
Unmixing of Human Skin Optical Reflectance Maps by
Non-negative Matrix Factorization Algorithm

July Galeanoa, Romuald Jolivotb, Franck Marzania, Yannick Benezetha
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Abstract

We present in this paper the decomposition of human skin absorption spectra with a Non-negative
Matrix Factorization method. In doing so, we are able to quantify the relative proportion of the
main chromophores present in the epidermis and the dermis. We present experimental results
showing that we obtain a good estimate of melanin and hemoglobin concentrations. Our ap-
proach has been validated by analyzing the human skin absorption spectra in areas of healthy
skin and areas affected by melasma on eight patients.

Keywords: Non-negative Matrix Factorization, Spectral Reconstruction, Chromophores
quantification, Skin optical reflectance maps.

1. Introduction

Optical reflectance properties of skin can provide valuableinformation regarding its bio-
chemical composition. This information can be very useful for skin characterization and can
contribute to the early detection of a wide-range of pathologies. Interest in the optical reflectance
of skin analysis mainly stems from the fact that useful information about skin composition (e.g.
melanin, hemoglobin etc.) and physiologic parameters (e.g. color, erythema and pigmentation,
etc.) can be obtained in a real-time and non-invasive manner. Applications of the analysis of
spectral properties of skin are numerous. For example, measurement of the melanin content
in skin is essential in the study of hyper or hypo-pigmentation as well as in the assessment of
skin appearance. Melanin is also involved in several human skin pathologies such as malignant
melanoma, albinism, vitiligo and melasma. Another important application is the quantitative
assessment of inflammation, erythema and occlusion, by means of hemoglobin content and oxy-
gen saturation evaluation. Finally, knowledge of the scattering properties can reveal information
about the morphology and architecture of skin, such as arrangement and density of the collagen
fibers in the dermis.

The phenomena of light absorption and scattering in human skin can be modeled by the
Radiative Transfer Equation (RTE). An inverse analysis of this RTE yields then to the retrieval
of tissue optical parameters such as absorption and scattering coefficients. This inverse problem
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can be solved with indirect methods such as Monte Carlo, Kubelka-Munk theory or diffuse theory
(Tuchin (2007); Jacques (2009); Wang et al. (1995); Jacquesand Pogue (2008)). Also, simplest
methods based on the Beer-Lambert law have been used for light-skin interaction analysis. As
example, linear regression and statistical approaches have been used for the analysis of changes
in the concentration of melanin and hemoglobin in reflectance spectra (Shimada et al. (2000);
Tsumura et al. (1999)).

Human skin can be represented as a scattered multilayered structure. Consequently, it is
possible to study the interaction between light and the chromophores (pigments) composing these
layers. Several chromophores absorb light in skin. However, the main chromophores affecting
the reflectance spectra in the visible light wavelength range are melanin and hemoglobin (Zonios
and Dimou (2009)).

We propose in this paper the use of a Blind Source Separation (BSS) algorithm for the quan-
tification of the main chromophores in epidermis and dermis.We especially study in this paper
the use of a Non-negative Matrix Factorization (NMF) algorithm. Then, we present experimen-
tal results showing that the obtained concentration maps are a good estimate of melanin and
hemoglobin concentration.

The reflectance maps have been acquired using a Hyper-Spectral Imaging (HSI) system
named ASCLEPIOS (Analysis of Skin Characteristics by LightEmission and Processing of
Images Of Spectrum) (Jolivot et al. (2011b)). This system consists of two parts. First, Multi-
Spectral Images (MSI) are acquired by an optical setup composed of a light source, a filter
wheel, and a monochromatic camera. Then, a Hyper-Spectral Cube (HSC) is generated by a
neural network-based algorithm.

Melanin, which is a pigment present in the epidermis and responsible for the assessment of
skin color, have shown its strong relation with melasma. Melasma is a tan or dark skin dis-
coloration and occurs as a result of excess melanin production in skin cells. Consequently, we
experimentally validate the chromophores quantification with NMF by analyzing the amount of
melanin in areas of healthy skin and areas affected by melasma. The human skin data used in this
analysis have been obtained from 8 volunteers affected with melasma lesions on their cheeks.

The paper is organized as follows. We present in section 2 theHyper-Spectral data acquisition
system and its experimental validation. Then, in section 3,we present the decomposition of
human skin reflectance maps in proportion of the main chromophores present in epidermis and
dermis by using NMF algorithm. Finally, section 4 presents experimental results showing that
the obtained concentration maps are a good estimate of melanin and hemoglobin concentration.
It is also presented an analysis of these chromophore concentrations in areas of healthy skin and
areas affected by melasma from eight volunteers.

2. Hyper-Spectral Data Acquisition System

2.1. Principle
Visible reflectance maps from human skin have been acquired by a Hyper-Spectral Imaging

(HSI) system named ASCLEPIOS (Jolivot et al. (2011b)). The acquisition system is illustrated
in Fig. 1. It consists of two parts: the acquisition of Multi-Spectral Images (MSI) by an optical
setup, and the generation of a Hyper-Spectral Cube (HSC) by aneural network-based algorithm.

The optical setup for the MSI acquisition system is composedof a light source, a filter wheel,
and a monochromatic camera. Light source corresponds to a xenon arc lamp with light spectrum
in the range of 380 to 800 nm. This light is filtered consecutively by 10 interference filters placed
in the revolving wheel. The Full Width at Half Maximum of eachfilter is 80 nm.
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Figure 1: ASCLEPIOS system configuration. (a) Optical set-up for the acquisition of Multi-Spectral Images from human
skin sample. (b) Generation of a Hyper-Spectral Cube by a neural network-based algorithm (Mansouri et al. (2005)).
The HSC gives the visible reflectance map at each wavelength.

The filtered light is transported through a light guide illuminating the object of interest.
Then, monoband images of a Region Of Interest (ROI) are acquired using a monochromatic
camera with an ad-hoc optical objective with built-in chromatic correction over the entire oper-
ating wavelength range.The system has been previously calibrated at each filter. In this way, the
systematic noise affecting the reconstruction of the reflectance spectrum at each pixel is removed.
Non uniform illumination of the system are also calibrated.The ROI size is 38×32mm2. This set
of 10 monoband images constitutes the MSI. The acquisition of a MSI lasts less than 2 seconds.
Therefore, if the patient is properly installed, we can consider that the scene is completely static.

These MSI are then processed by a neural network-based algorithm (Mansouri et al. (2005))
which aims is to retrieve, from the camera signal, the reflectance spectrum at each pixel of the
ROI. In this way, the HSC (i, j, λ) is formed, wherei and j denote the spatial dimensions andλ
the spectral one. In doing so, we obtain at each bandwidth thespatial map of reflectance values
from the evaluated ROI.

The neural network is composed of two steps: learning and reconstruction. The learning
process involves the use of a set ofP = 24 patches (GretagMacBeth ColorCheckerR©) which
represent various spectra whose spectral properties are known. From this set of patches, two
acquisitions are performed. A first one by a spectrophotometer providing N values of spectral
reflectance curve for each patch (pi). This first acquisition yields to a learning matrixR (N × P).
The second acquisiton corresponds to 24 MSI (a MSI for each patch pi), each one containing
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K (K = 10) gray level values obtained from the averaged HSC at each patch. The later leads
to a matrixD (K × P). These matrices constitute then a set of corresponding pair (input D
and expected-outputR data) used by the neural network to perform a supervised learning. The
learning stops when it reaches the minimum of the validationerror. Once learned, neural network
outputs a coefficient matrixQ (called synaptic coefficient matrix) of size [N × K].

The reconstruction of an Hyper-Spectral Cube is fast and simple because the operation is a
product between the coefficient matrix and the camera response or Multi-Spectral input values.
The implemented reconstruction function is flexible and allows different sampling rate from 10
to 1 nm yielding reconstructed spectra of N values (ranging from 36 to 400 respectively).

Within the framework of this work, the estimated HSC is composed of 36 bands between 430
and 780 nm. The Full Width at Half Maximum of each band is 10 nm.The spatial resolution of
the HSC is 1312× 1082 pixels.

2.2. System validation

The spectral accuracy of the reconstructed HSC has been evaluated on 150 healthy volunteers
(Jolivot et al. (2011a)). The participants have been classified based on their Skin PhotoTypes
(SPT) following the Fitzpatrick Scale (Fitzpatrick (1975)). The population covers from SPT
II (lightly pigmented) to SPT VI (highly pigmented). Table 1presents the SPT distribution
of the 150 volunteers. The validation of the system is performed by comparing data acquired
using a commercial spectrophotometer (CM 2600d, Minolta) and the average HSC issued from
ASCLEPIOS system. The use of healthy skin areas guarantee homogeneity in the Hyper-Spectral
Cube. The acquisition is performed at three different body locations: two skin areas exposed to
the sun (hand, face) and one area non exposed to the sun (lowerback).

Table 1: SPT distribution of the 150 volunteers.

SPT Type II III IV V VI
Nb 18 21 56 41 14

The quality of the reconstructed HSC is evaluated with the Goodness of Fit Coefficient
(GFC). The metric uses the commercial spectrophotometer data as reference. The GFC is based
on the Schwartz’s inequality and is defined by the following formula:

GFC =

∣

∣

∣

∑

j Rm(λ j)Rr (λ j)
∣

∣

∣

(

∑

j

[

Rm(λ j)
]2
)1/2(
∑

j

[

Rr (λ j)
]2
)1/2

(1)

whereRm(λ j) is the spectrum value measured with the spectrophotometerat wavelengthλ j and
Rr (λ j) is the reconstructed spectra value, by the neural network,at wavelengthλ j . This criterion
is bounded between 0 and 1, and consequently provides an easyinterpretation.

We present, in Table 2, the GFC values for each SPT. Accordingto Hernandez et al. (Hernández-
Andrés et al. (2001)), reconstruction with GFC higher than 0.99 is considered good. Conse-
quently, this study validates the accuracy of ASCLEPIOS system to reconstruct Hyper-Spectral
Cubes of cutaneous data. Such cubes provide both spatial andspectral information which can be
used to retrieve skin component maps.
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Table 2: GFC for each location and each SPT and average of all SPT.

GFC Values
SPT Hand Face Back
I 0.9977 0.9963 0.9963
II 0.9977 0.9963 0.9963
III 0.9980 0.9972 0.9974
IV 0.9976 0.9972 0.9975
V 0.9971 0.9971 0.9980
VI 0.9972 0.9977 0.9975
Average 0.9975 0.9971 0.9975

3. Reflectance map unmixing

Human skin is described as a scattering multi-layered mediacomposed of different pigments.
The main pigments affecting the visible spectrum are melanin and hemoglobin (Zonios and Di-
mou (2009)). These two pigments are present in the first two layers of skin: epidermis and dermis
respectively (Martelli et al. (2010); Shimada et al. (2001)).

When light interacts with skin, light travels through the different layers where scattering,
absorption, and reflection occur. Since ASCLEPIOS sytem acquires reflectanceR(λ) spectrum
as the ratio of reflected to incident energy, absorbance spectrum A(λ) can be estimated from
reflectance by equation 2 (Anderson et al. (1981)):

A(λ) = −10 log(R(λ)). (2)

This absorbance spectrumA(λ) can be stated as the sum of absorbance of each layer (Shimada
et al. (2001); Tuchin (2007)) based on the modified Beer-Lambert law:

A(λ) =
n
∑

i=1

CiAi(λ) +G (3)

whereAi(λ) is related to the molar absorption coefficient of pigments present at layeri, together
with its scattering effect (Tuchin (2007)).Ci accounts for the concentration of the absorber, and
G represents the remaining components (i.e. water, bilirubine, etc) not individually defined in
the model.n is the number of layers.

Based on this fundamental linear model, we apply Non-negative Matrix Factorization (NMF)
in order to retrieve the contributions to the spectral absorption given by epidermis and dermis. As
far as we know, NMF have not been used for the decomposition ofthe human skin absorbance
spectrum but have been widely used, for example, in the analysis of geological components (Ke-
shava and Mustard (2002); Pauca et al. (2006); Yang et al. (2011)) or more recently on biological
tissues analysis for autofluorescence removal (Montcuquetet al. (2011)). Actually, this method is
particularly well suited to our problem because it relies onthe non-negativity of the data, which
is a constraint validated by the physical meaning of absorbance spectra.

The main goal of Blind Source Separation (BSS) methods is to represent a given signal as
a weighted sum of main sources. If we decompose into two sources, we can say from Eq. 3
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that these sources correspond to the main chromophores in the epidermis and dermis. From
a mathematical point of view, BSS approximates a givenn × m matrix Y, with Ynm ≥ 0, into
the product of two non-negative matricesW ∈ Rn×r (matrix of weighted coefficientsWnr) and
H ∈ Rr×m (matrix of main sourcesHrm), i.e. Y ≈WH (Lee and Seung (1999); Lin (2007); Wang
and Zou (2008)).

NMF finds the matricesW andH by minimizing the difference betweenY andWH:

f (W,H) ≡
1
2
‖Y−WH‖2F (4)

where‖·‖F is the Frobenius norm.
In a simple way, the minimum of the cost functionf (W,H) can be found by updating the

termsW andH with the following gradient descent step:

W←−W− βW
δ f (W,H)
δW

H ←− H − βH
δ f (W,H)
δH

(5)

with β an update factor given for each element of matricesW andH; the termsδ f (W,H)
δW and δ f (W,H)

δH
given by:

δ f (W,H)
δwnr

= −[YHT −WHHT ]nr

δ f (W,H)
δhrm

= −[WTY−WTWH]rm.

(6)

Alternative to gradient descent step, a multiplicative update rule has been proposed by Lee
and Seung (1999) to overcome the sensitivity of the gradientdescent step size. The multiplicative
update proposes then to choose the factorβ for matricesW andH as:

βnr =
wnr

[WHHT ]nr

βrm =
hrm

[WTWH]rm
.

(7)

With equations (6) and (7) in eqution (5), we obtain the following multiplicative update rule:

Wnr ←Wnr
(YHT )nr

(WHHT )nr

Hrm ← Hrm
(WTY)rm

(WTWH)rm
.

(8)

Equation (4) can be modified in several ways depending on the application. As a result,
penalties can be added in order to enforce sparseness or smoothness of matricesW and/or H
(Pauca et al. (2006)). In our case, we use smoothness penaltyin matrix H. The use of this
penalty is reflected in the cost function with:

f (W,H) =
1
2
‖Y−WH‖2F +

1
2
α
∑

rm

H (9)

where settingα to 1 give us the better results in our application.

6



Solving this modified cost function in equation (9), the multiplicative update presented in
equation (8) becomes:

Wnr ←Wnr
(YHT )nr

(WHHT )nr

Hrm← Hrm
(WTY)rm−Hrm

(WTWH)rm

(10)

which is the iteration process used in this article.
As depicted in Fig. 2, then×mmatrixY is the bidimensional representation of the HSC ob-

tained with ASCLEPIOS system. The number of columns of matrix Y corresponds to the number
of spectral bands (36 in this case). Each column of this matrix represents the spatial distribution
of absorption values at the given spectral band.
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Figure 2: Principle of the decomposition of human skin absorption spectra with a Non-negative Matrix Factorization
method. The spectrum obtained for each pixel of a Hyper-Spectral Cube (Y) is observed as the weighted sum of principal
components in the epidermis and dermis. NMF algorithm obtains the average spectra of those principal components (H),
together with their respective quantification at each pixelof the Hyper-Spectral Cube (concentration mapsW).

Each line of matrixH contains the estimated absorption spectra of the main components
of epidermis and dermis. We present in section 4 experimental results showing that these two
sources are a good estimate of melanin and hemoglobin. Finally, matrix W presents in each
column the estimated proportions of these sources at each pixel of the ROI.

In the following, matrixY is the HSC measured with ASCLEPIOS, and the multiplication
W× H is the estimated HSC.

4. Results and Discussion

Using ASCLEPIOS system, Hyper-Spectral Cubes (HSC) were obtained from 8 patients with
skin photoypes between III and V. These data are used as a reference to validate the performance
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of NMF. From the measured HSC, ROI of (but not limited to) 90× 90 pixels (8100 spectra)
were analyzed using the iterative relation presented in equation 10. The spectrum associated
with each pixel of the HSC is considered as a linear combination of the main pigments present
in the epidemis and the dermis. For each measured HSC, we obtain the average spectra of these
main components (matrix H in equation 10) and their relativeconcentration maps (matrix W in
equation 10).

We first present in section 4.1 a spectral analysis of the mainsources in order to prove that
the absorption spectra that we obtain are a good estimation of hemoglobin and melanin. Next,
we present in section 4.2 an analysis of the concentration maps calculated over areas of healthy
skin and areas of skin affected by melasma.

4.1. Spectral analysis

Using two layers in the linear model presented in equation 3,we retrieve the contributions to
the spectral absorption given by epidermis and dermis. The main pigments affecting the visible
spectrum are hemoglobin in the dermis and melanin in the epidermis (Martelli et al. (2010); Shi-
mada et al. (2001)). We first present the absorbance spectra obtained with NMF on one patient in
Fig. 3. These absorbance spectra have been calculated over three different ROI: healthy/melasma,
melasma and healthy.
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Figure 3: Absorbance spectra obtained with NMF.

It is possible to observe that absorbance spectra presentedin Fig. 3 are a good approxi-
mation of melanin (blue line with triangles) and hemoglobin(red line with circles). The esti-
mated melanin absorption spectrum presents a decay of 50% around 550 nm and the estimated
hemoglobin absorption spectrum presents a characteristicpeak around 450 and 570 nm. These
observations are consistent with their theoretical absorption spectra.

Quantitative comparison between the theoretical absorption spectra of hemoglobin and melanin
and the calculated spectra obtained on all patients is presented in Table 3 and 4. Table 3 presents
quantitative results obtained on areas of healthy skin while Table 4 presents results obtained on
areas of skin affected by melasma. Three correlation coefficients are calculated as follows: a first
one corresponds to the degree of correlation between the calculated (W × H in equation (10))
and the measured HSC (Y in equation (10)); second and third ones are calculated between the
theoretical and estimated melanin-hemoglobin absorbancespectra. Correlation coefficients are
calcultated with:
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
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







2

(11)

whereReis the estimated data andRt is the theoretical one.ReandRt are the mean value of the
estimated and theorical data respectively. This coefficient is bounded between 0 and 1, with 1 its
best value.

Table 3: Degree of correlation between: the calculated-measured human skin absorption spectra, and the theoretical-
estimated melanin-hemoglobin absorbance spectra obtained onhealthy skin areas.

Healthy Area Correlation Result
Patient Number Mean absorption Spectra Melanin Hemoglobin

1 0.99 0.93 0.91
2 0.99 0.94 0.94
3 0.99 0.88 0.91
4 0.99 0.97 0.94
5 0.99 0.96 0.92
6 0.99 0.98 0.90
7 0.99 0.97 0.94
8 0.99 0.96 0.86

Table 4: Degree of correlation between: the calculated-measured human skin absorption spectra, and the theoretical-
estimated melanin-hemoglobin absorbance spectra obtained onareas of skin affected by melasma.

Melasma Area Correlation Result
Patient Number Mean absorption Spectra Melanin Hemoglobin

1 0.99 0.95 0.94
2 0.99 0.98 0.94
3 0.99 0.97 0.82
4 0.98 0.97 0.85
5 0.99 0.96 0.90
6 0.99 0.98 0.93
7 0.99 0.86 0.94
8 0.99 0.97 0.90

The correlation coefficients presented in Tables 3 and 4 between the theoretical absorption
spectra of melanin and hemoglobin, and the first and second sources of our decomposition, are
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higher than 0.9. Consequently, this result validates that the obtained sources are a good estimate
of melanin and hemoglobin in case of areas of healthy skin andalso on areas of skin affected by
melasma. Then, because the correlation coefficients between the reconstructed HSC (given by
W× H in equation (10)) and the measured one (Y in equation (10)) are also higher than 0.9, we
can conclude that the NMF converges efficiently, taking into account that they have been started
with random values.

4.2. Concentration maps analysis

We present in this section an analysis of the concentration maps obtained by the reflectance
maps decomposition on areas of healthy skin and areas of skinaffected by melasma. Fig. 4
presents the estimated concentration maps of melanin and hemoglobin on three different ROI of
one patient (Patient 8 in Tables 3 and 4): healthy/melasma, melasma, and healthy skin areas.
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Figure 4: Concentration maps of melanin and hemoglobin in healthy/melasma, melasma and healthy ROI. In the
healthy/melasma ROI, the upper-right part of the ROI is affected by melasma. The first column presents the 3 ROI
while the second and third ones present respectively the melanin and hemoglobin concentration maps. The scale is
normalized between 0 (dark blue) and 1 (dark red).

It is possible to observe that the areas affected by melasma present higher concentration of
melanin than healthy areas while the hemoglobin concentration remains the same. This obser-
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vation is consistent with the histological cause of melasma: an increased amount of melanin
component (Miyachi (2009)). We present in Fig. 5 the concentration map histograms on the
healthy and melasma ROI. We can observe that the concentration peak of melanin is higher (ap-
proximatively 0.62) in the melasma ROI than in the healthy ROI (approximatively 0.44). There
is a increase of almost 41%, i.e, a ratio of melanin of 1.4 between normal skin area and melasma
one. This observation is also consistent with the histological cause of melasma: an increase
epidermal melanin pigmentation in lesional skin. According to the literature this increase can
range between 35% to 81% in skin phototype from II to V (Kang and Ortonne (2010); Miot et al.
(2007)).
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Figure 5: Histograms of melanin and hemoglobin concentration maps in melasma and healthy skin ROI.

Finally, we present in Fig. 6 the concentration values of melanin versus hemoglobin obtained
for healthy (blue) and melasma (red) ROI from one patient. Interestingly, these concentration
values are a potential indicator about the classification between healthy and melasma area. Nev-
ertheless, it is important to note that the hemoglobin should not be considered for the diagnosis
of melasma but, as the concentration values obtained by our method are relative (between the
two main sources), it is the ratio between the concentrationof melanin and hemoglobin that can
be used for classification between a healthy area and an area suffering from melasma.

5. Conclusions and Further Work

Non-negative Matrix Factorization (NMF) is presented as a potential method in the study
of human skin optical absorbance maps. Analyses were done onvisible absorbance maps from
eight patients affected by melasma. Those maps were acquired by a Hyper-Spectral acquisition
system called ASCLEPIOS, which capacity in providing both spectral and spatial information is
demonstrated.
Using a multiplicative update approach over a ROI, relativequantities of the principal pigments
underlying dermis and epidermis are obtained together withtheir average spectrum. Those spec-
tra together with their respective relative quantities lead to the estimation of absorbance maps of
the ROI under study. This fact allowed us to corroborate the performance of NMF by comparing
the estimated maps with respect to the ones obtained with ASCLEPIOS system. Results demon-
strated a degree of correlation higher than 90% between bothmaps.
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Figure 6: Melanin Vs. Hemoglobin concentration values in melasma and healthy regions of interest in one patient.

Because it is well-known that Melasma is characterized by excess of melanin in the epidermis
(Miyachi (2009)), the method was validated analyzing the obtained melanin and hemoglobin
concentration maps, over healthy and melasma ROI of the dataprovided by the eight patients.
Experimental results agree with the histological cause of melasma. Consequently, the proposed
method could be used on pathologies for which the quantification of melanin is important, espe-
cially when this is difficult with the naked eye.
Future works will focus on validation of the estimated pigment concentration using for example
skin phantoms and also on monitoring over time of pathologies associated with pigmentation
problems.

Acknowledgments

We would like to thank the cooperation given by Dr. R. Baba andDr. N. Shamsudin from the
Department of Dermatology at Kuala Lumpur Hospital. Also wewould like to acknowledge the
assistance given by Professor Ahmad Fadzil and Hermawan Nugroho from Universiti Teknologi
Petronas, and Dr. Norashikin from the faculty of Medicine and Health Sciences at Universiti
Putra Malaysia.

The authors would like also to thank the financial support provided byConseil Regional de
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