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Abstract

We present in this paper the decomposition of human skirrpbisn spectra with a Non-negative
Matrix Factorization method. In doing so, we are able to difiathe relative proportion of the
main chromophores present in the epidermis and the dermésprédéent experimental results
showing that we obtain a good estimate of melanin and herbogkmoncentrations. Our ap-
proach has been validated by analyzing the human skin aimoigpectra in areas of healthy
skin and areasfected by melasma on eight patients.

Keywords: Non-negative Matrix Factorization, Spectral ReconstamgtChromophores
guantification, Skin optical reflectance maps.

1. Introduction

Optical reflectance properties of skin can provide valuabiermation regarding its bio-
chemical composition. This information can be very usefuldkin characterization and can
contribute to the early detection of a wide-range of patigls. Interest in the optical reflectance
of skin analysis mainly stems from the fact that useful infation about skin composition (e.g.
melanin, hemoglobin etc.) and physiologic parameters (@fpr, erythema and pigmentation,
etc.) can be obtained in a real-time and non-invasive manigplications of the analysis of
spectral properties of skin are numerous. For example, uneaent of the melanin content
in skin is essential in the study of hyper or hypo-pigmentatis well as in the assessment of
skin appearance. Melanin is also involved in several hurkanpathologies such as malignant
melanoma, albinism, vitiligo and melasma. Another impatrtapplication is the quantitative
assessment of inflammation, erythema and occlusion, by srafdremoglobin content and oxy-
gen saturation evaluation. Finally, knowledge of the stait) properties can reveal information
about the morphology and architecture of skin, such as geraent and density of the collagen
fibers in the dermis.

The phenomena of light absorption and scattering in humam cn be modeled by the
Radiative Transfer Equation (RTE). An inverse analysishef RTE yields then to the retrieval
of tissue optical parameters such as absorption and sogttardficients. This inverse problem
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can be solved with indirect methods such as Monte Carlo, kak&unk theory or difuse theory
(Tuchin (2007); Jacques (2009); Wang et al. (1995); Jacgqndd?ogue (2008)). Also, simplest
methods based on the Beer-Lambert law have been used fosskghinteraction analysis. As
example, linear regression and statistical approachesthesn used for the analysis of changes
in the concentration of melanin and hemoglobin in refleaaswectra (Shimada et al. (2000);
Tsumura et al. (1999)).

Human skin can be represented as a scattered multilayererduse. Consequently, it is
possible to study the interaction between light and therdlegghores (pigments) composing these
layers. Several chromophores absorb light in skin. Howeahermain chromophoredfacting
the reflectance spectra in the visible light wavelength ezarg melanin and hemoglobin (Zonios
and Dimou (2009)).

We propose in this paper the use of a Blind Source Separ&i®8) algorithm for the quan-
tification of the main chromophores in epidermis and dermis.especially study in this paper
the use of a Non-negative Matrix Factorization (NMF) algaor. Then, we present experimen-
tal results showing that the obtained concentration mapsaagood estimate of melanin and
hemoglobin concentration.

The reflectance maps have been acquired using a Hyper-8pbuoaging (HSI) system
named ASCLEPIOS (Analysis of Skin Characteristics by Ligtission and Processing of
Images Of Spectrum) (Jolivot et al. (2011b)). This systemsigis of two parts. First, Multi-
Spectral Images (MSI) are acquired by an optical setup ceegpof a light source, a filter
wheel, and a monochromatic camera. Then, a Hyper-Specitaé (HSC) is generated by a
neural network-based algorithm.

Melanin, which is a pigment present in the epidermis andaesible for the assessment of
skin color, have shown its strong relation with melasma. ddela is a tan or dark skin dis-
coloration and occurs as a result of excess melanin pramuetiskin cells. Consequently, we
experimentally validate the chromophores quantificaticth WMF by analyzing the amount of
melanin in areas of healthy skin and arefis@ed by melasma. The human skin data used in this
analysis have been obtained from 8 voluntediscied with melasma lesions on their cheeks.

The paper is organized as follows. We present in section Byper-Spectral data acquisition
system and its experimental validation. Then, in sectiow&,present the decomposition of
human skin reflectance maps in proportion of the main chrdomgs present in epidermis and
dermis by using NMF algorithm. Finally, section 4 presengsegimental results showing that
the obtained concentration maps are a good estimate of melad hemoglobin concentration.
It is also presented an analysis of these chromophore ctratiens in areas of healthy skin and
areas fiected by melasma from eight volunteers.

2. Hyper-Spectral Data Acquisition System

2.1. Principle

Visible reflectance maps from human skin have been acquiredHyper-Spectral Imaging
(HSI) system named ASCLEPIOS (Jolivot et al. (2011b)). Tégussition system is illustrated
in Fig. 1. It consists of two parts: the acquisition of MuBipectral Images (MSI) by an optical
setup, and the generation of a Hyper-Spectral Cube (HSChleyial network-based algorithm.

The optical setup for the MSI acquisition system is compasedight source, a filter wheel,
and a monochromatic camera. Light source corresponds toanac lamp with light spectrum
in the range of 380 to 800 nm. This light is filtered consealyiby 10 interference filters placed
in the revolving wheel. The Full Width at Half Maximum of eafillter is 80 nm.
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Figure 1: ASCLEPIOS system configuration. (a) Optical gefew the acquisition of Multi-Spectral Images from human
skin sample. (b) Generation of a Hyper-Spectral Cube by aaheatwork-based algorithm (Mansouri et al. (2005)).
The HSC gives the visible reflectance map at each wavelength.

The filtered light is transported through a light guide ilimating the object of interest.
Then, monoband images of a Region Of Interest (ROI) are esgjuising a monochromatic
camera with an ad-hoc optical objective with built-in chidio correction over the entire oper-
ating wavelength range.The system has been previouslyratdd at each filter. In this way, the
systematic noiseffecting the reconstruction of the reflectance spectrum &tgiael is removed.
Non uniform illumination of the system are also calibrat&te ROI size is 3& 32mn?. This set
of 10 monoband images constitutes the MSI. The acquisiti@MSI lasts less than 2 seconds.
Therefore, if the patient is properly installed, we can @dersthat the scene is completely static.

These MSI are then processed by a neural network-basedthiggMansouri et al. (2005))
which aims is to retrieve, from the camera signal, the redlemt spectrum at each pixel of the
ROI. In this way, the HSCi{j, 1) is formed, where and j denote the spatial dimensions and
the spectral one. In doing so, we obtain at each bandwidthghtal map of reflectance values
from the evaluated ROI.

The neural network is composed of two steps: learning andnstruction. The learning
process involves the use of a setRf= 24 patches (GretagMacBeth CoIorChe@érwhich
represent various spectra whose spectral properties akenknFrom this set of patches, two
acquisitions are performed. A first one by a spectrophotenpabviding N values of spectral
reflectance curve for each patgh)( This first acquisition yields to a learning matRq(N x P).
The second acquisiton corresponds to 24 MSI (a MSI for eatthpg®), each one containing
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K (K = 10) gray level values obtained from the averaged HSC at eattdhp The later leads
to a matrixD (K x P). These matrices constitute then a set of corresponding(ippiut D
and expected-outpR data) used by the neural network to perform a superviseditgar The
learning stops when it reaches the minimum of the validatioor. Once learned, neural network
outputs a coicient matrixQ (called synaptic caficient matrix) of sizelN x K].

The reconstruction of an Hyper-Spectral Cube is fast anglsifbecause the operation is a
product between the cficient matrix and the camera response or Multi-Spectraltimplues.
The implemented reconstruction function is flexible andwadl diferent sampling rate from 10
to 1 nm yielding reconstructed spectra of N values (rangiomf36 to 400 respectively).

Within the framework of this work, the estimated HSC is cosgubof 36 bands between 430
and 780 nm. The Full Width at Half Maximum of each band is 10 fiime spatial resolution of
the HSC is 131X 1082 pixels.

2.2. System validation

The spectral accuracy of the reconstructed HSC has bearagedlon 150 healthy volunteers
(Jolivot et al. (2011a)). The participants have been diassbased on their Skin PhotoTypes
(SPT) following the Fitzpatrick Scale (Fitzpatrick (1975)The population covers from SPT
Il (lightly pigmented) to SPT VI (highly pigmented). Tableptesents the SPT distribution
of the 150 volunteers. The validation of the system is penfat by comparing data acquired
using a commercial spectrophotometer (CM 2600d, Minolte) the average HSC issued from
ASCLEPIOS system. The use of healthy skin areas guaranteedeneity in the Hyper-Spectral
Cube. The acquisition is performed at threffatient body locations: two skin areas exposed to
the sun (hand, face) and one area non exposed to the sun Gaaler

Table 1: SPT distribution of the 150 volunteers.

SPT Type l i v \% Vi
Nb 18 21 56 41 14

The quality of the reconstructed HSC is evaluated with thedbess of Fit Caoécient
(GFC). The metric uses the commercial spectrophotometaragareference. The GFC is based
on the Schwartz’s inequality and is defined by the followiagrula:

. |2 Re()R(4)) ~ )

(iRt (2[R

whereRy(1;) is the spectrum value measured with the spectrophotoraeteavelengthi; and
R:(1;) is the reconstructed spectra value, by the neural netvabrkavelengthi;. This criterion
is bounded between 0 and 1, and consequently provides aingaipretation.

We present, in Table 2, the GFC values for each SPT. AccotdiHgrnandez et al. (Heamdez-
Andrés et al. (2001)), reconstruction with GFC higher tha®90s considered good. Conse-
guently, this study validates the accuracy of ASCLEPIOSesygo reconstruct Hyper-Spectral
Cubes of cutaneous data. Such cubes provide both spatiapacttal information which can be
used to retrieve skin component maps.




Table 2: GFC for each location and each SPT and average dPall S

GFC Values
SPT Hand Face Back
| 0.9977 0.9963 0.9963
Il 0.9977 0.9963 0.9963
Il 0.9980 0.9972 0.9974

v 0.9976 0.9972 0.9975
\% 0.9971 0.9971 0.9980
\ 0.9972 0.9977 0.9975

Average 0.9975 0.9971 0.9975

3. Reflectance map unmixing

Human skin is described as a scattering multi-layered neamigposed of dierent pigments.
The main pigmentsféecting the visible spectrum are melanin and hemoglobin i&and Di-
mou (2009)). These two pigments are present in the first tyer$eof skin: epidermis and dermis
respectively (Martelli et al. (2010); Shimada et al. (2001)

When light interacts with skin, light travels through thefelient layers where scattering,
absorption, and reflection occur. Since ASCLEPIOS sytenuiaes| reflectanc®(1) spectrum
as the ratio of reflected to incident energy, absorbancetrspe@(1) can be estimated from
reflectance by equation 2 (Anderson et al. (1981)):

A1) = ~10logR(1)). )

This absorbance spectruiit) can be stated as the sum of absorbance of each layer (Shimada
et al. (2001); Tuchin (2007)) based on the modified Beer-Lentribw:

AQ) = Z CA) +G 3)
i=1

whereA;(4) is related to the molar absorption ¢heient of pigments present at layietogether
with its scattering ffect (Tuchin (2007))C; accounts for the concentration of the absorber, and
G represents the remaining components (i.e. water, bilieibétc) not individually defined in
the model.n is the number of layers.

Based on this fundamental linear model, we apply Non-negdiatrix Factorization (NMF)
in order to retrieve the contributions to the spectral gison given by epidermis and dermis. As
far as we know, NMF have not been used for the decompositistheohuman skin absorbance
spectrum but have been widely used, for example, in the aisady geological components (Ke-
shava and Mustard (2002); Pauca et al. (2006); Yang et d1{20r more recently on biological
tissues analysis for autofluorescence removal (Montcugat (2011)). Actually, this method is
particularly well suited to our problem because it reliegtomnon-negativity of the data, which
is a constraint validated by the physical meaning of absm®apectra.

The main goal of Blind Source Separation (BSS) methods igpoesent a given signal as
a weighted sum of main sources. If we decompose into two ssurge can say from Eq. 3
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that these sources correspond to the main chromophoreg iapidermis and dermis. From
a mathematical point of view, BSS approximates a gimenm matrix Y, with Y, > 0, into
the product of two non-negative matricds € R™" (matrix of weighted coicientsW,,;) and

H € R™*™ (matrix of main sourcesl,), i.e. Y ~ WH (Lee and Seung (1999); Lin (2007); Wang
and Zou (2008)).

NMF finds the matrice8V andH by minimizing the diference betweev andWH:

1
fWH) =3 Y — WHI2 (4)

where||-||e is the Frobenius norm.
In a simple way, the minimum of the cost functidW, H) can be found by updating the
termsW andH with the following gradient descent step:

W e W— ﬁwéf(WH)

®)
H — H- By 6f(WH)

c&f(WH) andéf(WH)

with 8 an update factor given for each element of matritesndH; the terms
given by:

OTOWH) — _[YHT — WHH]

SWnr

(6)

TN = _[WTY — WTW H] .

Alternative to gradient descent step, a multiplicative atpdule has been proposed by Lee
and Seung (1999) to overcome the sensitivity of the gradiestent step size. The multiplicative
update proposes then to choose the faétimr matricesw andH as:

Brr = [\N:IW
i (7)
Brm = wrwip
With equations (6) and (7) in eqution (5), we obtain the f@ilog multiplicative update rule:

YHT
Wir < Wiy (WHHln)rm

)
W Y),r

Hrm — Himmmaes W WH)m

Equation (4) can be modified in several ways depending on ppécation. As a result,
penalties can be added in order to enforce sparseness otlsmase of matrice®V andor H
(Pauca et al. (2006)). In our case, we use smoothness pématigtrix H. The use of this
penalty is reflected in the cost function with:

1 1
f(WH) = SIIY ~WHIZ + a > H (9)
rm

where settingr to 1 give us the better results in our application.



Solving this modified cost function in equation (9), the riplitative update presented in
equation (8) becomes:

.
Whr — Wor (\%TH%TN

(W Y)im—Hom (10)
W WHr

Hrm < Him
which is the iteration process used in this article.

As depicted in Fig. 2, tha x mmatrix Y is the bidimensional representation of the HSC ob-
tained with ASCLEPIOS system. The number of columns of maticorresponds to the number
of spectral bands (36 in this case). Each column of this megpresents the spatial distribution
of absorption values at the given spectral band.
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Figure 2: Principle of the decomposition of human skin absonpspectra with a Non-negative Matrix Factorization
method. The spectrum obtained for each pixel of a Hyper-&glecube {) is observed as the weighted sum of principal

components in the epidermis and dermis. NMF algorithm obthimaterage spectra of those principal compone}s (
together with their respective quantification at each pitehe Hyper-Spectral Cube (concentration mey)s

Each line of matrixH contains the estimated absorption spectra of the main coeme
of epidermis and dermis. We present in section 4 experirheggalts showing that these two
sources are a good estimate of melanin and hemoglobin. IfFinatrix W presents in each
column the estimated proportions of these sources at eaehgfithe ROI.

In the following, matrixY is the HSC measured with ASCLEPIOS, and the multiplication
W x H is the estimated HSC.

4. Results and Discussion

Using ASCLEPIOS system, Hyper-Spectral Cubes (HSC) wetardd from 8 patients with
skin photoypes between Ill and V. These data are used asrameéeto validate the performance
7



of NMF. From the measured HSC, ROI of (but not limited t0)»900 pixels (8100 spectra)
were analyzed using the iterative relation presented iratou 10. The spectrum associated
with each pixel of the HSC is considered as a linear comhinatf the main pigments present
in the epidemis and the dermis. For each measured HSC, wia dieaverage spectra of these
main components (matrix H in equation 10) and their relativecentration maps (matrix W in
equation 10).

We first present in section 4.1 a spectral analysis of the s@imces in order to prove that
the absorption spectra that we obtain are a good estimatibarnoglobin and melanin. Next,
we present in section 4.2 an analysis of the concentratigpgs oalculated over areas of healthy
skin and areas of skirfi@cted by melasma.

4.1. Spectral analysis

Using two layers in the linear model presented in equatiame3retrieve the contributions to
the spectral absorption given by epidermis and dermis. Taie pigments fiecting the visible
spectrum are hemoglobin in the dermis and melanin in theeepid (Martelli et al. (2010); Shi-
mada et al. (2001)). We first present the absorbance spdxtaimed with NMF on one patient in
Fig. 3. These absorbance spectra have been calculatedhmediferent ROI: healthynelasma,
melasma and healthy.
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Figure 3: Absorbance spectra obtained with NMF.

It is possible to observe that absorbance spectra presantéid. 3 are a good approxi-
mation of melanin (blue line with triangles) and hemoglofried line with circles). The esti-
mated melanin absorption spectrum presents a decay of 58%dh650 nm and the estimated
hemoglobin absorption spectrum presents a charactepiséik around 450 and 570 nm. These
observations are consistent with their theoretical alisnrgpectra.

Quantitative comparison between the theoretical absorgfiectra of hemoglobin and melanin
and the calculated spectra obtained on all patients is pies$é Table 3 and 4. Table 3 presents
guantitative results obtained on areas of healthy skinewfalble 4 presents results obtained on
areas of skinfiected by melasma. Three correlationffméents are calculated as follows: a first
one corresponds to the degree of correlation between thalatd W x H in equation (10))
and the measured HS® {n equation (10)); second and third ones are calculateddsgtvthe
theoretical and estimated melanin-hemoglobin absorbaspeetra. Correlation céi&cients are
calcultated with:



_ 24(Re - Re(Rt ~ RY
VIl (Re - Re?) =, (Rt - RY?)

whereReis the estimated data afittis the theoretical ondReandRt are the mean value of the
estimated and theorical data respectively. Thiglicient is bounded between 0 and 1, with 1 its
best value.

r

(11)

Table 3: Degree of correlation between: the calculated-oredshuman skin absorption spectra, and the theoretical-
estimated melanin-hemoglobin absorbance spectra obtaineeadthy skin areas.

Healthy Area Correlation Result

Patient Number  Mean absorption Spectra Melanin  Hemoglobin
1 0.99 0.93 0.91
2 0.99 0.94 0.94
3 0.99 0.88 0.91
4 0.99 0.97 0.94
5 0.99 0.96 0.92
6 0.99 0.98 0.90
7 0.99 0.97 0.94
8 0.99 0.96 0.86

Table 4: Degree of correlation between: the calculated-oredshuman skin absorption spectra, and the theoretical-
estimated melanin-hemoglobin absorbance spectra obtaineeas of skin fiected by melasma.

Melasma Area Correlation Result

Patient Number Mean absorption Spectra Melanin  Hemoglobin
1 0.99 0.95 0.94
2 0.99 0.98 0.94
3 0.99 0.97 0.82
4 0.98 0.97 0.85
5 0.99 0.96 0.90
6 0.99 0.98 0.93
7 0.99 0.86 0.94
8 0.99 0.97 0.90

The correlation cocients presented in Tables 3 and 4 between the theoretisation
spectra of melanin and hemoglobin, and the first and secamges® of our decomposition, are
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higher than 0.9. Consequently, this result validates thebbtained sources are a good estimate
of melanin and hemoglobin in case of areas of healthy skiredswlon areas of skinfacted by
melasma. Then, because the correlatiorffudients between the reconstructed HSC (given by
W x H in equation (10)) and the measured oMar( equation (10)) are also higher than 0.9, we
can conclude that the NMF convergdgBaently, taking into account that they have been started
with random values.

4.2. Concentration maps analysis

We present in this section an analysis of the concentratiapsnobtained by the reflectance
maps decomposition on areas of healthy skin and areas ofaffkicted by melasma. Fig. 4
presents the estimated concentration maps of melanin anddiebin on three dierent ROI of
one patient (Patient 8 in Tables 3 and 4): hedlislasma, melasma, and healthy skin areas.
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Figure 4: Concentration maps of melanin and hemoglobin in Ingaielasma, melasma and healthy ROI. In the
healthymelasma ROI, the upper-right part of the ROI fseated by melasma. The first column presents the 3 ROI
while the second and third ones present respectively thenmetmd hemoglobin concentration maps. The scale is
normalized between 0 (dark blue) and 1 (dark red).

It is possible to observe that the aredi®eted by melasma present higher concentration of
melanin than healthy areas while the hemoglobin concéntraémains the same. This obser-
10



vation is consistent with the histological cause of melasaraincreased amount of melanin
component (Miyachi (2009)). We present in Fig. 5 the coneian map histograms on the
healthy and melasma ROI. We can observe that the concentgzibk of melanin is higher (ap-
proximatively 0.62) in the melasma ROI than in the healthyl REpproximatively 0.44). There
is a increase of almost 41%, i.e, a ratio of melanin of 1.4 betwnormal skin area and melasma
one. This observation is also consistent with the histallgtause of melasma: an increase
epidermal melanin pigmentation in lesional skin. Accogdio the literature this increase can
range between 35% to 81% in skin phototype from Il to V (Kand @ntonne (2010); Miot et al.
(2007)).
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Figure 5: Histograms of melanin and hemoglobin concentratigpsnramelasma and healthy skin ROI.

Finally, we present in Fig. 6 the concentration values ofemil versus hemoglobin obtained
for healthy (blue) and melasma (red) ROI from one patienterbstingly, these concentration
values are a potential indicator about the classificatidwé&en healthy and melasma area. Nev-
ertheless, it is important to note that the hemoglobin sthook be considered for the diagnosis
of melasma but, as the concentration values obtained by ethiad are relative (between the
two main sources), it is the ratio between the concentratfanelanin and hemoglobin that can
be used for classification between a healthy area and anwfedrsyy from melasma.

5. Conclusions and Further Work

Non-negative Matrix Factorization (NMF) is presented asoteptial method in the study
of human skin optical absorbance maps. Analyses were donrssibte absorbance maps from
eight patients fiected by melasma. Those maps were acquired by a Hyper-8paoquisition
system called ASCLEPIOS, which capacity in providing bqibctral and spatial information is
demonstrated.

Using a multiplicative update approach over a ROI, relagiuantities of the principal pigments
underlying dermis and epidermis are obtained togethertéthi average spectrum. Those spec-
tra together with their respective relative quantitieslleathe estimation of absorbance maps of
the ROI under study. This fact allowed us to corroborate gréogpmance of NMF by comparing
the estimated maps with respect to the ones obtained witH.EBGOS system. Results demon-
strated a degree of correlation higher than 90% betweenrbafis.
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Figure 6: Melanin Vs. Hemoglobin concentration values in rei@la and healthy regions of interest in one patient.

Because it is well-known that Melasma is characterized lmggx of melanin in the epidermis
(Miyachi (2009)), the method was validated analyzing théisled melanin and hemoglobin
concentration maps, over healthy and melasma ROI of thepatatéded by the eight patients.
Experimental results agree with the histological cause @ilbsma. Consequently, the proposed
method could be used on pathologies for which the quaniidicatf melanin is important, espe-
cially when this is dfficult with the naked eye.

Future works will focus on validation of the estimated pigreoncentration using for example
skin phantoms and also on monitoring over time of pathokbgigsociated with pigmentation
problems.
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