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Salient pixels and dimensionality reduction for display of multi/hyperspectral images

Dimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that it is more efficient to consider the variance of a small group of pixels representing several OoI, which must be separated by the projection. We propose an efficient method based on saliency to automatically identify OoI and extract only a few relevant pixels to enhance the separation foreground/background in the DR process.

Introduction

Dimensionality Reduction (DR) is a very common process in multi/hyperspectral imagery to project pixels to a space with a small number of attributes such as a three-dimensional color space (sRGB, HSV). To do so, many techniques were proposed, which are roughly divided into two categories: the ones which transform and the ones which select spectral channels. Even though Band Selection (BS) can be thought of as a generalization of transformation, they are based on two very different philosophies. Indeed, BS aims to preserve the physical meaning of spectral channels during the DR [START_REF] Chang | A joint band prioritization and banddecorrelation approach to band selection for hyperspectral image classification[END_REF][START_REF] Guo | A fast separability-based featureselection method for high-dimensional remotely sensed image classification[END_REF][START_REF] Du | Similarity-based unsupervised band selection for hyperspectral image analysis[END_REF], whereas band transformation techniques such as Principal Components Analysis (PCA) [START_REF] Jia | Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification[END_REF][START_REF] Tyo | Principal-components-based display strategy for spectral imagery[END_REF], Independent Components Analysis [START_REF] Wang | Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[END_REF] or true color [START_REF] Poldera | Visualization of spectral images[END_REF][START_REF] Jacobson | Design goals and solutions for display of hyperspectral images[END_REF], can mix channels to better fuse information along the spectrum. Evidently, the choice between these two approaches is application-driven.

The major drawback of most methods in the literature is that they are based on the assumption that all the pixels are part of the same population, i.e. performing a global mapping. Some approaches such as the Orthogonal Subspace Projection (OSP) [START_REF] Du | Similarity-based unsupervised band selection for hyperspectral image analysis[END_REF] require a regular subsampling of the pixel population (down to 1% without noticeable change, according to the authors) in order to alleviate their respective complexity. Scheunders [START_REF] Scheunders | Multispectral image fusion using local mapping techniques[END_REF] proposed to spatially divide the image into square blocks in order to achieve local mappings by means of PCA and Neural Network-based techniques. However, natural scenes are rich and complex, showing large contrasts among their constituents, therefore a more dedicated spatial partitioning would better take care of these properties.

In this paper, we propose to use a non-visual saliency detection [START_REF] Lemoan | Saliency in spectral images[END_REF] to extract relevant pixels, so that to respect the properties of the scene. Three sets of pixels are extracted: the salient ones, the surrounders and the background. Only a few pixels are then extracted, by means of PCA, so that to represent each of the first two sets aforementioned in the dimensionality reduction process.

The remainder of this paper is structured as follows: We first tackle the extraction of the representing set of pixels and present the results obtained, before conclusion.

Pixel selection

As explained earlier, we aim to perform DR by means of a minimum-sized set of pixels to speed up the process, but not only. One of the tasks of DR is to convey, nay, enhance the relative discrepancies between the various Objects of Interest (OoI), contained in the input data. When it comes to images, it is generally equally weighted over the spatial dimensions, despite the rich and complex properties of natural scenes.

To obtain saliency maps from high dimensional images, we used the model that was previously introduced by Le Moan et al. [START_REF] Lemoan | Saliency in spectral images[END_REF]. It is inspired by the famous Itti model [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] and uses euclidean distance, spectral angle and Gabor filtering to compute low-resolution saliency maps. Figure 3 shows the results obtained on 4 images of the database introduced and used in the results section. It is important to note that these maps depict non-visual saliency, which can be seen as a measure of informative content, as they are computed regardless of the human visual system.

By thresholding these maps into three parts, we isolate different sets of pixels according to their respective contribution to the scene:

-The salient pixels, Ω 1 , are the pixels whose level of saliency is higher than a threshold T up . -The surrounders, Ω 2 , are the pixels whose level of saliency is lower than T up and higher than T down . -The background pixels, Ω 3 , are all the rest. Figure 1 shows an example of such segmentation on a natural scene, using different threshold values. The values of the optimal threshold are of course scene-dependent. We recommend to define them according to the separation of objects present in Ω 1 and Ω 2 . For example, the segmentation in Figure 1b would be a more relevant choice than the one in 1c, where the flower petals spread out on both Ω 1 and Ω 2 , which is undesirable. In this study, the optimal thresholds were defined manually for each scene.

In order to extract a set of representative pixels from each segment, we used PCA [START_REF] Smith | A tutorial on principal components analysis[END_REF], over the spatial dimensions. During our experiments, we assessed that no more than five principal components are necessary to explain most of the data's energy (more than 95%) and therefore to represent each Ω 1 and Ω 2 (as we disregard the background). Eventually, only 10 pixels are considered to compute the projection matrix.

Moreover, by mastering the number and type of objects present in the input data, one allows the latter algorithm to be more dedicated to conveying the discrepancies between, in our case, objects in Ω 1 and Ω 2 . Considering the relatively high computational complexity of PCA, we performed a random subsampling of 50 pixels in both groups. Moreover, resulting components are then normalized so that to fit the range [0..1]. Figure 2 shows an example of the principal components obtained.

Experiments and results

Datasets

In this study, we used 4 natural scenes from the multispectral image database used in [START_REF] Nascimento | Statistics of spatial cone-excitation ratios in natural scenes[END_REF]. They contain 31 spectral channels each, covering the visible range of wavelengths (400-700nm). For more information about the acquisition system, calibration and processings, please refer to the database webpage1 .

Pre-processing and normalization

In the raw reflectance data R raw , all pixels above a threshold ω = R +3 * std(R) has been clipped to ω, to remove the influence of outliers and noisy pixels. The result was divided by its maximal value so that it fits in the range [0..1]. Moreover, bands with average reflectance value below 2% and those with low correlation (below 0.8) with their neighboring bands have been removed, as suggested in [START_REF] Cai | Hyperspectral imagery visualization using double layers[END_REF].

Dimensionality reduction techniques

We selected three dimensionality reduction techniques to illustrate the proposed approach.

-Information-based Band Selection (IBS). We used the band selection approach that was used in [START_REF] Lemoan | A constrained band selection method based on information measures for spectral image color visualization[END_REF] without the spectrum segmentation. It is based on a progressive research of dissimilar channels from single to third order.

-Orthogonal Subspace Projection-based Band Selection OSPBS [START_REF] Du | Similarity-based unsupervised band selection for hyperspectral image analysis[END_REF] is a stateof-the-art band selection approache which consists of progressively selecting bands by maximizing their respective orthogonality.

-P C A hsv is the traditional Principal Components Analysis of which components are mapped to the HSV color space, according to the normalization used in [START_REF] Tyo | Principal-components-based display strategy for spectral imagery[END_REF], without shifting the origin of the HSV cone.

Band selection approaches have been implemented in such a way that the band are eventually sorted by descending wavelength before mapping to sRGB.

Results

Figure 3 shows the true color composites of the images used in this study, as well as the corresponding saliency maps. Figures 4 to 6 show the results obtained by means of the different dimensionality reduction techniques, both by considering all the pixels in the image (or a uniform subsampling for OSPBS) and only a reduced set of pixels. Fig. 3. True color composites (first row) and the corresponding saliency maps (computed from the high-dimensional datasets) Fig. 4. IBS approach. First row: using all the pixels in the image. Second row: using a reduced set. Fig. 5. OSPBS approach. First row: using a uniform subsampling of 1% of the image's pixels. Second row: using a reduced set. Fig. 6. PCA hsv approach. First row: using all the pixels in the image. Second row: using a reduced set.

The optimal thresholds for each scene are given in table 1. OSPBS obtains their best results with a quite low upper threshold (0.3), while IBS and PCA hsv perform better with a very reduced set of pixels. Overall, we observe that the most salient objects are emphasized, mostly because of a darkening or a diminution of contrast of their surroundings. Note that the natural rendering of these composites is considered outside the scope of this study, although it is very tempting to subjectively judge them according to this single feature.

In order to objectively evaluate the results, we used the color difference metric ∆E * , which measures the Euclidean distance in the perceptually uniform color space CIELAB. Let ω 1 and ω 2 be two sets of 20 randomly selected pixels from Ω 1 and Ω 2 , respectively. Now let ∆12 be the average color difference between ω 1 and ω 2 , on a composite obtained with considering all pixels or a uniform subsampling and let ∆12

have the same definition but on a composite obtained by the proposed approach. We define the improvement of saliency δ s = ∆12 -∆12 . Table 2 shows the values obtained in this experiment. 2 . Improvements of saliency δs. Difference of average Euclidean distance in CIELAB between Ω1 and Ω2, using all the pixels versus using only a subset.

Results show that there is an overall increase of conspicuity for the top salient objects. It is not surprising to see that the PCA is more sensitive to the pixel selection as it is more adaptive to the data and has more degrees of freedom than the BS techniques. However, it also shows less contrast in the background areas, due to the fact that these pixels are disregarded during the computation of the projection matrix. Scene 3 shows the best results, mainly because of the well-defined salient region on the bottom left side.

Conclusions

We introduced a new approach to perform dimensionality reduction in spectral images over a limited number of relevant pixels. By thresholding the saliency map of the high-dimensional image, we classify pixels according to their conspicuity in the scene, that we assume to be related to their overall relevance in a visualization task. Dimensionality reduction is then performed so that to focus on emphasizing these most important areas. Results show an increased conspicuity of the selected objects of interest, both objectively and subjectively.

Yet, several challenges remain such as the efficient finding of optimal parameters for thresholding and the number of principal components to represent each set of pixels.

Fig. 1 .

 1 Fig. 1. Examples of saliency-based thresholding. Left: true color composite, Middle: Tup =0 .3 and T down =0 .1, Right: Tup =0 .5a n dT down =0 .3. Saturated areas represent the salient pixels while surrounders are shown in grey and background in black.

Fig. 2 .

 2 Fig. 2. Examples of (first and second) principal components obtained. Disks: representing Ω1 and Crosses: representing Ω2. We can observe for instance that the first PCs (plain lines) are discriminable mostly in the first half of the image's spectrum.

Table 1 .

 1 Optimal thresholds

		scene 1 scene 2 scene 3 scene 4
	Tup	0.3	0.7	0.5	0.9
	T down	0.1	0.5	0.3	0.8
		scene 1 scene 2 scene 3 scene 4
	IBS	18.8	4.0	44.9	23.7
	OSPBS 13.9	26.1	32.5	2.1
	PCA hsv 20.5	42.8	47.3	9.0
	Table				
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