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Abstract. Biomedical domain and proteomics in particular are faced
with an increasing volume of data. The heterogeneity of data sources
implies heterogeneity in the representation and in the content of data.
Data may also be incorrect, implicate errors and can compromise the
analysis of experiments results. Our approach aims to ensure the initial
quality of data during import into an information system dedicated to
proteomics. It is based on the joint use of models, which represent the
system sources, and ontologies, which are use as mediators between them.
The controls, we propose, ensure the validity of values, semantics and
data consistency during import process.
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1 Introduction

Our research framework is in the biomedical domain and more specifically in
clinical proteomics. Generally, proteomic platforms study proteins of organisms.
Specifically, clinical proteomics is the study of characteristics of proteins in sam-
ples collected from groups of patients participating in a clinical study. A typical
example is the discovery of biomarkers: 1) to identify and classify diseases, 2) to
make early detection or diagnosis, and 3) to measure the response of patients to
a therapy. The workflow of proteomic platforms is based on proteomics studies,
involving a large number of samples data, from which the proteomic platforms
extract relevant characteristics through experiments. In addition to the data
used by the proteomic experiments, e.g. data resulting from mass spectrometer
analysis, the statistical studies carried out after these experiments require ac-
cessing large volume of clinical data ranging from patient’s characteristics and
samples to diagnosed pathologies, transport conditions, and the conditions of
storage of samples.

Proteomic platforms commonly use Laboratory Information Management Sys-
tem (LIMS) to manage different aspects of proteomics studies, varying from
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storing clinical information to realizing statistical studies following experiments
on various equipments. There is a direct link between the imported clinical data
in the LIM and the conclusions of a proteomic study. So, increasing the quality
of data during the import process will lead to increase the accuracy of analysis
results.

The information in the LIMS can easily be polluted by missing, redundant or
even incorrect data without an effective management of data quality. Researchers
(industries and academics) are increasingly interested in data quality [6, 21]. For
many years, methods of prevention, audit and data cleaning are used to improve
data quality in information systems. Berti-Équille lists four complementary ap-
proaches of data quality: diagnostic, adaptive, corrective and preventive ([3]).
Diagnostic approaches mainly use statistical methods to detect errors in large
amount of data. Adaptive approaches provide dynamic treatments for real time
verification of constraints to ensure data quality. Corrective approaches attempt
to detect errors by comparing data with real values and suggesting corrections.
Finally, preventive approaches deal with evaluation of models and processes used
in the LIMS.

To improve the quality of data in the context of proteomic information man-
agement, we propose a semi-automated data import method to garantee the
quality of the data imported in the LIMS is not altered by changing the context
of usage. To deal with these issues, our approach is based on three differents
levels of controls. The first level deals with data source problems. These prob-
lems, often linked due to the particularities of the partner information systems,
involve conflicts arise from the concepts manipulated by the systems. The next
two levels are centered on data usage problems, which appear when data do
not validate the context where they are imported. The context corresponds, on
one hand, to data management within the LIMS, and on the other hand, to the
domain logic. One level of control is used to ensure that data are complete and
coherent as regards to the LIMS by checking constraints linked with the model.
The other level of control checks data coherence according to the domain logic.
This level deals with the creation of rules from the domain ontology to validate
or unvalidate some data.

In the remainder of this paper, we illustrate through examples, in section
2, the issues of clinical data import. In section 3 we present tools and methods
used in our approach. Sections 4 and 5 present our approach and its implemen-
tation in clinical proteomics. Finally, section 6 concludes this paper and offers
opportunities we plan on this work.

2 Data import issues

This section presents the context in which we conduct our work and several
issues related to data import. Data are provided by external collaborators to
the platform (called “partner” in the rest of the paper). Partners can be, for
example, clinicians who own pathological files, University Hospitals which store
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biological characteristics about patients, or Biobanks which organize the stor-
age of samples, etc. Thus, for each proteomic study, the analyzed samples are
associated to clinical data that must be imported from external sources into the
LIMS.

To show the key characteristics of heterogeneity, we present some relevant
examples of datasets received by a proteomic platforms. Tables 1 and 2 are
extracted from clinical datasets provided to the proteomics platform by two
clinicians (C1 and C2 respectively). Each row of the tables is associated with a
biological sample. Data import issues can be divided in two categories: multi-
plicity of data sources and data usage.

SampleNum PatientNum Sex Birth Pathology Organ

S124 HG65 G may-26-07 LAL bone marrow

S125 LAL bone marrow

S126 HG65 B may-26-07 LAL bone marrow

S127 PM37 B juil-01-07 LAL bone marrow

Table 1. C1 clinician dataset (extract).

SampleCode BirthDay PatientCode Gender Disease Location

654 08/16/48 hj25 F neoplasm of breast breast

HG12 02/01/62 hu65 F neoplasm of breast breast

S7 04/12/56 JH34 M neoplasm of breast liver

YK37 02/29/45 dv12 F neoplasm of breast breast

Table 2. C2 clinician dataset (extract).

2.1 Problems related to the multiplicity of data sources

Partners, providing datasets, work in differents ways on samples. These various
views on samples imply heterogeneity in terms of the datasets they provide to
the proteomics platform.

Semantic conflicts have been studied extensively by researchers [15, 19, 26].
In summary, Goh identified three types of semantic heterogeneity [10]: 1) nam-
ing conflicts that occur in the presence of homonyms and synonyms, 2) scaling
conflicts that arise when description granularities are not the same, and 3) confu-
sion conflicts that arise when a word is used with two different meanings by two
actors. Degoulet, working on message exchanged among actors of the biomedical
domain, has highlighted the possibility of solving problems of semantics through
the use of controlled vocabularies [8].
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Data Semantics
The datasets in table 1 and 2 show various vocabularies for columns names.
Clinician C1 (Table 1) uses Birth while C2 clinician (Table 2) uses Birthday.
Obviously, the semantics of these two fields is the namely the patient’s date of
birth.

Data Format
We can also notice some differences on data formats. For example, in the case of
birthday, clinician C1 chooses the format mmm-DD-YY while clinician C2 chooses
the format MM/DD/YY. To match these data, data must be converted to the cor-
responding data format.

Field values and scale
Incompatible values (from different domains) can be used for corresponding fields
in the tables. For example, the patient attribute about gender (Sex for clinician
C1 and Gender for clinician C2), has as domain values {G,B} for clinician C1
(he is mainly working with children) and {M,F} for clinician C2.

Problems of scale can be divided in two categories. Measurement problems
occur for example when a volume is expressed in µl and another in ml. The other
problem concerns the granularity. For example, the same stage of development of
a tumor can be described by several fields detailing the different characteristics
of evolution in one source or by a single field that combine all characteristics in
another source.

During the import process, these problems can be solved if the format and
field of values are known and if automatic conversion methods are available.
However, the problems related to semantics are much more complex and require
technical representation of domain knowledge.

2.2 Problems related to the use of data

The management of biological and biomedical data raises many information
design problems. Chen identified four technological challenges in the field of ge-
nomics [5]: 1) complexity of data (due to various granularities reflecting various
aspects and specialities), 2) specialized knowledge (needed for capturing their se-
mantics), 3) continuing evolution of knowledge and 4) variety of profiles of people
(working in bioinformatics and trying to reach a consensus to meet a common
goal). Among these challenges, data complexity is the most challenging problem
in our context. Biological data are complex because they are heterogeneous [7],
incomplete, uncertain and inconsistent [31]. Despite these characteristics, the
expertise of proteomic experiments requires high data quality to make pertinent
conclusions.

Data completeness and coherence are a key concerns for many researchers.
Chapter 2 of Han’s book [13] gives a summary of different solutions dealing with
missing or incorrect values. One solution is to ignore the tuple or the object.
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Another solution is to manually fill data gaps and modifify incorrect data. Other
intermediates solutions use a constant, an average value or a decision tree to
determine the missing data.

Completeness
As illustrate in table 1, sample S125 (second row in table 1) exhibits missing
values for the fields used to identify the corresponding patient. Two solutions
can be considered: reject the data due to the lack of identification values or use
an annotation to distinguish the invalid data from others.

Coherence
Data describing the same concept can sometimes define different characteristics
for the concept. For example, in Table 1 even though samples S124 and S126 refer
to the same patient (HG65), gender is Boy in S124 and Girl in S126, defining
two differents genders for the same patient.

Domain Logic
The domain knowledge can highlight another problem. For example, the data
in table 2 concern a proteomics study of breast cancer. Most samples of this
datasets are taken from the breast of the patient. However, the sample S7 (third
row in the table 2) is traken from the patient’s liver. Is this a mistake made by
the clinicain or a new detail that need to be studied ? Only a domain expert can
answer this question. An implementation of a knowledge base to represent the
rules defining the domain logic can be used to detect inconsistencies in the data.

To implement our approach, we need: 1) a model representing domain knowl-
edge; 2) a model representing business knowledge (i.e. the business logic of the
proteomics platform); 3) a model of the LIMS and 4) the schema of data sources.

3 Background

Linster presents two views on model building: 1) modelling to make sense and
2) modelling to implement systems [16]. Modeling to make sense is used to
formally organize domain knowledge whereas modeling to implement, the most
commonly used, consits in organizing the components of a system to execute
them on a computer. In our proposal, we combine the two approaches by using
ontologies to represent knowledge and models to implement data quality module.

3.1 Ontologies

According to [11], an ontology is an explicit specification of a conceptualization .
In practice, ontologies can be used to represent domain knowledge or as an aid to
understand a system by separating data and domain concepts. There are various
types of ontologies used for specific purposes. Van Heijst, define four types of
ontologies ([29]): generic, domain, representation and application. In this article,
we will only discuss domain and application ontologies.
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Domain ontology
Domain ontology is used to represent consensual knowledge in a domain ([24]).
It represents the key concepts of the domain linked by various relationships. The
main relations used are specializations (is-a), synonyms and the generic relations
(related-to). This type of ontology is used to ensure the consistency of semantics
(also called semantic net by Wiederhold in [30]) among various systems. Do-
main ontology can serve as scientific reference in exchanges with partners. The
concepts and relationships are then used as a syntactic and semantic consensus.
Many efforts are made in the biomedical field for structuring knowledge in the
form of ontologies. The Gene Ontology consortium1 produces a controlled vo-
cabulary in the form of an ontology about roles of genes in protein expression
([1]).

Given the dynamic nature of knowledge, we chose to implement an evolving
system to manage domain logic. Our system is based on “rules” defined on
relationships among concepts of the domain ontology. Concerning information
systems, business rules are formal expressions that constrain some aspects of a
system. They structure, control and influence a system ([12, 22]). Recent works
have shown the benefits of rules for Semantic Web ([17, 14]). In our approach we
focus on rules for defining new part of knowledge that are not directly modeled
in the ontology. Only domain experts can define pertinents rules to be taken into
account to increase proteomics platform knowledge. The evolving characteristic
of the rules system is given by decoupling knowledge (ontologies and rules) and
implementation of the system.

Application ontology
An application ontology is used to represent the knowledge of implemented sys-
tems. Compared to domain ontologies, application ontologies respresent the re-
ality of the information systems to which they are affiliated. An ontology of
this type can be used in a system of cooperation among various partners in
a domain. It often serves as a reference for technical meetings among system
users, to determine if a concept of a system corresponds to another concept of
another system. For example, two systems with patient identifiers, PatientNum
and PatientCode, will refer to the same concept PatientId of the application
ontology. In our approach, this type of ontology is used as a mediator among
partners and LIMS schema.

3.2 Models

Models are representations of systems according to certain points of view. Among
the modeling languages, one of the most used is probably the Unified Model-
ing Language (UML). UML defines several diagrams to describe several aspect
(structural, behavioral, temporal, etc.) of a system or an application. Fowler de-
fines three ways to use UML models in his book “UML Distilled” [9]: as sketches,

1 http://www.geneontology.org
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as blueprints or as a programming language. According to Fowler, UML models
are used mainly as sketches to help the understanding of ideas among project
participants during meetings. They aren’t focused on development. Blueprints
are precise enough to be implemented by a developer. Using UML as a program-
ming language allows immediate implementation of UML models into executable
code: diagrams become the program’s source code. In our approach, UML mod-
els are defined as blueprints, they will be accurate enough to be implemented by
simple transformation into executable code.

3.3 Coupling ontologies and models

Spear ([27]) defines two dimensions for the construction of a domain description:

– the horizontal dimension (or relevance) determines the scope of information
that must be included in the representation of knowledge;

– the vertical dimension (or granularity) determines the accuracy of the rep-
resentation of knowledge.

Ontologies, due to their mechanism of refinement and specialization are best
suited to the vertical dimension of a domain. The horizontal axis is better sup-
ported by models that allow the aggregation of knowledge over large areas.

Ashenhurst asserts that the use of ontologies to guide semantics and thus the
domain knowledge is relevant [2]. Our proposal incorporates these findings by
using ontologies to support knowledge modeling and UML models (mainly class
diagram) to define structure of system components.

4 Organization of data quality components

Our approach is mainly based on the use of ontologies as mediators among part-
ner systems and LIMS system. The controls made during data import can check
and detect some errors following three steps. The first step is to check seman-
tics, domain and data format using an application ontology. The second step is
to verify data completeness and coherence through the use of the components
structure defined in the UML class diagram. The last step is to check business
rules related to the domain knowledge. Once these three steps are performed,
the validated data can be stored in the LIMS database. Figure 1 represents a
summary view of models and ontologies organization used during this process.

4.1 Clinical data model used in the LIMS

The LIMS used by the proteomics platform maintains data in a relational database
which can store identified and if necessary transformed data to ensure the rele-
vance of search tools and data quality.

Clinical data model was realized by using UML class diagram and presents
patient-specific data and their associations to pathologies (via a date of diagno-
sis, a patient may present several diseases) and to biological data samples. To
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Partners' local
data sources 
and schemas

Export schemas

Application
ontology

Ontology - ontology mappings

Domain ontology
and rules

Ontology-schema mappingsUML Models

Models implementation

LIMS

Fig. 1. Summary view of models, ontologies and mappings organization.

store ontological information, we add domain “classifications” used by proteomic
platforms. Diseases can be associated with a code complying to the International
Classification of Diseases2 proposed by the World Health Organisation. The class
diagram follows the ICD structure Chapter - Section - Element to allow a more
or less fine description. For example, a clinician may define a disease by ICD
code C78.7 (Secondary malignant neoplasm of the liver) or by the code C00-D48
(malignant tumors) according to the accuracy of information provided . The
cancer tumors may be associated with a code TNM (Tumor, Nodes, Metastasis)
to define the extent of tumor in a patient’s body.

4.2 Ontologies

Two ontologies are needed in our approach: a domain ontology to support the do-
main knowledge and an application ontology to support specific partners knowl-
edge.

Domain ontology
The construction of this ontology followed a method based on “relevant ques-
tions” and by searching common concepts in the domain. According to Brusa
[4], relevant questions are questions posed by experts during their “investiga-
tions” and that the ontology can provide an answer for. Here is an example of

2 International Classification of Diseases (ICD), http://www.who.int/

classifications/icd
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a relevant question: “ Can I know the extent of this tumor ?”. The other aspect
of the construction of this ontology is based on the finding of common concepts
([28]).

root

Disease

Patient

TNM
Anatomy

A01
Stem

sex patientId

A03
Digestive System

A03.620
Liver 

A01.236
Breast

C00-D48
Malign tumor

C78.7
Secondary malignant 

neoplasm of liver

Tx T0 T1

T N M

Nx N1

sampleId

D10-D36
Benign tumors

volume

part-of
part-of

part-of
part-of

is-a
is-a

sequence of is-a

part-of
part-of

Sample
 affectedOrgan

Specialization of
 affectedOrgan

Fig. 2. Domain ontology (extract).

Figure 2 presents an extract from the domain ontology. The resource con-
sensus that we have chosen to respond to relevant questions are CIM, TNM
nomenclature, the branch of anatomy of MeSH and recommendations of the Na-
tional Cancer Institute (INCA) in tumors banks3. This recommendation includes
common concepts of clinical data.

The rules, we use in our approach, are based on associations among concepts
of domain ontology. An example of “associations for rules” is shown on Figure 2.
It specifies which organs are affected by diseases. For this, we define a generic re-
lation affectedOrgan linking the concept Anatomy (from the MeSH branch) and
the concept Disease (from the ICD branch). Then, the expert must “specialize”
knowledge by defining which organs are affected by diseases: e.g. the Liver is an
organ affected by the pathology C78.7 (secondary malignant neoplasm of liver).
A rule must then be created defining the validity of a sample if the pathology
and the organ are mutually relevant.

Application ontology
The application ontology is used as a mediator between the models of partners

3 Tumour banks are banks of cryopreserved tumor tissues.
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and the model of the LIMS. It is designed in agreement with key partners and the
proteomic platform. Each partners’ schema has a match between the descriptors
of data (classes, attributes, headers, etc.) and a concept of the ontology. Figure
3 is an extract of our application ontology.

root

Sample

Patient

Measure

Quantity Volume

has for quantity

has for volume

Identifier

PatientId

IdSample

has for id

has for id

PatientNum PatientCode

BirthDay
date

Diagnostic
date

Dates

has for birthdayLocation

has for location

Fig. 3. Application ontology (extract).

4.3 Mappings

We borrow the concept of mapping used in ontology alignment works ([25, 23])
to represent correspondences among concepts of two ontologies and among the
concepts of the application ontology and the schema descriptors. We use two
types of mappings: ontological mappings between two concepts of ontologies and
ontology-schema mappings linking a ontological concept to a schema descriptor.

Ontological mappings
Ontological mappings MO are mappings of type 1..1 to express an equivalence
between concepts. In our approach, this mapping is used to match the con-
cepts of the application ontology to those of the domain ontology. The mappings
are made during the construction of two ontologies and must be updated when
one (or both) ontology (ies) evolve. For example, we have created the follow-
ing ontological mapping: MO1 (AnatomyDO, LocationAO) to match the concept
Anatomy of the domain ontology DO and the concept Location of application
ontology AO.
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Definition 1. An ontological mapping MO is a pair 〈Co1, C
′
o2〉 where C is a

concept of an ontology o1 and C ′ is a concept of an ontology o2.

We decide to make a loose coupling among application ontology and domain
ontology because of their different degree of evolution. The domain ontology
is not set to change often, because its concepts are adopted by many experts.
The application ontology can be extended and modified at each arrival (possibly
departure) of a partner. The loose coupling among these two ontologies allows
us, when modifying an ontology, to not impact the other concepts.

Ontology-schema mappings
Ontology-schema mappings MOS link the concepts of an application ontology to
data schemas descriptors. The mappings can be of type 1..1 linking one concept
of an ontology to one descriptor of the schema, type 1..n linking one concept of
an ontology to several descriptors of the schema, or type n. .1 linking several
concepts from ontology to one single descriptor. The mappings define what is
the exact meaning of each schema descriptor.

Definition 2. A ontology-schema mapping MOS is a pair 〈{DS}, {Co}〉 com-
posed of a set of descriptors D from the schema S and a set of C concepts of
ontology o.

For example, the below are two ontology-schema mappings:

– MOS1 (NumPatientLIMS , PatientIdAO) which allows to link the NumPa-
tient from the LIMS schema and the concept PatientId of the application
ontology AO;

– MSO2 ({TumorP1, NodeP1,MetaP1}, TNMStageAO) which allows to link
the three descriptors Tumor, Node and Meta form the P1 partner’s schema
and the concept TNMStage of the application ontology AO.

Descriptors of schemas are also linked by ontology-schema mappings with the
data formats branch of the application ontology. For example in our LIMS, the
descriptor BirthDate is mapped to the format DD/MM/YYYY while the birthday
date of the schema of partner 1 (Birth) is linked to the format DD-MM-YY. So we
have two types of ontology-schema mappings: 1) to define the meaning of the
descriptors and 2) to define the data format. The joint use of these both types
of mappings allows to find the conversion function required to transform values.

Each schema has its specific characteristics. The entry of a new partner in
this system may in some cases be made without changing the application ontol-
ogy. We only have to perform ontology-schema mappings among descriptors and
application ontology. In other cases, it is necessary to change the application on-
tology concepts impacted by specializing concepts. Ontology-schema mappings
corresponding to other partners will not be impacted by such changes. For ex-
ample, if a new partner is defining the location of samples by the use of two
descriptors, we can expand the concept of Location of application ontology in
two “sub-concepts”: Position and Depth.
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5 Implementation of the approach

The implementation of our approach has three main steps. The first step in-
volves the creation of objects based on the semantic definition and format of the
data. The second step is to check coherence and completeness of the objects in
accordance with the schema of our LIMS. The third and final step is to check the
consistency of objects according to the domain logic. Figure 4 summarizes the
various steps of our approach, for reasons of clarity, we do not show mappings
present in Figure 1.

Construction of objets 
(based of OS mappings)

Knowledge
base

Application ontology

Domain ontology and 
rules

UML models

Export schema

Completeness and coherency controls
(based on models)

Consistency control
(based on rules)

Syntax
objects

Invalid objects

Complete objects

annotation

LIMS database

Consistent objects

Data flow

Interactions

Fig. 4. Data flow in our approach.

The first control concerns the semantics and data format. It uses ontology-
schema mappings to determine semantics of each descriptor. Comparison of map-
pings performed on the LIMS’ schema to those made on the partners’ schema,
hilights: 1) the correspondences among partners and LIMS descriptors, and 2)
the conversion operations required to transform data values. The construction
of objects is based on these two pieces of information. At the end of this step,
we have “syntax objects”.

Once the objects are created, we can check coherence and completeness. The
use of UML class diagram as a structural model of our system allows you to spec-
ify optional and mandatory associations between objects. Thus we can identify
association errors between objects. We can also verify the consistency of some
data within objects. Biological material is rare, we can not reject all of the in-
valid data. Invalid objects are inserted into the database with an annotation.
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For example, the clinician at the source of data set will be questioned to deter-
mine the gender of the patient. The annotation prevents the use of the biological
sample within an experiment.

Once the objects checked, the rule engine takes into account the facts, i.e.
the newly created objects and knowledge, and rules. At the end of this process
we obtain consistent objects that have successfully passed three controls, or we
obtain invalid objects. The rules supported by our implementation of the engine
are written in SWRL ([14]) in accordance with the DL-Safe restriction [18]. For
example, the following rule: “a sample is valid if the disease for which it is studied
and if the organ from which it comes are mutually relevant” will be defined as:

Sample(?s), affectedOrgan(?o,?d), disease(?d)

=> ValidSample(?s)

The implementation of our approach describes in this article is included in
the Clinical Module eClims4 of open source LIMS ePimsTM. Due to the confi-
dentiality characteristic of proteomics data, we only could test our processes on
only one dataset provided to the CLIPP5 platform by a clinician. This dataset
is a CSV file containing 345 samples and 64 relevant descriptors. We identified
114 samples which do not match overall quality. 9 of these 114 samples were not
consistent and the rule engine found problems concerning the sex of patients.
The remaining 105 samples present some problems of completeness.

6 Conclusion

Our data import system ensures the initial quality of clinical proteomics data.
The implementation may require a major human investment especially during
the ontologies creation. But this initial investment guarantee to each dataset
coming from one source, the same overall quality. As our approach is center
on the LIMS’ system, the scalability of this method is acceptable because of
the centralization of the components. Adding new sources, “only” require the
creation of new ontology-schema mappings between the source schema and the
application ontology.

The main perspective is the automatic creation of ontology-schema mappings,
especially during the addition of a new partner. This improvement would almost
allow complete automation of our approach. To this end, we are interested in
papers related to automatic alignment of ontologies ([20]).

4 Further information and screenshots are available on the website: http://eclims.
u-bourgogne.fr

5 CLIPP: CLinical and Innovation Proteomic Platform. http://www.clipproteomic.
fr
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