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ABSTRACT. The identification of objects in 3D point cloud dédtas always
presented a real challenge. Such a process highindepa human interpreta-
tion of the scene and its objects. Actual approaehesmumerical based; in best
cases, static models are used as a template for theidetecess. By the pre-
sented work, we aim at extending the detection procgdsibging the human
expert knowledge about the scene, the objects, ¢chaiacteristics and their re-
lations onto the processing chain. To do, we prdsetiiis paper a knowledge-
driven method for the detection of object and its iderdificn using ontology.
The knowledge contained by the ontology defines comg@bout the objects.
Logic programs are used as rules to define constraingebet objects. The
processing of the scene is an iterative annotationepsothat combines 3D al-
gorithms, geometric analysis, spatial analysié especially specialist’s know-
ledge. The created platform takes a set of 3D pointdd@s input, and produc-
es as output a populated ontology corresponding fodexed scene. The con-
text of the study is the detection of railway obgeataterialized within the
Deutsche Bahn. Thus, the resulting enriched and pauutattology that con-
tains the annotations of objects in the point ciyuahd can be used further on
to feed a GIS system or an IFC file for architecture purpose

Keywords: Knowledge based processing, Semantic qualification, Gtol-
ogy, 3D spatial knowledge, 3D algorithm knowledge.

1 INTRODUCTION

Through the last years, formal ontologies have been suggasta solution for
several engineer problems. Hence, it has efficiently regpl#oe standard data bases
and relational one by more flexibility and reliability. Well-desg ontologies own
lots of positive aspects like those related to defining a contretbeabulary of terms,
inheriting and extending existing terms, declaring a relatiprisetween terms, and
inferring relationships by reasoning on existent ones. Ont@@yee used to represent
formally the knowledge of a domain using graphs and ldgitacture to make com-
puters able to understand and process it [1]. Recentlyetitency related to the use
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of semantic has been explored, where we bring to point thenatitbdata extraction
from 3D point clouds [2], such a data provides a digital mofiéh® surveyed scene.
Actually, research on 3D processing has well focusetherinvestigation of the re-
construction and the recognition of geometrical shapes [8fevtwo main approach
has seen the light [4], the data driven detection and nuvileln one. While the data
driven methods [5] extract geometries from the point cloudcmdbine them to the
final model, model driven method [6] use predefined primitemplates and infor-
mation as detected geometries from the data to map them agaimsost likely tem-

plates.

In this paper, we present a knowledge driven methodistgrirom the assumption
thatspecialist’s knowledge will help the improvement of the automation, theraoy
and the result quality. In contrast to existing approachessalution consists in using
only prior knowledge about the context and the objects. Timsviedge is the basis
for a selective knowledge-oriented detection and recognitiombpdcts in point
clouds. In this case, knowledge about objects has to indafiedgiled information
about the objects' geometry, structure, 3D algorithms, (3idiad relation, etc. The
context of the study is the detection of the railway seadaements. Once detected and
annotated, the process enriches and populates the ontatbgiyndividuals and prop-
erties.

This paper is divided into 6 sections. Section 2 introducetettimical background
on the object detection and qualification in 3D point clouds &sation 3 introduces
the used and modeled knowledge. Section 4 deals with thielsgdation qualifica-
tion process. Section 5 highlights the knowledge guid&orcthe object qualification
process and finally section 6 concludes this paper.

2 RELATED WORK

The technical survey of 3D scene is a long and costly psodeaims to build a digi-
tal model by geometric analysis of an existing 3D point clalada. According to the
literature [7], there are two major approaches of objet¢ation and annotation: the
model-driven approach and the data-driven one. Thedtatan approach, called also
as non-parametric modeling approach presents a techtiiguattempts to model a
3D point clouds scene by a sequence of operations mégssocomplex, allowing the
generation of an information model without relying on acsiic library. This field of
approaches models a building without taking any consideratidts form. Other-
wise, it attempts to model it just based on 3D point clouds ad iéia. For instance,
first methods have been presented in [8] and concern utmamatic extraction of
model-driven and prismatic building models from dense digital/ation models
generated by photogrammetric techniques or laser scariisg et al, [9] investigate
the following computational problem: given a 3D point cloud madedn environ-
ment, how is it possible first to segment the point cloud inbosegments that corres-
pond to relevant objects and then to label the segmentsheitiespective category
label. The created system includes two components: tirar@ie 3D Object Map
which contains those parts of the environment with fixeditipns and utilitarian



functions (walls, floor, kitchen appliances, cupboards, slete.), and a Triangulated
Surface Map updated continuously. The Semantic ObjectiMailt by classifying a
set of planar regions with estimated 3D geometrical featanesserves as a semantic
resource for an assistant mobile personal robot, whéeTriangulated Surface Map
supports 3D collision detection and path planning routines &afa navigation and
manipulation. The advantages of a model-driven appro@&cthat it provides geome-
trical models without getting real geometries, since it is basethe calculation of
values of parameters. Thus, it is important to underline itle tomputing speed
gained by these approaches in comparison with datardares. Errors in this type
of model can come from the calculation of the building patarsevalues. Moreover,
the major disadvantage of a model-driven approach i tdependent on the build-
ings types which are available in the building library.

The data-driven approach makes an attempt to model araifisg building without
segmenting it into primitives. It analyzes the building pailoud as a unit, without
involving it to a set of parameters. It proposes the usesafries of numerical opera-
tions allowing initially generating an unspecified 3D buildingniréhe laser data.
Despite the possible risks of obtaining warped models, it renaairapproach which
treats the general cases. In this field, different techniqassdbon 3D Hough-
transform [7] are used to detect roof planes. Others bas#éteoRANdomSAmpling
Consensus algorithm [10]are used to detect planes. Simitaeithods using Douglas-
Peucker technique [11] propose to construct the facadielswdefore studying the
roof construction; so the resulting 3D building model is firsdpstructed with plane
roofs [7]. One major fall out of these strategies is basidhkyr rigidness since 3D
processing algorithms are designed for certain situationsrder to address theses
drawbacks, a generic flexible solution is required.

The re-evolution of the knowledge techniques under the S&méd/eb framework
has provided an opening to strategize different arrangeniemsidea is to transfer
human ability of adapting to new situation as humans hawe eepacity to adapt to
these changes because of our capability to interpret thenties) to analyze different
knowledge domains at the same time and deliver the result.tiéittechnology mov-
ing in the direction of knowledge management, we can déer@stelligent object de-
tection and annotation through knowledge technologies. In thigxb formal ontol-
ogy has been suggested as a solution to the problemaibjgbts reconstruction from
3D point clouds [12]. Ontology structure was defined asredb representation of
knowledge used to reason about the entities within that domadthmay be used to
describe the domain. Based on similar technology, modeliggritimic, Spatial
relations, geometric and Spatial knowledge within an ontostigicture will open the
way to significant improvement in the 3D object detection amaotation capability
since it will allow as to create a more dynamicity for objetedtion based on objects
geometries and to make more robust the object qualificatiocepso This paper
presents a knowledge based detection approach using the ddWlogy language
[13], the Semantic Web Rule Language [14], and 3D psdegsuilt-ins aiming at
combining geometrical analysis of 3D point clouds and specialist(s knowledge.



3 OVERVIEW OF THE DEFINED KNOWLEDGE

Description logics (DLs) [15]provide formalization to knowledgmresentation of
real world situations. This means, it should provide the logalies to the queries
of real world situations. The results are highly sophisticaé@doning engines which
utilize the expressiveness capabilities of DLs to manipulate thwl&dge. Actually,
OWL axiom does not cover the full range of expressivssibilities for object rela-
tionships that we might find, since it is useful to declatatiaship in term of condi-
tions or even rules. These rules are used through diffeutes languages to enhance
the knowledge possess in an ontology. Some of the el/tdvguages are related to
the semantic web rule language (SWRL) [16] and the advadeed rules [17].
SWRL is a proposal as Semantic Web rules language, combsuibignguages of
the OWL Web Ontology Language [18] with the Rule Markup Langud®]. The
SWRL built-ins are keys for any external integration. yrhelp in the interoperation
of SWRL with other formalism and provide an extensibleaistiructure for know-
ledge based applications. Actually, Comparisons Built-IngthMBuilt-Ins and Built-
Ins for Strings are already implemented within lots of ptatféor ontology manage-
ment like protégé[20], Equation 1.

BoundingBox(?x) ~ hasHeight(?x, ?ht) "~ swrlb:greaterThan(?h6)
- electric_pole(?x) (1)

In the actual work, new 3D Spatial built-in for spatial knowkedge integrated. Fi-
nally, we use semantic rules with extended Built-Ins toaseitally qualify the de-

tected geometries.It provides first estimations of the objecthdri3D scene. Three
main knowledge definitions will cooperate together to consthetbore of the know-
ledge driven method: the Scene knowledge (SK), the Spatiadlkdge (SpK) and

finally the 3D algorithmic knowledge (AK), Fig.1.
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Fig.1.The overview of the general ontology schema

The hierarchical structure of the top level class axiomsebtitology is given in
Fig.1, where we find five main classes within other @atd objects properties able to
characterize the scene in question. The class axiom DC:DGowgept which



represents the different object found in the target scetheam be considered as the
main class in this ontology as it is the class where thettabjects are modeled. This
class is further specialized into classes representing theretiff detected object.
However, the importance of other classes cannot be idndteey are used to either
describe the object geometry through the Geom:Geometryaotams by defining its
geometric component or the bounding box of the objectitidatate its coordinates or
to either describe its characteristics through the Charac:@&gstics class axiom.
Additionally, the suitable algorithms are automatically selebiskd on its compati-
bility within the object geometry and characteristics via thge@Agorithm class. Add
to that, other classes, equally significant, play their rolésdrbackend. The connec-
tion between the basic mentioned classes is carried ouigtihmabject and data prop-
erties' axioms. The properties' axioms define relationships bataelasses in the on-
tology. They are also used to relate an object to others \ilsdations.

Table 1. Example of the knowledge description of a main digna

Object Geometry DL Constraints 3D Spatial relations
Electric Born Vertical Lines Height:Between 4m and 6n Contains: 2parallel lines
Length: max 0.5 MUST be connected: to a Small Box
Width:max 0.5 Distant:50m from Electric Born

Lines:1 or 2 Vertical line Right side: of the Rail

In more details scene knowledge (SK) includes information about objects (Do
main Concept) as properties, restriction, relationship withratbhgects (hierarchical
relationships), and also about the objegtometry that composes its structure, Table
1.The scene is modeled thought axioms of the DLs an@émtethe behaviors of ob-
jects. For instance, an Electrical born presents a subdlf®s Domain Concept one.

ElectricPole = DomainConcept (2)

Likewise, it is related to class Line_3D (which is a type t#ss Geometry)
through the relationship hasLine3D (subproperty of hasGegme

Electric PolE 3! hasLine3D.Line_3D 3)

For instance, the following DLs constructor definks semantic of the [Electric-
Pole’] It means should be a vertical bounding box with a hightgrehan 5 m, and
that contains at least 2 parallel lines.

Electric Pole = O hasHeight{> 5} nz 2. hasParallel.Line N VerticalBoundingBox(4)

Like seen in Table 1, 3D spatial knowledge already known hyraan present a
main key for the qualification process since it yield to thigcts state disambiguation
based on its relation with the common environment. After atiog the different
knowledge in the ontology structure, spatial observation véllatso modeled.3D



spatial knowledge includes standards like the 3D topological keuge, 3D metric

knowledge and 3D processing relation knowledge. Each btie a@ited spatial rela-
tion knowledge contains a variety of relations modeled omtiv@logy structure. The
next table gives an example for topological relation, its namibeé ontology using

the prefix [swrl_topol] its semantic characteristics and the new built-in to automatize

the computation of relations with the help of SWRL rules. Ovéh state that the
relations are transitive, symmetric, functional, etc. The topolbgedationships be-

tween objects are created automatically via the SWRLrule latilo process in the
ontology. Once a relation has already been computed, ttieme, is no need to recal-
culate.

Table 2.Examples of topological relationships and its seneanti

Topology Property name Semantic property definition SWRL built-ins

Disjoint topo:disjoint  Transitive, symmetric, irreflexive topo:disjoint(?x, ?y)
Contains  topo:contains  Transitive, asymmetric,irreflexive topo:contains(?x, ?y)

Finally, the understanding that the scene knowledge ammutétslependency affect
the detection algorithm selection and execution, and yield tisirtk about the se-
mantics of algorithms and how it would provide an active participatioprocess the
scene. To do, we opt to modelalgorithms, their attributes antorgaips that may
exist between them add to the utilisability condition of eachairtbem. Based on
their general purposes, Algorithms classes are classified in upper classes like [Geo-
metrical detection[] CAppearance detection[Jand [Signal processing[] etc. To specify
the algorithm uses case, the axiom [sDesignedFor(lis defined in the ontology. The
input data type of an algorithm is determined through‘ttainputJobject property
axiom. Similarly, (hasQutput[]axiom defines the output data type of an algorithm
after processing. This knowledge is used to generate autafhatice sequence of
signal processing algorithms depending on the object pgrepalefined previously.
This point is out of the scope of the paper, and will notiéscribed. The focus is
made on the qualification of objects using topological constrain

4  QUALIFICATION USING SPATIAL CONSTRAINTS

To maximize the gain from the use of topological knowledgeHe object qualifi-
cation process, spatial relation (Metric, Topologic, Directional Boodlean) between
the detected geometries in the knowledge base has be initialified. Zlatanova in
[20] gives a survey on different 3D models and relationg Spatial operators avail-
able for spatial query language consist of 3D Topologicalabdpes (disjoint, within,
contains, etc.) [21], 3D Metric operators (distance, closanfartherThan, etc.) [22],
3D Directional operators (above, below, northOf, etc.) [23] famally 3D Boolean
operators (union, intersection, etc.) [24]. Topological opesatoe used to query the
topological relationship between two spatial entities. Since ofcgtindard topologi-
cal operators return a Boolean value, they are also deatadias topological predi-



cates. The use of CSG model [26] and its associated Boofezrator allows us to
model the topological relationships. In order to combine SWés with topological
operators, news built-ins are defined in order to comp@®perator. Consequently,
the results of the operators can be used to define querewich the ontology with
new topological relationships between two objects. The foligwille specifies that a
[Building[ldefined in the ontology that overlaps a Railway[Jdefined as well in the
ontology, is a [RailStation[

Building(?b) "~ Railway(?r) ~ topo: overlaps(?b, 2r)RailStation(?b) (5)

5 KNOWLEDGE-DRIVE QUALIFICATION PROCESS

The ontology schema holds the semantics of the objects likeathiee of geometries
that objects possess from one side and its 3D spatial reldttoonsanother side. The
detected geometries could be inferred to initiate the object gatilific such a quali-
fication is provided through the semantic annotation. It is doneemantic rules to
semantically annotate the object. These rules are ededhtough the extended
SWRL with Spatial built-Ins. It is also possible to use ruleddfine new characteris-
tics through SWRL. The example below will annotate detectech@ing Box as
objects of the class Electric pole if these bounding boxesighehthan 6m.

BoundingBox(?x)  hasHeight(?x, ?ht) ~ swrlb:greaterThan@ht ElectricPole(?x)  (6)

The domain ontology schema now hosts the semantically dad@aometries.
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Fig.2. The Knowledge-Driven strategy applied to the 3D polatid data

Fig.2 illustrates the strategy applied to the 3D point cloud throglcontrol of
prior knowledge about the scene, the spatial relations arg@Xhocessing algorith-
mic ones to yield geometries that are ready for semantic diumstaFirst, a set of
processing algorithms are selected based on the natuegget objects. Once ex-
ecuted, SWRL rules and DLs constraint are used to quakfydetected geometry.
The suggested strategy presents a new semantic based medhaitha to adjust the
geometry qualification by affecting the right label to each aettobject. Actually,



Knowledge about the scene, its geometry, 3D spatial relatimhsAbyorithms will
guide the detection and the recognition strategy. Otherwiséll iletermine which
eventual knowledge can be expected and then detectdweviadcessing algorithms.
The presented approach is materialized via an iterative grdtesms to detect and
refines detection through new gained knowledge at everyoétde iteration, Fig.3.
At the core of the first iteration, the railway scene is almoatatterized by vertical
linear structure. Such information can control the prangssvhere algorithms de-
signed for such type of geometry will be selected andutgdcBased on SWRL rules
enriched with the created 3D spatial Built-Ins, a detectechbapdlated geometry can
be initially qualified as a Signal and an electrical Born fomgxe, Fig.3. Such a first
assumption will help us to detect more discriminant charactearigticling us to the
final classification. During advanced iterations (Second iterdtiothis case), more
focus and precise geometry are detected and populatesl kndlvledge base through
the enhanced knowledge once the previous iteration is &chiéivelies on the ability
of the knowledge base to extract the discriminant charaitsribat can help the final
annotation process. Assuming that the main difference bettheetwo above men-
tioned semantic object is the existence or not of perpendicataliel lines, such a
new generated knowledge will verify such information.cise of the existence of
perpendicular lines, detected object will be finally clasgifeess an electrical born,
Fig.3. In other scenarios, geometric knowledge is not suffidienthe qualification
process. Spatial relationships between detected geometrieslpfel to manage the
qualification process, equation 7. Following such a strategy, itegtidlh continues
until most of ambiguous and unknown object will be qualified.

MainSignal(?y) “BoundingBox(?x) * hasHeight(?x, ?h) * swrikatThan(?h, 4) »
swrib:lessThan(?h, 6) ~3D_swrlb_Topology:distance(?x1@90, 10) DistantSignal(?x) (7)

Knowledge

SWRLRules

/ signal, Electric
9 . DL Constraint ElectricPole 2 Pole
2 : Detection S : F

< SWRL Rules

Iterationl Iteration2

]

J
S| AGE A

New Elements Detection _—

Fig.3. Knowledge Driven method for Object Detection and Quadiiicn Process

51 Reaults

For the approval of the suggested knowledge driven me8tifiim from the scanned
point clouds of the Nirnberg railway main station was etéchwhere we can expect
many objects, both complex and simple. After executiongtiwere 105 geometries
detected and among them 34 are annotated 13 as Electri@Rad;lectric box, and



18 as signal. The rest of 71 detected geometries presgetsallyy some noise on the
ground where the annotation process was able to discrimieatelement from the

false one.
Table 3. Detection and annotation results

Electric pole Signal Electric pole
Annotated 13 18 3
Truth data 12 20 5

6 Conclusion

We have presented a comprehensive system for the Z@tatgtection and annota-
tion process. Contrary to the standard approach, our knge/lddven methods relay
more on knowledge engineering capability and as remitignize the human inter-
vention. It include four main components namely the Kedge base, the 3D
processing algorithm, the 3D Spatial relation and Finally thdifmpasion process.
The scene index is built by detecting different geometriesaandtating them via the
extended SWRL rules. The developed Java platform prandefficient demonstra-
tion tools taking a set of 3D point clouds within an empty OWbudedgebase as
input and produce a populated ontology with the detectextbbj

In the next short time, we plan empowering our knowledage twith more robust
DLs constraint and especially the quality knowledge modeltmyving more secure
qualification. In parallel, future work consist of making newtsewith completely
different environment materialized via the airport scene wiver@lan to relay more
on 3D spatial knowledge to qualify the different building elements.
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