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Abstract. Dimensionality Reduction (DR) of spectral images is a com-
mon approach to different purposes such as visualization, noise removal
or compression. Most methods such as PCA or band selection use either
the entire population of pixels or a uniformly sampled subset in order to
compute a projection matrix. By doing so, spatial information is not ac-
curately handled and all the objects contained in the scene are given the
same emphasis. Nonetheless, it is possible to focus the DR on the sepa-
ration of specific Objects of Interest (OoI), simply by neglecting all the
others. In PCA for instance, instead of using the variance of the scene
in each spectral channel, we show that it is more efficient to consider
the variance of a small group of pixels representing several OoI, which
must be separated by the projection. We propose an efficient method
based on saliency to automatically identify OoI and extract only a few
relevant pixels to enhance the separation foreground/background in the
DR process.

1 Introduction

Dimensionality Reduction (DR) is a very common process in multi/hyperspectral
imagery to project pixels to a space with a small number of attributes such as
a three-dimensional color space (sRGB, HSV). To do so, many techniques were
proposed, which are roughly divided into two categories: the ones which trans-

form and the ones which select spectral channels. Even though Band Selection
(BS) can be thought of as a generalization of transformation, they are based
on two very different philosophies. Indeed, BS aims to preserve the physical
meaning of spectral channels during the DR [1,2,3], whereas band transforma-
tion techniques such as Principal Components Analysis (PCA) [4,5], Indepen-
dent Components Analysis [6] or true color [7,8], can mix channels to better
fuse information along the spectrum. Evidently, the choice between these two
approaches is application-driven.

The major drawback of most methods in the literature is that they are based
on the assumption that all the pixels are part of the same population, i.e. per-
forming a global mapping. Some approaches such as the Orthogonal Subspace
Projection (OSP) [3] require a regular subsampling of the pixel population (down



to 1% without noticeable change, according to the authors) in order to allevi-
ate their respective complexity. Scheunders [9] proposed to spatially divide the
image into square blocks in order to achieve local mappings by means of PCA
and Neural Network-based techniques. However, natural scenes are rich and
complex, showing large contrasts among their constituents, therefore a more
dedicated spatial partitioning would better take care of these properties.

In this paper, we propose to use a non-visual saliency detection [10] to extract
relevant pixels, so that to respect the properties of the scene. Three sets of pixels
are extracted: the salient ones, the surrounders and the background. Only a few
pixels are then extracted, by means of PCA, so that to represent each of the
first two sets aforementioned in the dimensionality reduction process.

The remainder of this paper is structured as follows: We first tackle the
extraction of the representing set of pixels and present the results obtained,
before conclusion.

2 Pixel selection

As explained earlier, we aim to perform DR by means of a minimum-sized set
of pixels to speed up the process, but not only. One of the tasks of DR is
to convey, nay, enhance the relative discrepancies between the various Objects
of Interest (OoI), contained in the input data. When it comes to images, it
is generally equally weighted over the spatial dimensions, despite the rich and
complex properties of natural scenes.

To obtain saliency maps from high dimensional images, we used the model
that was previously introduced by Le Moan et al. [10]. It is inspired by the
famous Itti model [11] and uses euclidean distance, spectral angle and Gabor
filtering to compute low-resolution saliency maps. Figure 3 shows the results
obtained on 4 images of the database introduced and used in the results section.
It is important to note that these maps depict non-visual saliency, which can be
seen as a measure of informative content, as they are computed regardless of the
human visual system.

By thresholding these maps into three parts, we isolate different sets of pixels
according to their respective contribution to the scene:

– The salient pixels, Ω1, are the pixels whose level of saliency is higher than
a threshold Tup.

– The surrounders, Ω2, are the pixels whose level of saliency is lower than
Tup and higher than Tdown.

– The background pixels, Ω3, are all the rest.

Figure 1 shows an example of such segmentation on a natural scene, using
different threshold values. The values of the optimal threshold are of course
scene-dependent. We recommend to define them according to the separation of
objects present in Ω1 and Ω2. For example, the segmentation in Figure 1b would
be a more relevant choice than the one in 1c, where the flower petals spread out
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Fig. 1. Examples of saliency-based thresholding. Left: true color composite, Middle:
Tup = 0.3 and Tdown = 0.1, Right: Tup = 0.5 and Tdown = 0.3. Saturated areas
represent the salient pixels while surrounders are shown in grey and background in
black.

on both Ω1 and Ω2, which is undesirable. In this study, the optimal thresholds
were defined manually for each scene.

In order to extract a set of representative pixels from each segment, we used
PCA [12], over the spatial dimensions. During our experiments, we assessed
that no more than five principal components are necessary to explain most of
the data’s energy (more than 95%) and therefore to represent each Ω1 and Ω2

(as we disregard the background). Eventually, only 10 pixels are considered to
compute the projection matrix.

Moreover, by mastering the number and type of objects present in the input
data, one allows the latter algorithm to be more dedicated to conveying the dis-
crepancies between, in our case, objects in Ω1 and Ω2. Considering the relatively
high computational complexity of PCA, we performed a random subsampling
of 50 pixels in both groups. Moreover, resulting components are then normal-
ized so that to fit the range [0..1]. Figure 2 shows an example of the principal
components obtained.

3 Experiments and results

3.1 Datasets

In this study, we used 4 natural scenes from the multispectral image database
used in [13]. They contain 31 spectral channels each, covering the visible range of
wavelengths (400-700nm). For more information about the acquisition system,
calibration and processings, please refer to the database webpage1.

3.2 Pre-processing and normalization

In the raw reflectance data Rraw, all pixels above a threshold ω = R̄+3∗std(R)
has been clipped to ω, to remove the influence of outliers and noisy pixels.

1 http://personalpages.manchester.ac.uk/staff/david.foster/...
...Hyperspectral images of natural scenes 02.html



Fig. 2. Examples of (first and second) principal components obtained. Disks: repre-
senting Ω1 and Crosses: representing Ω2. We can observe for instance that the first
PCs (plain lines) are discriminable mostly in the first half of the image’s spectrum.

The result was divided by its maximal value so that it fits in the range [0..1].
Moreover, bands with average reflectance value below 2% and those with low
correlation (below 0.8) with their neighboring bands have been removed, as
suggested in [14].

3.3 Dimensionality reduction techniques

We selected three dimensionality reduction techniques to illustrate the proposed
approach.

– Information-based Band Selection (IBS). We used the band selection ap-
proach that was used in [15] without the spectrum segmentation. It is based
on a progressive research of dissimilar channels from single to third order.

– Orthogonal Subspace Projection-based Band SelectionOSPBS [3] is a state-
of-the-art band selection approache which consists of progressively selecting
bands by maximizing their respective orthogonality.

– PCAhsv is the traditional Principal Components Analysis of which compo-
nents are mapped to the HSV color space, according to the normalization
used in [5], without shifting the origin of the HSV cone.

Band selection approaches have been implemented in such a way that the
band are eventually sorted by descending wavelength before mapping to sRGB.



3.4 Results

Figure 3 shows the true color composites of the images used in this study, as well
as the corresponding saliency maps. Figures 4 to 6 show the results obtained by
means of the different dimensionality reduction techniques, both by considering
all the pixels in the image (or a uniform subsampling for OSPBS) and only a
reduced set of pixels.

Fig. 3. True color composites (first row) and the corresponding saliency maps (com-
puted from the high-dimensional datasets)

Fig. 4. IBS approach. First row: using all the pixels in the image. Second row: using
a reduced set.



Fig. 5. OSPBS approach. First row: using a uniform subsampling of 1% of the
image’s pixels. Second row: using a reduced set.

Fig. 6. PCAhsv approach. First row: using all the pixels in the image. Second row:
using a reduced set.

The optimal thresholds for each scene are given in table 1. OSPBS obtains
their best results with a quite low upper threshold (0.3), while IBS and PCAhsv

perform better with a very reduced set of pixels. Overall, we observe that
the most salient objects are emphasized, mostly because of a darkening or a
diminution of contrast of their surroundings. Note that the natural rendering
of these composites is considered outside the scope of this study, although it is
very tempting to subjectively judge them according to this single feature.



In order to objectively evaluate the results, we used the color difference metric
∆E∗, which measures the Euclidean distance in the perceptually uniform color
space CIELAB. Let ω1 and ω2 be two sets of 20 randomly selected pixels from
Ω1 and Ω2, respectively. Now let ∆̄12 be the average color difference between
ω1 and ω2, on a composite obtained with considering all pixels or a uniform
subsampling and let ∆̄12

�

have the same definition but on a composite obtained
by the proposed approach. We define the improvement of saliency δs = ∆̄12

�

−

∆̄12. Table 2 shows the values obtained in this experiment.

scene 1 scene 2 scene 3 scene 4

Tup 0.3 0.7 0.5 0.9

Tdown 0.1 0.5 0.3 0.8
Table 1. Optimal thresholds

scene 1 scene 2 scene 3 scene 4

IBS 18.8 4.0 44.9 23.7

OSPBS 13.9 26.1 32.5 2.1

PCAhsv 20.5 42.8 47.3 9.0
Table 2. Improvements of saliency δs. Difference of average Euclidean distance in
CIELAB between Ω1 and Ω2, using all the pixels versus using only a subset.

Results show that there is an overall increase of conspicuity for the top salient
objects. It is not surprising to see that the PCA is more sensitive to the pixel
selection as it is more adaptive to the data and has more degrees of freedom
than the BS techniques. However, it also shows less contrast in the background
areas, due to the fact that these pixels are disregarded during the computation
of the projection matrix. Scene 3 shows the best results, mainly because of the
well-defined salient region on the bottom left side.

4 Conclusions

We introduced a new approach to perform dimensionality reduction in spectral
images over a limited number of relevant pixels. By thresholding the saliency
map of the high-dimensional image, we classify pixels according to their con-
spicuity in the scene, that we assume to be related to their overall relevance
in a visualization task. Dimensionality reduction is then performed so that to
focus on emphasizing these most important areas. Results show an increased
conspicuity of the selected objects of interest, both objectively and subjectively.



Yet, several challenges remain such as the efficient finding of optimal parameters
for thresholding and the number of principal components to represent each set
of pixels.
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