 4∆(G)2 = ∆(G✷G)2. Thus

we obtain infinite families of bipartite graphs verifying the conjecture of Faudree et al..

Nevertheless, Theorem 2 is not optimal for many product graphs. For instance, for the product of two

paths Pm and Pn where m,n ≥ 3, with Theorem 1 and Theorem 2 we obtain 8 ≤ χ′

s(Pm✷Pn) ≤ 12.

In Corollary 4 of Section 3.3, we will determine the exact value of χ′

s(Pm✷Pn), showing that the lower

bound is tight in general.
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2.2 Kronecker product

Theorem 4 Let G and H be two graphs different from K2. For the Kronecker product G × H we have

χ′

s(G × H) ≤ χ′

s(G)χ′

s(H).

Proof: Let G′ = G × H and let kG = χ′

s(G) and kH = χ′

s(H). Denote by cG a strong colouring

of G with colours from 0, 1, . . . kG − 1 and denote by cH a strong colouring of H with colours from

0, 1, . . . kH − 1.

A colouring c′ of G′ is defined as follows: for any edge ab of G, for any edge xy of H , set

c′((a, x)(b, y)) = cG(ab) + kGcH(xy).

This colouring is clearly proper because cG and cH are both proper and for any edge e of G, cG(e) <

kG. We have Sc′((a, x)) = {α + kGβ : α ∈ ScG
(a), β ∈ ScH

(x)} and Sc′((b, y)) = {α + kGβ : α ∈
ScG

(b), β ∈ ScH
(y)}. Since cG and cH are strong, we have ScG

(a) ∩ ScG
(b) = {cG(ab)} and ScH

(x) ∩
ScH

(y) = {cH(xy)}. Hence Sc′((a, x)) ∩ Sc′((b, y)) = {cG(ab) + kGcH(xy)} = {c′((a, x)(b, y))}.

Thus c′ is a strong colouring of G × H . ✷

This result is optimal for products of stars: If G = Sm and H = Sn, then the product G × H

contains a star Smn and since χ′

s(Sn) = n, Theorem 4 gives the exact value of χ′

s(Sm × Sn). Moreover,

for the Kronecker product of a bipartite graph by itself, if χ′

s(G) ≤ ∆(G)2 then this theorem gives

χ′

s(G×G) ≤ ∆(G)4 = ∆(G×G)2. Thus we again obtain infinite families of bipartite graphs verifying

the conjecture of Faudree et al.

2.3 Strong product

As the edge set of the strong product G ⊠ H is the union of the edge set of G✷H and of G × H , we

shall construct a strong colouring of G ⊠ H by colouring the edges of the Cartesian product G✷H using

Theorem 2 and the edges of the Kronecker product G×H by a modified version of the colouring defined

in proof of Theorem 4. The two next lemmas will ensure us that each of these two colourings remain

strong in the final graph G ⊠ H .

Lemma 1 For any graphs G and H , there exist a strong colouring c of G✷H in χ′

s(G)χ(H)+χ′

s(H)χ(G)
colours that verifies the following additional property: for any edge ab of G and for any edge xy of H ,

Sc((a, x)) ∩ Sc((b, y)) = ∅.

Proof: The colouring c of G✷H is the same as the colouring c′ defined in the proof of Theorem 2.

Keeping the same notation as for the proof of Theorem 2, let us see that for any edge ab of G and any

edge xy of H , the equality Sc((a, x)) ∩ Sc((b, y)) = ∅ holds; i-e. that any edge (a, x)(a′, x′) incident to

vertex (a, x) has a colour different from the colour of any edge (b, y)(b′, y′) incident to vertex (b, y). We

have four cases to consider:

1. aa′ ∈ E(G) and x = x′, bb′ ∈ E(H) and y = y′. Then c′((a, x)(a′, x′)) = cG(aa′) + kGvH(x)
and c′((b, y)(b′, y′)) = cG(bb′) + kGvH(y). Since vH is proper and xy ∈ E(H), vH(x) 6= vH(y)
and thus c′((a, x)(a′, x′)) 6= c′((b, y)(b′, y′)).
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2. xx′ ∈ E(G) and a = a′, yy′ ∈ E(H) and b = b′. Then c′((a, x)(a′, x′)) = cH(xx′)+kHvG(a)+
kGχ(H) and c′((b, y)(b′, y′)) = cH(yy′)+kHvG(b)+kGχ(H). Since vG is proper and ab ∈ E(G),
vG(a) 6= vG(b) and thus c′((a, x)(a′, x′)) 6= c′((b, y)(b′, y′)).

3. aa′ ∈ E(G) and x = x′, yy′ ∈ E(H) and b = b′. Then c′((a, x)(a′, x′)) = cG(aa′)+kGvH(x) 6=
cH(yy′) + kHvG(b) + kGχ(H) = c′((b, y)(b′, y′)).

4. xx′ ∈ E(G) and a = a′, bb′ ∈ E(H) and y = y′. Then c′((a, x)(a′, x′)) = cH(xx′)+kHvG(a)+
kGχ(H) 6= cG(bb′) + kGvH(y) = c′((b, y)(b′, y′)).

Therefore, in all cases, Sc′((a, x)) ∩ Sc′((b, y)) = ∅, which proves the lemma. ✷

Lemma 2 For any graphs G and H , there exist a strong colouring c of G × H in 2χ′

s(G)χ′

s(H) colours

that verifies the following additional property: for any edge ab of G and for any edge xy of H ,

Sc((a, x)) ∩ Sc((a, y)) = ∅,

and

Sc((a, x)) ∩ Sc((b, x)) = ∅.

Proof: The colouring c of G × H is obtained by modifying the strong colouring c′ given in the proof of

Theorem 4 in this way: Let k = χ′

s(G)χ′

s(H) and let ≺G (resp. ≺H ) be any ordering of the vertices of G

(resp. of H). For any edge ab of G with a ≺G b and any edge xy of H with x ≺H y, set

c((a, x)(b, y)) = c′((a, x)(b, y)),

and

c((b, x)(a, y)) = c′((b, x)(a, y)) + k.

Keeping the same notation as for the proof of Theorem 4, let us see first that for any edge ab of G

and any edge xy of H , the equality Sc((a, x)) ∩ Sc((a, y)) = ∅ holds; i-e. that any edge (a, x)(a1, x
′)

incident to vertex (a, x) has a colour different from the colour of any edge (a, y)(a2, y
′) incident to vertex

(b, y). Let m1 = cG(aa1) + kGcH(xx′) and let m2 = cG(aa2) + kGcH(yy′). To have m1 = m2, one

needs cG(aa1) = cG(aa2) and cH(xx′) = cH(yy′), which is impossible unless a1 = a2 and x′ = y and

y′ = x. But in that case, we obtain c′((a, x)(a1, x
′)) = m1 and c′((a, y)(a2, y

′)) = m1 + k if a ≺G a1

and x ≺H y, or else c′((a, x)(a1, x
′)) = m1 + k and c′((a, y)(a2, y

′)) = m1. Therefore, in all cases,

c′((a, x)(a1, x
′)) 6= c′((a, y)(a2, y

′)). Hence, Sc((a, x)) ∩ Sc((a, y)) = ∅.

Similarly, one can see that Sc((a, x)) ∩ Sc((b, x)) = ∅. ✷

Theorem 5 Let G and H be two graphs. For the strong product G ⊠ H we have

χ′

s(G ⊠ H) ≤ χ′

s(G)χ(H) + χ′

s(H)χ(G) + 2χ′

s(G)χ′

s(H).

Proof: Remember that the edge set of G ⊠ H is the union of the edge set of G✷H and of the edge set of

G×H . Colour the edges of G✷H with a colouring c1 satisfying Lemma 1 using a set C of χ′

s(G)χ(H)+
χ′

s(H)χ(G) colours and colour the edges of G × H with a colouring c2 satisfying Lemma 2 and using a

set C′ disjoint with C of 2χ′

s(G)χ′

s(H) colours. This produces an edge-colouring of G ⊠ H . Since C and
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C′ are disjoint, this colouring is proper and since c1 verifies the additional property of Lemma 1 and c2

verifies the additional property of Lemma 2, this colouring is strong. ✷

Notice that this theorem gives the exact value of the strong chromatic index of the strong product of two

complete graphs: since Km ⊠Kn = Kmn then χ′

s(Kmn) =
(

mn
2

)

= χ′

s(Km)χ(Kn)+χ′

s(Kn)χ(Km)+
2χ′

s(Km)χ′

s(Kn).

3 Cartesian products of paths, cycles and cliques

In this section, we define the notion of (k, t)-colourability that leads us to improved bounds for the product

of paths, cycles and complete graphs. Optimal values of the strong chromatic index are found for some

graphs.

3.1 (k, t)-colourable graphs

Definition 1 Two strong colourings c1 and c2 of a graph G are compatible if for any vertex x of G,

Sc1(x) ∩ Sc2(x) = ∅.

Definition 2 A graph G is (k, t)-colourable if there exist t strong colourings ci, 1 ≤ i ≤ t, ci : E(G) →
{1, 2, . . . , k} that are pairwise compatible.

1

2

3

6

4

5

3

4

56

1

2 5

6

12

3

4

Fig. 1: Three compatible strong colourings of C6 in six colours showing that C6 is (6, 3)-colourable.

Notice that a (k, t)-colourable graph is also (αk, αt)-colourable for any integer α ≥ 1. In particular,

every graph G is (tχ′

s(G), t)-colourable for any integer t ≥ 1.

For the path Pn on n vertices, it is known that χ′

s(Pn) = 3 for any n ≥ 4, thus Pn is (3t, t)-colourable.

This result can be strengthened as shown in the following proposition.

Proposition 1 For any integers n ≥ 2 and t ≥ 1, the path Pn is (4t, 2t)-colourable.

Proof: We only have to show that Pn is (4, 2)-colourable, i-e. that there exist two compatible strong

colourings of Pn with 4 colours. The first strong colouring c1 is defined by giving the colours 1, 2, 3, 4, 1,

2, 3, 4, . . . to the edges of Pn, starting from an end-vertex and going to the other end-vertex. The second

colouring c2 is defined by giving the colours 3, 4, 1, 2, 3, 4, 1, 2, . . . to the edges of Pn starting from the

same end-vertex than for the first colouring. ✷

Proposition 2 For the cycle Cn, the following holds:

• for any k ≥ 3 and for any n ≥ 1, Ckn is (kt, ⌊k
2 ⌋t)-colourable,
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• for any n ≥ 5, n 6= 6, Cn is (5t, 2t)-colourable.

Proof: First, observe that, given a strong colouring c of Cn, if for any colour i, any two edges of colour

i are separated by at least d − 1 edges along the shortest path (we call such a colouring d-distant), then

there exist ⌊d
2⌋ compatible strong colourings. These colourings can be obtained from the cycle Cn with

its colouring c by a rotation of 4kπ
n

, for k = 0, 1, . . . , ⌊d
2⌋ − 1.

For the first assertion, a strong k-distant colouring is given by assigning cyclically the colours 1, 2, . . . , k

to the edge of the cycle Ckn (see Figure 1 for an example with k = 6).

For the second assertion, observe first that C7 and C11 are (5, 2)-colourable, as can be seen by the

colourings 1, 2, 3, 4, 1, 3, 5 and 3, 4, 1, 2, 5, 4, 2 for C7 and 1, 2, 3, 4, 1, 2, 3, 4, 1, 3, 5 and 3, 4, 1, 2, 3, 4, 1,

2, 5, 4, 2 for C11. Now, for the remaining cases, we have to find a 4-distant colouring using at most 5
colours. Let n = 4p + i, 0 ≤ i ≤ 3. Observe that, as n > 7 and n 6= 11, we have p ≥ i. The colouring of

Cn is obtained by repeating i times the pattern 1, 2, 3, 4, 5 then p − i times the pattern 1, 2, 3, 4 along the

cycle. ✷

Proposition 3 For any integers n ≥ 3 and t ≥ 1, the complete graph Kn is (n(n−1)
2 t, ⌊n

2 ⌋t)-colourable.

Proof: Consider first the case of even n and let n = 2p. K2p is decomposable into 2p − 1 perfect

matchings Mi, 0 ≤ i ≤ 2p − 2. Order the edges of each matching Mi and denote by e
j
i the jth edge of

matching Mi, 0 ≤ j ≤ p − 1. Then define the p strong colourings ck of Kn as follows: for any edge e of

Kn, for any k, 0 ≤ k ≤ p − 1, set

ck(ej
i ) = (i + (j + k)(2p − 1)) mod p(2p − 1).

We treat the case of odd n in a similar way. Let n = 2p + 1. K2p+1 is decomposable into 2p + 1

matchings Mi, 0 ≤ i ≤ 2p, each containing p edges e0
i , e

1
i , . . . , e

p−1
i . Then set

ck(ej
i ) = (i + (j + k)(2p + 1)) mod p(2p + 1).

Because of the choice of the modulo in the definition of the colouring (p(2p−1) for even n and p(2p+1)
for odd n), any colour is always in the same matching in all the p strong colourings. This is the reason

why the p colourings are pairwise compatible (details of this part of the proof are left to the reader). ✷

3.2 Cartesian products of (k, t)-colourable graphs

Theorem 6 Let G be a (kG, tG)-colourable graph and let H be a (kH , tH)-colourable graph, with tG ≥
χ(H) and tH ≥ χ(G). Then G✷H is (kG + kH , min(tG, tH))-colourable.

Proof: Let t′ = min(tG, tH). As G is (kG, tG)-colourable, there exist tG compatible strong colourings

ci, 1 ≤ i ≤ tG of G; ci : E(G) → {0, 1, . . . , kG − 1}. Similarly, as H is (kH , tH)-colourable, there exist

tH compatible strong colourings di, 1 ≤ i ≤ tH of H . Assume moreover that these colourings di use

different colours than the colourings of G: di : E(H) → {kG, kG + 1, . . . , kG + kH − 1}.

Let vG be a proper vertex colouring of G using the χ(G) colours 0, 1, . . . χ(G) − 1 and let vH be a

proper vertex colouring of H using the χ(H) colours 0, 1, . . . χ(H) − 1 .

We define the t′ colourings c′i, 0 ≤ i ≤ t′ − 1 of G′ as follows:
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For any edge ab of G, for any vertex x of H , let m(x) = (vH(x) + i) mod tG and set

c′i((a, x)(b, x)) = cm(x)(ab),

for any edge xy of H , for any vertex a of G, let p(a) = (vG(a) + i) mod tH and set

c′i((a, x)(a, y)) = dp(a)(xy).

Notice that each colouring c′i uses at most kG + kH colours.

Let us show that each c′i is a strong colouring of G′:

First, consider two adjacent vertices (a, x) and (b, x) of G′. Then Sc′
i
((a, x))∩Sc′

i
((b, x)) = (Scm(x)

(a)∪
Sdp(a)

(x)) ∩ (Scm(x)
(b) ∪ Sdp(b)

(x)). Since vG is proper and tG ≥ χ(H), we have that p(a) 6= p(b) and

since dp(a) and dp(b) are compatible then we obtain Sdp(a)
(x) ∩ Sdp(b)

(x) = ∅. Moreover, as cm(x) is

strong, then we have Scm(x)
(a) ∩ Scm(x)

(b) = {cm(x)(ab)}. Consequently, Sc′
i
((a, x)) ∩ Sc′

i
((b, x)) =

{cm(x)(ab)} = {c′i((a, x)(b, x))}.

Next, for two adjacent vertices (a, x) and (a, y) of G′, a similar argument gives Sc′
i
((a, x))∩Sc′

i
((a, y)) =

{dp(a)(xy)} = {c′i((a, x)(a, y))}.

Now let us show that for any i1, i2, 0 ≤ i1, i2 ≤ t′ − 1, i1 6= i2, c′i1 and c′i2 are compatible: Let (a, x)
be a vertex of G′. We have

Sc′
i1

((a, x)) = Scm1
(a)∪Sdp1

(x), with m1 = (vH(x) + i1) mod tG and p1 = (vG(a) + i1) mod tH ,

and

Sc′
i2

((a, x)) = Scm2
(a)∪Sdp2

(x), with m2 = (vH(x) + i2) mod tG and p2 = (vG(a) + i2) mod tH .

We have m1 6= m2 and p1 6= p2, therefore Scm1
(a) ∩ Scm2

(a) = ∅ and Sdp1
(x) ∩ Sdp2

(x) = ∅.

Moreover, since for any i and k, the colourings ci and dk do not use the same sets of colours, we conclude

that Sc′
i1

((a, x)) ∩ Sc′
i2

((a, x)) = ∅. ✷
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Fig. 2: Two compatible optimal strong colourings of P5✷P7 in 8 colours.

An example of two compatible strong colourings of P5✷P7 as defined in the above proof is given in

Figure 2 (the two compatible strong colourings of P5 and of P7 appear on each graph but the vertex

colourings are not given).

Corollary 1 Let G be a (kG, tG)-colourable graph and let H be a (kH , tH)-colourable graph. Then

G✷H is (kG⌈
χ(H)

tG
⌉ + kH⌈χ(G)

tH
⌉, min(χ(G), χ(H)))-colourable.
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Proof: By definition, G is (kG⌈
χ(H)

tG
⌉, χ(H))-colourable and H is (kH⌈χ(G)

tH
⌉, χ(G))-colourable. Theo-

rem 6 then gives the result. ✷

Corollary 2 Let G be a (k, 2)-colourable graph. Then G✷K2 is (k + χ(G), 2)-colourable.

3.3 Products of paths, cycles and cliques

The d-dimensional grid Ml1,l2,...,ld is the Cartesian product of d paths: Ml1,l2,...,ld = Pl1✷Pl2✷ . . .✷Pld .

When all lengths are equal: l1 = l2 = . . . = ld = n, we denote the grid by Md
n .

The d-dimensional toroidal grid TMl1,...,ld is the Cartesian product of d cycles: TMl1,...,ld = Cl1✷ . . .✷Cld .

When all cycle lengths are equal: l1 = l2 = . . . = ld = n, we denote the toroidal grid by TMd
n .

The d-dimensional generalized hypercube (also known as Hamming graph) Kd
n is the Cartesian product

of Kn by itself d times: Kd
n = Kn✷Kn✷ . . .✷Kn. The hypercube Hd is the graph Kd

2 .

By Proposition 1 and Proposition 2, Pn and C4n are (4, 2)-colourable and C2n is (5, 2)-colourable for

n 6= 3. By Proposition 3, K2p is (2p(2p−1), 2p)-colourable and K2p+1 is (3p(2p+1), 2p+1)-colourable.

Therefore, Theorem 6 and Corollary 2 give the following results:

Corollary 3 For any d ≥ 2,

• the d-dimensional hypercube Hd is (2d, 2)-colourable,

• the d-dimensional grid Ml1,l2,...,ld and toroidal grid TMd
4n are (4d, 2)-colourable,

• the d-dimensional toroidal grid TM2l1,2l2,...,2ld is (5d, 2)-colourable for li 6= 3,

• the d-dimensional generalized hypercube Kd
2p is (2dp(2p − 1), 2p)-colourable,

• the d-dimensional generalized hypercube Kd
2p+1 is (3dp(2p + 1), 2p + 1)-colourable.

With Theorem 1, we obtain exact or approximate values for the strong chromatic index of some Carte-

sian products:

Corollary 4 For any d ≥ 2,

• χ′

s(Hd) = 2d,

• χ′

s(Ml1,l2,...,ld) = χ′

s(TMd
4n) = 4d, for li ≥ 3,

• 4d ≤ χ′

s(TM2l1,2l2,...,2ld) ≤ 5d, for li 6= 3,

• 2p(d − 1)(2p − 1) ≤ χ′

s(K
d
2p) ≤ 2dp(2p − 1),

• 2p(d − 1)(2p + 1) ≤ χ′

s(K
d
2p+1) ≤ 3dp(2p + 1).

Note that the exact value of the strong chromatic index of hypercubes was known before [2].
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