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1. Introduction 

Over the last few years, formal ontologies has been suggested as a solution for several 
engineer problems, since it can efficiently replace standard data bases and relational one 
with more flexibility and reliability. In fact, well designed ontologies own lots of positive 
aspects, like those related to defining a controlled vocabulary of terms, inheriting and 
extending existing terms, declaring a relationship between terms, and inferring relationships 
by reasoning on existent ones. Ontologies are used to represent formally the knowledge of a 
domain where the basic idea was to present knowledge using graphs and logical structure 
to make computers able to understand and process it, (Boochs, et al., 2011). As most recent  
works, the tendency related to the use of semantic has been explored, (Ben Hmida, et al., 
2010) (Hajian, et al., 2009) (Whiting, 2006) where the automatic data extraction from 3D 
point clouds presents one of the new challenges, especially for map updating, passenger 
safety and security improvements. However such domain is characterized by a specific 
vocabulary containing different type of object. In fact, the assumption that knowledge will 
help the improvement of the automation, the accuracy and the result quality is shared by 
specialists of the point cloud processing. 

As a matter of fact, surveying with 3D scanners is spreading all domains. Terrestrial laser 
scanners have been established as a workhorse for topographic and building survey from 
the archaeology (Balzani, et al., 2004) to the architecture (Vale, et al., 2009). Actually, with 
every new scanner model on the market, the instruments become faster, more accurate and 
can scan objects at longer distances. Such technology presents a powerful tool for many 
applications and has partially replaced traditional surveying methods since it can speed up 
field work significantly. Actually, this powerful method allows the creation of 3D point 
clouds from objects or landscapes. However, the huge amount of data generated during the 
process proved to be costly in post-processing. The field time is very height since in most 
cases; processing techniques are still mainly affected by manual interaction of the user. 
Typical operations consist to clean point clouds, to delete unnecessary areas, to navigate in 
an often huge and complicated 3D structure, to select set of points, to extract and model 
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geometries and objects. At the same time, it would be much more effective, to process the 
data automatically, which has already been recorded in a very fast and effective way.  

From another side, the technical survey of facility aims to build a digital model based on 
geometric analysis. Such a process becomes more and more tedious. Especially with the new 
terrestrial laser scanners where a huge amount of 3D point clouds are generated. Within 
such scenario, new challenges have seen the light where the basic one is to make the 
reconstruction process automatic and more accurate. Thus, early works on 3D point clouds 
have investigated the reconstruction and the recognition of geometrical shapes (Pu, et al., 
2007) to resolve this challenge. In fact, such a problematic was investigated as a topic of the 
computer graphic and the signal processing research where most works focused on 
segmentation or visualization aspects. As most recent works, the new tendency related to 
the use of semantic has been explored (Ben Hmida, et al., 2010). As a main operation, the 
technical survey relies fundamentally on the object reconstruction process where 
considerable effort has already been invested to reduce the impact of time consuming, 
manual activities and to substitute them by numerical algorithms. Unfortunately, most of 
such algorithmic conceptions are data-driven and concentrate on specific features of the 
objects being accessible to numerical models. By these models, which normally describe the 
behavior of geometrical (flatness, roughness�) or physical features (color, texture�), the 
data is classified and analyzed. Such strategies are static and not to allow a dynamic 
adjustment to the object or initial processing results. In further scenarios, an algorithm will 
be applied to the data producing better or minor results depending on several parameters 
like image or point cloud quality, the completeness of object representation, the viewpoints 
position, the complexity of object features, the use of control parameters and so on. 
Consequently, there is no feedback to the algorithmic part in order to choose a different 
algorithm or reuse the same algorithm with changed parameters. This interaction is mainly 
up to the user who has to decide by himself, which algorithms to apply for which kind of 
objects and data sets. Often good results can only be achieved by iterative processing 
controlled by a human interaction. 

These problems can be solved when further information is integrated into the algorithmic 
process chain for object detection and recognition allowing supporting the process of 
validation. Such information might be derived from the context of the object itself and its 
behavior with respect to the data and/or other objects or from a systematic characterization 
of the parameterization and the effectiveness of the algorithms to be used. As programming 
languages used in the context of numerical treatments are not dedicated to process 
knowledge, their condition of use is not flexible and makes the integration of semantic 
aspects difficult.   

As a matter of fact, the goal of our proposition is to develop efficient and intelligent methods 

for an automated processing of terrestrial laser scanner data, Fig 1. The principle our 

solution is a knowledge-based detection of objects in point clouds for AEC (Architecture, 

Engineering and Construction) engineering applications in correspondence to a project of 

the same name "WiDOP". In contrast to existing approaches, the project consists in using 

prior knowledge about the context and the objects. This knowledge is extracted from 

databases, CAD plans, Geographic Information Systems (GIS), technical reports or domain 

experts. Therefore, this knowledge is the basis for a selective knowledge-oriented detection 

and recognition of objects in point clouds. In such scenario, knowledge about such objects 
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have to include detailed information about the objects' geometry, structure, 3D algorithms, 

etc.   

 

Fig. 1. Automatic processing compared to the manual one. 

The present chapter aims at building a bridge between the semantic modelling and the 

numerical processing to define strategies based on domain knowledge and 3D processing 

knowledge. The knowledge will be structured in ontologies structure containing a variety 

of elements like already existing information about objects of that scene such as data 

sources (digital maps, geographical information systems, etc.), information about the 

objects' characteristics, the hierarchy of the sub-elements, the geometrical topology, the 

characteristics of processing algorithms, etc. In addition, all relevant information about 

the objects, geometries, inter and intra-relation and the 3D processing algorithms have 

been modeled inside the knowledge base, including characteristics such as positions, 

geometrics information, images textures, behavior and parameter of suitable algorithms, 

for example.  

By this contribution, an approach on achieving the object detection and recognition within 

those inference engines will be presented. The major context behind the current chapter is 

the use of knowledge in order to manage the engineering problem in question based on 

heterogynous environment. It primarily focuses on 3D point clouds and its management 

through the available processing technologies for object detection and recognition 

incorporated through the knowledge. As the Web technologies get matured through its 

approach in the Semantic Web, the implementation of knowledge in this domain seems to 

be more appropriate. 

This research puts forward the views and result of the research activities in the backdrop of 

the Semantic Web technologies and the knowledge management aspect within it. The 

suggested system is materialized via WiDOP project (Ben Hmida, et al., 2011). Furthermore, 

the created WiDOP platform is able to generate an indexed scene from unorganized 3D 

point clouds visualized within the virtual reality modelling language (W3C, 1995). 

The following chapter is structured into section 2 which gives an overview of actual existing 

strategies for reconstruction processes, section 3 highlight the adopted languages and 

technologies for knowledge and semantic modeling, section 4 explains the suggested 

architecture for the WiDOP solution, section 5 presents an overview of the related 

knowledge model, section 6 emphasizes the intelligent process. Section 7 shows different 

strategies and level of knowledge for the processing, section 8 present the developed 

platform and gives first results for a real example, and finally section 9 concludes and shows 

next planned steps. 
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2. Background concept and methodology 

The technical survey of facilities, as a long and costly process, aims at building a digital 
model based on geometric analysis since the modeling of a facility as a set of vectors is not 
sufficient in most cases. To resolve this problem, a new standard was developed over ten 
years by the International Alliance for Interoperability (IAI). It is named the IFC format (IFC 
- Industry Foundation Classes) (Vanland, et al., 2008). The specification is a neutral data 
format to describe exchange and share information typically used within the building and 
facility management industry. This norm considers the building elements as independent 
objects where each object is characterized by a 3D representation and defined by a semantic 
normalized label. Consequently, the architects and the experts are not the only ones who are 
able to recognize the elements, but everyone will be able to do it, even the system itself. For 
instance, an IFC Signal is not just a simple collection of lines and geometric primitives 
recognized as a signal; it is an "intelligent " object signal which has attributes linked to a 
geometrical definition and function. IFC files are made of objects and connections between 
these objects. Object attributes describe the "business semantic" of the object. Connections 
between objects are represented by "relation elements". This format and its semantics are the 
keystone of our solution.  

The problematic of 3D object detection and scene reconstruction including semantic 
knowledge was recently treated within a different domain, basically the photogrammetry 
one (Pu, et al., 2007), the construction one, the robotics (Rusu, et al., 2009) and recently the 
knowledge engineering one (Ben Hmida, et al., 2010). Modeling a survey, in which low-level 
point cloud or surface representation is transformed into a semantically rich model is done 
in three tasks where the first is the data collection, in which dense point measurements of 
the facility are collected using laser scans taken from key locations throughout the facility; 
Then data processing, in which the sets of point clouds from the collected scanners are 
processed. Finally, modeling the survey in which the low-level point cloud is transformed 
into a semantically rich model. This is done via modeling geometric knowledge, qualifying 
topological relations and finally assigning an object category to each geometry (Boochs, et 
al., 2011). Concerning the geometry modeling, we remind here that the goal is to create 
simplified representations of facility components by fitting geometric primitives to the point 
cloud data. The modeled components are labeled with an object category. Establishing 
relationships between components is important in a facility model and must also be 
established. In fact, relationships between objects in a facility model are useful in many 
scenarios. In addition, spatial relationships between objects provide contextual information 
to assist in object recognition (Cantzler, 2003). Within the literature, three main strategies are 
described to rich such a model where the first one is based on human interaction with 
provided software�s for point clouds classifications and annotations (Leica, 2011). While the 
second strategy relies more on the automatic data processing without any human 
interaction by using different segmentation techniques for feature extraction (Rusu, et al., 
2009). Finally, new techniques presenting an improvement compared with the cited ones by 
integrating semantic networks to guide the reconstruction process have seen the light. 

2.1 Manual survey model creation 

In current practice, the creation of a facility model is largely a manual process performed by 
service providers who are contracted to scan and model a facility. In reality, a project may 
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require several months to be achieved, depending on the complexity of the facility and the 
modeling requirements. Reverse engineering tools excel at geometric modeling of surfaces, 
but with the lack of volumetric representations, while such design systems cannot handle 
the massive data sets from laser scanners. As a result, modelers often shuttle intermediate 
results back and forth between different software packages during the modeling process, 
giving rise to the possibility of information loss due to limitations of data exchange 
standards or errors in the implementation of the standards within the software tools 
(Goldberg, 2005). Prior knowledge about component geometry, such as the diameter of a 
column, can be used to constrain the modeling process, or the characteristics of known 
components may be kept in a standard component library. Finally, the class of the detected 
geometry is determined by the modeler once the object is created. In some cases, relationships 
between components are established either manually or in a semi-automated manner.  

2.2 Semi-Automatic and Automatic methods 

The manual process for constructing a survey model is time consuming, labor-intensive, 
tedious, subjective, and requires skilled workers. Even if modeling of individual geometric 
primitives can be fairly quick, modeling a facility may require thousands of primitives. The 
combined modeling time can be several months for an average-sized  facility. Since the same 
types of primitives must be modeled throughout a facility, the steps are highly repetitive and 
tedious (Hajian, et al., 2009). The above mentioned observations and others illustrate the need 
semi-automated and automated techniques for facility model creation. Ideally, a system could 
be developed that would take a point cloud of a facility as input and produce a fully annotated 
as-built model of the facility as output. The first step within the automatic process is the 
geometric modeling. It presents the process of constructing simplified representations of the 
3D shape of survey components from point cloud data. In general, the shape representation is 
supported by Constructive Solid Geometry (CSG) (Corporation, 2006) or Boundary 
representation B-Rep representation (CASCADE, 2000). The representation of geometric 
shapes has been studied extensively (Campbell, et al., 2001). Once geometric elements are 
detected and stored via a specific presentation, the final task within a facility modeling process 
is the object recognition. It presents the process of labeling a set of data points or geometric 
primitives extracted from the data with a named object or object class. Whereas the modeling 
task would find a set of points to be a vertical plane, the recognition task would label that 
plane as being a wall, for instance. Often, the knowledge describing the shapes to be 
recognized is encoded in a set of descriptors that implicitly capture object shape. Research on 
recognition of facility's specific components related to a facility is still in its early stages. 
Methods in this category typically perform an initial shape-based segmentation of the scene, 
into planar regions, for example, and then use features derived from the segments to recognize 
objects. This approach is exemplified by Rusu et al. who use heuristics to detect walls, floors, 
ceilings, and cabinets in a kitchen environment (Rusu, et al., 2009). A similar approach was 
proposed by Pu and Vosselman to model facility façades (Pu, et al., 2009). To reduce the search 
space of object recognition algorithms, the use of knowledge related to a specific facility can be 
a fundamental solution. For instance, Yue et al. overlay a design model of a facility with the as-
built point cloud to guide the process of identifying which data points belong to specific 
objects and to detect differences between the as-built and as-designed conditions (Yue, et al., 
2006). In such cases, object recognition problem is simplified to be a matching problem 
between the scene model entities and the data points. Another similar approach is presented in 
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(Bosche, et al., 2008). Other promising approaches have only been tested on limited and very 
simple examples, and it is equally difficult to predict how they would fare when faced with 
more complex and realistic data sets. For example, the semantic network methods for 
recognizing components using context work well for simple examples of hallways and barren, 
rectangular rooms (Cantzler, 2003), but how would they handle spaces with complex 
geometries and clutter.  

2.3 Discussion 

The presented methods for survey modeling and object recognition rely on hand-coded 
knowledge about the domain. Concepts like "Signals are vertical" and "Signals intersect with 
the ground" are encoded either explicitly, through sets of rules, or implicitly, through the 
design of the algorithm. Such hard-coded, rule based approaches tend to be brittle and 
break down when tested in new and slightly different environments. Additionally, we can 
deduce that authors model the context but not the 3D processing algorithms, the geometry 
and the topology. Furthermore, it will be difficult in such a case to extend an algorithm with 
new rule or to modify the rules to work in new environments. To make it more flexible and 
efficient, and in contrast with the literature, we opt to use a new data structure labeled 
ontology. In fact, the last one presents a formal representation of knowledge by a set of 
concepts within a domain, and the relationships between those concepts. It is used to reason 
about the entities within that domain, and may be used to describe the domain where the 
basic strength of formal ontology is their ability to present knowledge within their 
taxonomy, relations and conditions, but also to reason in a logical way based on Description 
Logics DL concepts. Based on these observations, we predict that more standard and flexible 
representations of facility objects and more sophisticated guidance based algorithms for 
object detection instead of a standard one, by modeling algorithmical, geometrical and 
topological knowledge within an ontology structure will open the way to significant 
improvement in facility modeling capability and generality since it will allow as to create a 
more dynamic algorithm sequence for object detection based on object's geometries and to 
make more robust the identification process. 

3. Knowledge and Semantic web 

The growth of the World Wide Web has been tremendous since its evolvement both in 
terms of the content and the technology. The first Web generation was mainly presentation 
based. They provided information through the Web pages but did not allow users to interact 
with them. In short, they contained read only information. Moreover, they were only text 
pages and do not contain multimedia data. These Web sites have higher dependency on the 
presentation languages like Hypertext Markup Languages (HTML) (Horrocks, et al., 2004). 
With the introduction of eXtensibleMarkupLanguage (XML), the information within the 
pages became more structured. Those XML based pages could hold up the contents in more 
structured method but still lack the proper definition of semantics within the contents, 
(Berners-Lee, 1998). For this reason, the needs of intelligent systems which could exploit the 
wide range of information available within the Web are widely felt. Semantic Web is 
envisaged to address this need.  

The term "Semantic Web" is coined by Tim Berners-Lee in his work (Lee, et al., 2001) to 
propose the inclusion of semantic for better enabling machine-people cooperation for 
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handling the huge information that exists in the Web. The term "Semantic Web" has been 
defined numerous time. Though there is no formal definition of Semantic Web, some of its 
most used definitions are  "The Semantic Web is not a separate Web but an extension of the 
current one, in which information is given well-defined meaning, better enabling computers and 
people to work in cooperation. It is a source to retrieve information from the Web (using the Web 
spiders from RDF files) and access the data through Semantic Web Agents or Semantic Web Services. 
Simply Semantic Web is data about data or metadata" (Lee, et al., 2001). "A Semantic Web is a Web 
where the focus is placed on the meaning of words, rather than on the words themselves: information 
becomes knowledge after semantic analysis is performed. For this reason, a Semantic Web is a 
network of knowledge compared with what we have today that can be defined as a network of 
information" (Huynh, et al., 2007). "The Semantic Web provides a common framework that allows 
data to be shared and reused across application, enterprise and community boundaries" (Decker, et 
al., 2000). In the next subsection, we discuss the different issues related to the definition of 
such a technology where we focus mainly on the Description Logic theory (DL) and its 
impact on the semantic web technology. 

3.1 The description logics  

Actually, the convergence of formal foundations for extensible, semantically understood 

structure within description logic and the overall usability targets of the predecessor of DL 

and the Web languages for broader usability of Web has led to the effort such as Ontology 

Interface Language (OIL) (Fensel, et al., 2001). It presents the first major effort to develop a 

language which has its base in Description Logic. It was a part of the broader project called 

On-To-Knowledge funded by European Union. This is the first time that the concept within 

ontology is explicitly used within a Web based environment. However, it did not completely 

leave out the primitives of frame base languages with the formal semantics and reasoning 

capabilities by including them within the language. The syntax of OIL is based on RDF and 

XML with their limitations to provide complete semantic foundations at that time. However, 

it has started a trend of mapping description logic within the Web based language for 

Semantic Web. It maps description logic through SHIQ. The derivation of SHIQ with respect 

to naming convention of the Description Logic is given as: 

S: Used for all ALC with transitive roles R൅  
H: Role inclusion axioms Rͳَ Rʹ ሺis̴component̴of َ is̴part̴ofሻ  
I: Inverse Role R-ሺisPartOf ൌ hasPartǦሻ  
Q: Qualified number restrictions  

3.1.1 The base languages  

Complex descriptions can be built up through the above mentioned elementary descriptions 

of concepts and roles. These descriptions are given different notations over the time. The 

Attributive Language (AL) has been introduced in 1991 as minimal language that is of 

practical interest (Schmidt-Schauß, et al., 1991). It is further complemented through 

Attributive Concept Language with Complements (ALC) to allow any concepts or roles to be 

included and not just atomic concepts and atomic roles which were the previous elements of 

descriptions. ALC is the important notation format to express Description Logics. Fig 2 

illustrates the syntax rules on describing the concept.  
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Notation Syntax Semantics Read-as ١ ǡܥ ܦ ՜ ١ ١ሺݔሻ Universal concept ٣ ٣ ٣ ሺݔሻ Bottom concept ِ C ِ ܦ Cሺxሻ ِ Dሺxሻ Intersection ّ ܥ ّ ܦ Cሺxሻ ّ Dሺxሻ Union ൓ ൓ܥ ൓ܥሺݔሻ Negation ׌ Ǥܴ׌ ܥ ǡݔሺܴ׌ ሻݕሺܥځሻݕ Existential 
Quantification ׊ Ǥܴ׊ ܥ Ǥݕ׊ ܴሺݔǡ ሻݕ ՜ ሻݕሺܥ Value Restriction 

Here C and D are concept description and R is role 

Fig. 2. The syntax and semantics based on ALC. 

We introduce in this section the terminological axioms, which make statements about how 
concepts or roles are related to each other. Then we single out definitions as specific axioms 
and identify terminologies as sets of definitions by which we can introduce atomic concepts 
as abbreviations or names for complex concepts. In the most general case, terminological 
axioms have the form ܥ َ ǡ ܦ ܴ َ ܥ ݎܱ ܵ ؠ ǡܦ ܴ ؠ ܵ where C, D are concepts (and R, S are 
roles). Axioms of the first kind are called inclusions, while axioms of the second kind are 
called equalities. An equality whose left-hand side is an atomic concept. It´s used to 
introduce symbolic names for complex descriptions e,g. ܴ݈ܹܽ݅ݎ݁݇ݎ݋ ؠ Ǥ݇ݎ݋ݓݏ݄ܽ׌ِ ݊݋ݏݎ݁ܲ  It could be clearly seen within Fig 2 that these concept descriptions are .݇ݎ݋ܹ݈ܴ݅ܽ
built with the concept constructors. The first four constructors are not dependent on the 
roles whereas the last two utilizes the roles in the constructors. This dependency is called 
role restrictions. Formally, a role restriction is an unnamed class containing all individuals 
that satisfy the restriction. DLs expressed through ALC provide two such restrictions in 
Quantifier restriction and value restrictions. 

The Quantifier restriction 

It´s again classified as the existential quantifier (at least one, or some) and universal 

quantifiers (every).  

The existential quantifier links a restriction concept to a concept description or a data range. 
This restriction describes the unnamed concept for which there should be at least one 
instance of the concept description or value of the data value. Simplifying, the property 
restriction P relates to a concept of individuals x having at least one y which is either an 
instance of concept description or a value of data range so that P(x,y) is an instance of P. 

From the other side, the universal quantifier () (every) constraint links a restriction concept 
to a concept description or a data range. This restriction describes the unnamed concept for 
which there should all instances of the concept description or value of the data value. 
Simplifying, the property restriction P relates to a concept of individuals x having all y 
which is either an instance of the concept description or a value of data range so that P(x,y) 
is concidered as an instance of P.  

The Value restriction 

It links a restriction concept directly to a value which could be either an individual or data 
value. 
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3.1.2 The description logics formalization 

Description logics (DLs) are a family of logics which represents the structured knowledge. 
The Description Logic languages are knowledge representation languages that can be used 
to represent the knowledge of an application domain in a structured and formally well-
understood way (McGuinness, et al., 2003), (Calvanese, et al., 2005). Description logics 
contain the formal, logic-based semantics, which present the major reason for its choice for 
Semantic Web languages over its predecessors. The reasoning capabilities within the DLs 
add a new dimension. Having these capabilities as central theme, inferring implicitly 
represented knowledge becomes possible. The movement of Description Logic into its 
applicability can be viewed in terms of its progression in Web environment (Noy, et al., 
2001). Web languages such as XML or RDF(S) could benefit from the approach DL takes to 
formalize the structured knowledge representation (Lassila, 2007). This has laid background 
behind the emergence of Description Logic languages in Web. Actually, an agreement to 
encode these operators using an alphabetic letter to denote expressivity of DLs has seen the 
light. These letters in combinations are used to define the capabilities of DLs in terms of 
their performances. This implies to the DL languages as well. As could be seen in Fig 3, ALC 

has been extended to transitive role and given abbreviation S in the convention. Where S is 
used in every DL systems and languages as it plays significant role in shaping the 
behavioural nature of every DL systems. 

 

AL :ܥǡ ܦ ՜ ١ȁ ٣ ȁ ܣ ȁ C ِ ܦ ȁ ൓ܣ ȁ Ǥܴ׌ ܶ ȁ Ǥܴ׊ ܥ
C : Concept negation ൓ܥ. Thus, ALC=AL+C 

S : Used for ALC with transitive role R+ 

U : Concept disjunction ܥ ّ  ܦ
Ķ : Existential quantification, ܴ׌Ǥ  ܥ
H : Role inclusions axioms, R1َ R2, e.g is_component_of َ is_part_of 
N :Number Restrictions, (≥ nR) and (≤ nR), e.g (≥ has_Child) (has at least 3 child) 
Q :Qualified number restriction, (≥n R.C) and (≤n R.C) , e.g (≤2 has_child.Adult) (has at 

most 2 adult Children) 
O :Nominals (singleton class), {a}. e.g ݈݄݀݅ܥ̴ݏ݄ܽ׌Ǥ ሼ݉ܽݕݎሽǤ 
I :Inverse role R-, e.g isPartof=hasPart- 
F :functional role, e.g functional(hasAge) 
R+ :Transitive role , e.g., transitive (isPartOf) 
R :role inclusion with comparison, R1 o R2  َ  S, e.g, isPartOf o isPartOf َ  ݂ܱݐݎܽܲݏ݅

Fig. 3. Naming convention of Description Logic. 

3.2 The knowledge base  

Description Logics supports serialization through the human readable forms of the real 
world scenario with the classification of concepts and individuals. Moreover, they support 
the hierarchical structure of concepts in forms of subconcepts/superconcepts relationships 
of a concept between the concepts of a given terminology. This hierarchical structure 
provides efficient inference through the proper relations between different concepts. The 
individual-concept relationship could be compared to instantiation of an object to its class in 
object-oriented concept. In this manner, the approach DL takes can be related to 
classification of objects in a real world scenario. Description logics provide a formalization 
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to knowledge representation of real world situations. This means it should provide the 
logical replies to the queries of real world situations. This is currently most researched topic 
in this domain. The results are highly sophisticated reasoning engines which utilize the 
capabilities of expressiveness of DLs to manipulate the knowledge. A Knowledge 
Representation system is a formal representation of a knowledge described through 
different technologies. When it is described through DLs, they set up a Knowledge Base 
(KB), the contents of which could be reasoned or infer to manipulate them. A knowledge 
base could be considered as a complete package of knowledge content. It is, however, only a 
subset of a Knowledge Representation system (KR) that contains additional components.  

 

Fig. 4. The Architecture of a knowledge representation system based on DLs. 

Baader (Baader, 2006) sketches the architecture of any KR system based on DLs. It could be 
seen the central theme of such a system is a Knowledge Base (KB). The KB constitutes of two 
components: the TBox and the ABox. Where TBox statements are the terms or the 
terminologies that are used within the system domain. In general they are statements 
describing the domain through the controlled vocabularies. For example in terms of a social 
domain the TBox statements are the set of concepts as Rail, train, signal etc. or the set of roles 
as hasGeometry, hasDetectionAlg, hasCharacteristics etc. ABox in other hand contains assertions 
to the TBox statements. In object oriented concept, ABox statements compliant TBox 
statements through instantiating what is equivalent to classes in TBox and relating the roles 
(equivalent to methods or properties in OO concept) to those instances.  

The DLs are expressed through the concepts and roles of a particular domain. This 

complements well with the fact how knowledge is expressed in the general term. Concepts 

are sets of classes of individual objects. Where classes provide an abstraction mechanism for 

grouping resources with similar characteristics (Horrocks, et al., 2008). The concepts can be 

organized into superclass-subclass hierarchy which is also known as taxonomy. It shares the 

object-oriented concepts in managing the hierarchy of superconcept-subconcept. The sub-

concepts are specialized concepts of their super-concepts and the super-concepts are 

generalized concepts of their sub-concepts. For an example all individuals of a class must be 

individuals of its superclass. In general all concepts are subsumed by their superclass. In 

any graphical representation of knowledge, concepts are represented through the nodes. 

Similarly the roles are binary relationship between concepts and eventually the relationships 

of the individuals of those concepts. They are represented by links in the graphical 

representation of knowledge. The description language has a model-theoretic semantics as 
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the language for building the descriptions is independent to each DL system. Thus, 

statements in the TBox and in the ABox can be identified as first-order logic or, in some 

cases, a slight extension of it (Baader, et al., 2008).  

3.3 The Web Ontology Language (OWL)  

The association of knowledge with Semantic Web has provided a scope for information 
management through the knowledge management. Since both the technologies use ontology 
to conceptualize the scenarios, Semantic Web technology could provide a platform for 
developments of knowledge management systems (Uren, et al., 2006). The ontologies are 
core to both the technologies in whichever methods they are defined. The Semantic Web 
defines ontologies, (Gruber, 2008) through XML based languages and with the 
advancements in these languages. Within the computer science domain, ontologies are seen 
as a formal representation of the knowledge through the hierarchy of concepts and the 
relationships between those concepts. In theory ontology is a "formal, explicit specification of 
shared conceptualization" (Gruber, 2008). In any case, ontology can be considered as 
formalization of knowledge representation where the Description Logics (DLs) provide 
logical formalization to the Ontologies (Baader, et al., 2007).  

OWL or the Web Ontology Language is a family of knowledge representation language to 

create and manage ontologies. It is in general term an extension of RDFS with addition to 

richer expressiveness that RDFS lacks through its missing features (Antoniou, et al., 2009). 

The OWL Working Group has approved two versions of OWL: OWL 1 and OWL 2, (Grau, 

et al., 2008). The Web Ontology Language (OWL) is intended to be used when the 

information contained in documents needs to be processed by applications and not by 

human (Antoniou, et al., 2009). The OWL language has direct influence from the researches 

in Description Logics and insights from Description Logics particularly on the formalization 

of the semantics. OWL takes the basic fact-stating ability of RDF (Allemang, et al., 2008) and 

the class- and property-structuring capabilities of RDF Schema and extends them in 

important ways. OWL own the ability to declare classes, and organise these classes in a 

subsumption ("subclass�) hierarchy, as can RDF Schema. OWL classes can be specified as 

logical combinations (intersections, unions, or complements) of other classes, or as 

enumerations of specified objects, going beyond the capabilities of RDFS. OWL can also 

declare properties, organize these properties into a "subproperty� hierarchy, and provide 

domains and ranges for these properties, again as in RDFS. The domains of OWL properties 

are OWL classes, and ranges can be either OWL classes or externally-defined datatypes such 

as string or integer. OWL can state that a property is transitive, symmetric, functional, or is 

the inverse of another property, here again extending RDFS. 

Add to that, OWL pocess the ability to specify which objects (also called "individuals�) 

belong to which classes, and what the property values are of specific individuals. 

Equivalence statements can be made on classes and on properties, disjointness statements 

can be made on classes, and equality and inequality can be asserted between individuals.  

However, the major extension over RDFS is the ability in OWL to provide restrictions on 
how properties behave that are local to a class. OWL can define classes where a particular 
property is restricted so that all the values for the property in instances of the class must 
belong to a certain class (or datatype); at least one value must come from a certain class (or 
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datatype); there must be at least certain specific values; and there must be at least or at most 
a certain number of distinct values. 

3.4 Semantic Web Rule Language (SWRL)  

An inference process consists of applying logic in order to derive a conclusion based on 
observations and hypothesis. In computer science, interferences are applied through 
inference engines. These inference engines are basically computer applications which derive 
answers from a knowledge base. These engines depend on the logics through logic 
programming.  The horn logic more commonly known Horn clause is a clause with at most 
one positive literal. It has been used as the base of logic programming and Prolog languages 
(Sterling, et al., 2009) for years. These languages allow the description of knowledge with 
predicates. Extensional knowledge is expressed as facts, while intentional knowledge is 
defined through rules (Spaccapietra, et al., 2004). These rules are used through different 
Rule Languages to enhance the knowledge possess in ontology. The Horn logic has given a 
platform to define Horn-like rules through sub languages of RuleML (Boley, et al., 2009). 
There have been different rule languages that have emerged in last few years. Some of these 
languages that have been evolving rapidly are Semantic Web Rule Language (SWRL) and 
Jena Rule. Both have their own built-ins to support the rules. With the actual work, SWRL 
language is used to rich the target concepts but it could be applied to others rule language 
based on Horn clauses. 

Semantic Web Rule Language (Valiente-Rocha, et al., 2010) is a rule language based on the 
combination of the OWL-DL with Unary/Binary Datalog RuleML which is a sublanguage of 
the Rule Markup Language. One restriction on SWRL called DL-safe rules was designed in 
order to keep the decidability of deduction algorithms. This restriction is not about the 
component of the language but on its interaction. SWRL includes a high-level abstract 
syntax for Horn-like rules. The SWRL as the form, antecedentńconsequent, where both 
antecedent and consequent are conjunctions of atoms written a1 ... an. Atoms in rules can be 
of the form C(x), P(x,y), Q(x,z), sameAs(x,y), differentFrom(x,y), or builtIn(pred, z1, �, zn), 
where C is an OWL description, P is an OWL individual-valued property, Q is an OWL 
data-valued property, pred is a datatype predicate URI ref, x and y are either individual-
valued variables or OWL individuals, and z, z1, � zn are either data-valued variables or 
OWL data literals. An OWL data literal is either a typed literal or a plain literal. Variables 
are indicated by using the standard convention of prefixing them with a question mark 
(e.g., ?x). URI references (URI refs) are used to identify ontology elements such as classes, 
individual-valued properties and data-valued properties. For instance, the following rule, 
equation 1, asserts that one's parents' brothers are one's uncles where parent, brother and 
uncle are all individual-valued properties.  

 Parent(?x, ?p) ^ Brother(?p, ?u) ńUncle(?x, ?u) (1) 

The set of built-ins for SWRL is motivated by a modular approach that will allow further 
extensions in future releases within a hierarchical taxonomy. SWRL's built-ins approach is 
also based on the reuse of existing built-ins in XQuery and XPath, which are themselves 
based on XML Schema by using the Datatypes. This system of built-ins should also help in 
the interoperation of SWRL with other Web formalisms by providing an extensible, modular 
built-ins infrastructure for Semantic Web Languages, Web Services, and Web applications 
(OConnor, et al., 2008).  
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3.5 Swrl built-ins 

These built-ins are keys for any external integration. They help in the interoperation of 
SWRL with other formalism and provide an extensible infrastructure knowledge based 
applications. Actually, Comparisons Built-Ins, Math Built-Ins and Built-Ins for Strings are 
already implemented within lots of platform for ontology management like protégé. In the 
actual work, new processing and topological built-in for the integration of 3D processing 
and topological knowledge are integrated respectively.  

3.6 Discussion 

Semantic Web technology is slowly modernizing the application of knowledge technologies, 
and though they existed before the Semantic Web, the implementation in their fullness is 
just being realized. Our actual research, materialized by WiDOP project relay on the above 
mentioned concept and technologies. In fact, this research benefits from the existing OWL 
languages, the existent inference engines through the inference rules and reasoning engines 
to reason the knowledge. However, the actual research works moves beyond semantic 
reasoning and semantic rule processing and attempts to implement new 3D processing and 
topological rule inference integrating the correspondent processing and topological built-Ins 
components in its structure to resolve the problem of object detection and annotation in 3D 
point clouds based on semantic knowledge.  

4. Overview of the general WiDOP model 

The problem of automatic object reconstruction remains a difficult task to realize in spite of 
many years of research. Major problems result from geometry and appearance of objects 
and their complexity, and impact on the collected data. For example, variations in a 
viewpoint may destroy the adjacency relations inside the data, especially when the object 
surface shows considerable geometrical variations. This dissimilarity affects geometrical or 
topological relations inside the data and even gets worse, when partial occlusions result in a 
disappearance of object parts. Efficient strategies therefore have to be very flexible and in 
principle need to model almost all factors having impact of the representation of an object in 
a data set. That leads to the finding, that at first a semantic model of a scene and the objects 
existing therein is required. Such a semantic description should be as close to the reality as 
possible and as necessary to take most relevant factors into account, which may have impact 
on later analysis steps. At least this comprises the objects to be extracted with their most 
characteristic features (geometry, shape, texture, orientation,...) and topological relations 
among each other. The decision upon features to be modelled should be affected by other 
important factors in an analysis step like characteristics of the data, the algorithms and their 
important features. Such a model might be supported by a DL-OWL ontology structure 
formed out of RDFS nodes and properties where the nodes represent classes or objects as 
their instances and the links show relationships of various characteristics. Such a network 
then contains the knowledge of that type of scene, which has to be processed. This 
knowledge base will act as basis for further detection and annotation activities and has to 
work in cooperation with numerical algorithms. 

Up to this point, the new conception is still in concordance to other knowledge related set 

ups, although the degree of modelling goes farther because all relevant scene knowledge 
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will be integrated. But another aspect will be considered also allowing to significantly 

improving processing strength. That is to integrate knowledge even on the algorithmic side. 

This means to make use of the flexibility of knowledge processing for decisions and control 

purposes inside the algorithmic processing chain. Even a propagation of findings from 

processing results into new knowledge for subsequent steps should be possible, what would 

give a completely new degree of dynamics and stability into the evaluation process.  

It will finally leads to the conceptual view shown in Fig 5 where the general architecture for 

the suggested solutions is presented. It�s composed of three parts: the knowledge model, the 

3D processing algorithms execution and the interaction management and control part 

labelled WiDOP processing materialized within swrl rules and Built-Ins extensions, 

ensuring the interaction between the above sited parts. In contrast to existing approaches, 

we aim at the utilization of previous knowledge on objects. This knowledge can be 

contained in databases, construction plans, as-built plans or Geographic Information 

Systems (GIS). The suggested solution named as knowledge based detection of objects in 

point clouds (WiDOP) has its roots in the knowledge base which then guides individual 

algorithmic steps. Results from algorithms are also analyzed by the knowledge base and the 

reasoning engine, then deciding upon subsequent algorithmic steps is taken also from the 

knowledge base. Accordingly, detected objects and their features are populated to the 

knowledge base, which will permanently evolve until the work is done. 

 

Fig. 5. WiDOP: Overview system. 

4.1 The knowledge model 

The needed knowledge for such purpose will be modelled within a top level ontology 
describing the general concept behind the knowledge domain. The suggested approach is 
intended to use semantics based on OWL technology for knowledge modelling and 
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processing. Knowledge will be structured and formalized based on IFC schema, XML files, 
the domain concept which is the Deutsche Bahn scene in this case and 3D processing 
domain experts, etc., using classes, instances, relations and rules. An object in the ontology 
can be modelled as presented; a room has elements composed of walls, a ceiling and a floor. 
The sited elements are basic objects. They are defined by their geometry (plane, boundary, 
etc.), features (roughness, appearance, etc.), and also the qualified relations between them 
(adjacent, perpendicular, etc.). The object "room" gets its geometry from its elements, and 
further characteristics may be added such as functions in order to estimate the existent sub 
elements. For instance, a "classroom" will contain  "tables",  "chairs",  "a blackboard", etc. The 
detection of the object "room" will be based on an algorithmic strategy which will look for 
the different objects contained in the point cloud. This means, using different detection 
algorithms for each element, based on the above mentioned characteristics, will allow us to 
classify most of the point region in the different element categories. It corresponds to the 
spatial structure of any facility, and it is an instance of semantic knowledge defined in the 
ontology. This instance defines the rough geometry and the semantics of the building 
elements without any real measurement. This model contains also knowledge extracted 
from the technical literature of the domain and knowledge from experts of the domain too. 
In addition, the ontology is as well enriched with knowledge about 3D processing 
algorithms and populated with the results of experiences undertaken on 3D point clouds, 
which define the empirical knowledge extracted from point clouds regarding a specific 
domain of application. 

4.2 The 3D processing algorithms 

Numerical processing includes a number of algorithms or their combination to process the 

spatial data. Strategies include geometric element detection (straight line, plane, surface, 

etc.), projection - based region estimation, histogram matrices, etc. All of these strategies are 

either under the guidance of knowledge, or use the modelled prior knowledge to estimate 

the object intelligently and optimally. Alongside with 3D point clouds, various types of 

input, data sets can be used such as images, range images, point clouds with intensity or 

color values, point clouds with individual images oriented to them or even stereo images 

without a point cloud. All sources are exploited for application to particular strategies. 

Knowledge not only describes the information of the objects, but also gives a framework for 

the control of the selected strategies. The success rate of detection algorithms using 

RANSAC (Tarsha-Kurdi, et al., 2007), Iterative Closest Point (Milella, et al., 2006) and Least 

Squares Fitting (Cantrell, 2008) should significantly increase by making use of the 

knowledge background. However, we are planning not only to process point data sets but 

also based on a surface and volume representation like mesh, voxels and bounding Boxes. 

These methods and others will be selected in a flexible way, depending on the semantic 

context. 

4.3 The WiDOP processing 

In order to manage the interaction between the knowledge part and the 3D processing one, a 
new layer labelled WiDOP processing materialized within rules is created. This layer 
ensures the control and the management of the knowledge transaction and the decision 
taken based on SWRL languages and its extensions through several steps explained within 
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the next section. The semantic within the ontologies expressed through OWL-DL language 
can be used for further inferences. For instance, the following rule asserts that a Bounding 
Box with lines higher then 5 m are masts where Masts, Bounding Boxes and lines are all 
individual-valued properties. The DL syntax related to such an expression is Mast َሺݔ݋ܤ ݃݊݅݀݊ݑ݋ܤ ِ Ǥ݁݊݅ܮݏ݄ܽ ׌ Line ِ hasHeightǤ ׌ ሼ൐ ͷሽሻ while the swrl conversion of such an 

expression is BoundingBox(?x)  hasLine(?x,?y)  hasHeight (?y,?h)  swrlb:GreaterThan 
(?h, 5)  Mast(?x). 

The set of built-ins for SWRL is motivated by a modular approach that will allow further 
extensions in future releases within taxonomy. SWRL's built-ins approach is also based on 
the reuse of existing built-ins in XQuery and XPath, which are themselves based on XML 
Schema by using the Datatypes. This system of built-ins should as well help in the 
interoperation of SWRL rules with other Web formalisms by providing an extensible, 
modular built-ins infrastructure for Semantic Web Languages, Web Services, and Web 
applications. Many built-ins are defined. These built-ins are keys for any external 
integration where we take advantages of this extensional mechanism to integrate new Built-
ins for 3D processing and topological processing. 

4.4 Interaction process 

To focus on the suggested method for the combination of the Semantic Web technologies 
and the 3D processing algorithms, Fig 6 illustrates an UML sequence diagram that 
represents the general design of the proposed solution. Hence, the purpose is to create a 
more flexible, easily extended approach where algorithms will be executed reasonably and 
adaptively on particular situations following an interaction process.  

 

Fig. 6. The sequence diagram of interactions between the laser scanner, the 3D processing, 
the knowledge processing and the knowledge base 

The processing steps can be detailed where three main steps aim at detecting and 

identifying objects.  

(3) From 3D point clouds to geometric elements.  
(4) From geometry to topological relations.  
(5) From geometric and/or topological relations to semantic annotated elements. 
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As intermediate steps, the different geometries within a specific 3D point clouds are 
detected and stored within the ontology structure. Once done, the existent topological 
relations between the detected geometries are qualified and then populated in the 
knowledge base. Finally, detected geometries are annotated semantically, based on existing 
knowledge�s related to the geometric characteristics and topological relations, where the 
input ontology contains knowledge about the Deutsche Bahn railway objects and 
knowledge about 3D processing algorithms.  

5. Description of the WiDOP knowledge base 

This section discusses the different aspects related to the domain concept top level ontology 
structure installed behind the WiDOP Deutsche Bahn prototype (Ben Hmida, et al., 2010). 
It´s composed mainly by the classes and their relationships. Hence, we try to discuss theses 
component in term of axiom representing them. 

The domain ontology presents the core of our research and provides a knowledge base to 
the created application. The global schema of the modelled ontology structure offers a 
suitable framework to characterize the different Deutsche Bahn elements from the 3D 
processing point of view. The created ontology is used basically for two purposes: 

 To guide the processing algorithm sequence creation based on the target object 
characteristics. 

 To ensure the semantic annotation of the different detected objects inside the target 
scene. 

In fact, the ontology is managed through different components of description logics where 

the class axioms contain their own prefixes used to define their names. One of the big 

advantages of using prefix is that the same class could be used by applying different prefix 

for the class. Other advantages include the simplification in defining the resource and to 

solve the ambiguity for different context. The hierarchical structure of the top level class 

axioms of the ontology is given in Fig 7, where we find five main classes within other data 

and objects properties able to characterize the scene in question. 

5.1 Class axioms 

The class axiom DC:DomainConcept which represents the different object found in the 

target scene can be considered the main class in this ontology as it is the class where the 

target objects are modelled, this class is further specialized into classes representing the 

different detected object. However, the importance of other classes cannot be ignored. They 

are used to either describe the object geometry through the Geom:Geometry class axiom by 

defining its geometric component or the bounding box of the object that indicate its 

coordinates or to either describe its characteristics through the Charac:Characteristics 

class axiom. Additionally, the suitable algorithms are automatically selected based on its 

compatibility within the object geometry and characteristics via the Alg:Algorithm class. 

Add to that, other classes, equally significant, play their roles in the backend. The 

connection between the basic mentioned classes is carried out through object and data 

properties axioms.  
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5.2 Properties axioms 

The properties axioms define relationship between classes in the ontology. They are also 
used to relate an object to other via topological relations. Actually, we found four major 
object properties axioms in the top level ontology which have their specialized properties 
for the specialized activities, Fig. 7, DC:hastopologicRelation, 
Alg:isDeseignedFor, Geom:hasGeometry, Charac:hasCharacteristics. 

 

Fig. 7. Ontology general schema overview. 

5.3 Created knowledge layers 

Following to above considerations and with respect to technological possibilities, the current 
ontology will be modelled in various levels. In principle, we have to distinguish between 
object-related knowledge and algorithmic related knowledge. We therefore have a layer of 
the object knowledge and a layer of the algorithmic knowledge containing the respective 
semantic information. 

5.3.1 Layers of object knowledge 

The object knowledge layer will be classified in three categories: geometric, topological and 
semantic knowledge representing a certain scenario (Whiting, 2006) Therefore we 
distinguish between: 

 Deutsche Bahn Scene knowledge  

 Geometric knowledge 

 Topological knowledge 

Layer of the Deutsche Bahn Scene knowledge  

The layer of object knowledge contains all relevant information about the objects and 
elements which might be found within a Deutsch Bahn scene. This might comprise a list 
such as: {Signals, Mast, Schalanlage, etc.}. They are used to fix either the main scene within 
its point clouds file and size through attributes related to the scene class, or even to 
characterize detected element with different semantic and geometric characteristics. The 
created knowledge base related to the Deutsche Bahn scene has been inspired next to our 
discussion with the domain expert and next to our study based on the official Web site for 
the German rail way specification �http://stellwerke.de�. An overview of the targeted 
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elements, the most useful and discriminant characteristics to detect it and their inter-
relationship is presented in Table 1 . 

 

Class Sub Class Subsub Class Height 
Correspondent 

image 

Signals 

Basic Signals 
Main Signal Between 4 and 6 m

 

Distant Signal Between 4 and 6 m

Secondary 
signal 

Vorsignalbake 
between 1,5 and 2.5 

m 

Breakpoint_table between 1 and 2 m 

Chess_board between 1 and 1,5 m

 
Mast 

BigMast More than 6m 

 

NormalMast Between 5 and 6
 

Schaltanlage 

Schalthause Less than 1m 
 

 

SchaltSchrank Less than 0,5m 
 

 

Table 1. Example of the Deutsche Bahn scene objects 

Table 1 shows a possible collection of scene elements in case of a Deutsche Bahn scene. They 

may be additionally structured in a hierarchical order as might be seen convenient for a 

scene while Fig8 shows the suggested taxonomical structure to model them within the OWL 

language. 

Basically, a railway signal is one of the most important elements within the Deutsche Bahn 

scene where we find DC:main_signals and DC:secondary_signal. The main signals 

are classified onto DC:primary_signal and DC:distant_signal. In fact, the primary 

signal is a railway signal indicating whether the subsequent section of track may be driven 

on. A primary signal is usually announced through a distant signal. The last one indicates 

which image signal to be expected that will be associated to the main signal in a distance of 

1 km. Actually, big variety of secondary signals exists like the DC:Vorsignalbake, the 

DC:Haltepunkt and others. From the other side, the other discriminant elements within 

the same scene are the DC:Masts presenting electricity born for the energy alimentation. 

Usually, masts are distant from 50 m from to others. Finally, the DC:Schaltanlage 

elements present small electric born connected to the ground. For detection purpose, we 

define for example a signal as: 
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The above cited concepts are extended by relations to other classes or data. As an example, 
the data property Geom:has_Bounding_Box aims to store the placement of the detected 
object in a bounding box defined by its eight 3D points characterized by x, y and z values 
each one.  

To specify its semantic characteristics, new classes are created, aiming to characterize a 
semantic object by a set of features like colour, size, visibility, texture, orientation and its 

position in the point cloud. To do so, new object properties axioms like Geom:has_Color, 
Geom:has_Size, Geom:has_Orientation, Geom:has_Visibility and 
Geom:has_Texture are created linking the DC:DomainConcept class to the 
Charac:color�, Charac:size, Charac:Orientation, Charac:Visibility 

and Charac:Textureclasses axioms respectively. 

 

 

Fig. 8. Example of the DB scene objects modelling.  

Layer of the geometric knowledge  

Geometrical knowledge formulates geometrical characteristics to the physical properties of 
scene elements. In the simplest case, this information might be limited to few coordinates 
expressing a bounding box containing the object. However, for elements being accessible to 
functional descriptions, additional knowledge will be mentioned. A signal, for example, has 
vertical lines, which needs to be described by a line equation, its values and completed by 
width and height. In fact, we think that such knowledge can present a discriminant feature 
able to improve the automatic annotation process. For this reason, we opt to study the 
different geometric features related to the cited semantic elements, then, use only the 
discriminant one as basic features for a given object. The following table gathers the object 
characteristics together regarding the properties of a bounding box, Table 2, Fig 9. 
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Fig. 9. The geometry class hierarchy. 

 

Class SubClass Subsub Class 
Restriction on Line 

number 
Restriction on Planes 

number 

Signals 

Basic Signals 
Main Signal 1 or 2 Vertical line 0 

Distant Signal 1 or 2 Vertical line 0 

Secondary 
signal 

Vorsignalbake 1 Vertical line 1 Vertical plane 

Breakpoint_table 2 Vertical lines 1 Vertical Plan 

Chess_board 1 Vertical line 1 Vertical plane 

Mast 
BigMast More than 6m 2 or 4 vertical lines 0 

NormalMast Between 5 and 6 2 or 4 vertical lines 0 

Schaltanlage 
Schalthause Less than 1m  

1 Vertical plane 
1 Horizontal plane 

SchaltSchrank Less than 0,5m  1 vertical plane 

Table 2. Geometric characteristics overview. 

Layer of the topologic knowledge  

While exploring the railway domain, lots of standard topological rules are imposed; such 

rules are used to help the driver and to ensure the passengers' security. From our point of 

view, the created rules are helpful also to verify and to guide the annotation process. In fact, 

topological knowledge represents adjacency relationships between scene elements. For 

instance, and in case of the Deutsche Bahn scene, the distance between the distant signal and 

the main one corresponds to the stopping distance that the trains require. The stopping 

distance shall be set on specific route and is in the main lines often 1000 m or in a rare case 

700 m. Add to that, three to five Vorsignalbake are distant from 75m while then the last one 

is distant 100m from the distant signal, Fig.11. 

At semantic view, topological properties describe adjacency relations between classes. For 

example, the property Topo:isParallelTo allows characterizing two geometric concepts  
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Fig. 10. Topological rules. 

by the feature of parallelism. Similarly relations like Topo:isPerpendicularTo and 
Topo:isConnectedTo will help to characterize and exploit certain spatial relations and 
make them accessible to reasoning steps. 

5.3.2 Layer of 3D processing knowledge 

The 3D processing algorithmic layer contains all relevant aspects related to the 3D 
processing algorithms. It contains algorithm definitions, properties, and geometries related 
to each defined algorithms. An importance achievement is the detection and the 
identification of objects, which has a linear structure such as signal, indicator column, and 
electric pole, etc., through utilizing their geometric properties. Since the information in point 
cloud data sometimes is unclear and insufficient, the various methods to RANSAC (Tarsha-
Kurdi, et al., 2007) are combined and upgraded. This combination is able to robustly detect 
the best fitting lines in 3D point clouds for example. Fig11 presents the Mast object 
constructed by linear elements, ambiguously represented in point cloud as blue points. 
Green lines are results of possible fitting lines and clearly show the shape of the object that is 
defined in the ontology. The object generated from this part is a bounding box that includes 
all inside geometries of the object and a concept label. 

 

Fig. 11. Mast detection. 

Next to the 3D expert recommendation, knowledge within the Table 3 is created linking a 
set of 3D processing algorithms to the target detected geometry; the input and output. 
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Algorithm name has Input hasOutput isDesignedfor hasSuccessor 

Vertical Objects 
Detection 

PointCloud Point_2D 
Vertical 
gemetry 

None 
 

Segmentationin2D

Point_2D 
PointCloud 

 
SubPointCloud

Vertical 
gemetry 

VerticalObjectsDetection 

BoundingBox 
SubPointCloud

 
Point_3D 

Vertical 
gemetry 

Segmentationin2D 

ApproximateHeight
SubPointCloud

 
number 

Geometry 
height 

 
Segmentationin2D 

RANSAC Line 
Detection 

SubPointCloud
 

Line_3D 3D Lines Segmentationin2D) 

FrontFaceDetection
SubPointCloud

 
Boolean 

Geometry with 
front face 

Segmentationin2D 

CheckPerpendicular
Line_3D 

 
Boolean 

 

Geometry 
containing 

Perpendicular 
elements 

LinesDetectionin3DbyRANSAC 

CheckParallel 
Line_3D 

 
Boolean 

Geometry 
containing 

Parallel 
elements 

LinesDetectionin3DbyRANSAC 

Table 3. 3D processing algorithms and experts observations 

The specialized classes of the Alg:Algorithm axiom are representing all the algorithms 
developed in the 3D processing layer. They are related to several properties which they are 
able to detect. These properties (Geometric and semantic) are shared with the 
DC:DomainConcept and the Geom:Geometry classes: By this way, a sequence of 
algorithms can detect all the characteristics of an element. 

 

Fig. 12. Hierarchical structure of the Algorithm class. 
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The following section presents in details the semantic integration process undertaken in the 
WiDOP solution to detect and annotate semantically the eventual semantic elements. 

6. Intelligent process 

The basic strength of formal ontology is their ability to reason in a logical way based on 
Descriptive Logic language DL. As seem, the last one presents a form of logic to reason on 
objects. Lots of reasoners exist nowadays like Pellet (Sirin, et al., 2007), and KAON (U. 
Hustadt, 2010). Actually, despite the richness of OWL's set of relational properties, the 
axioms does not cover the full range of expressive possibilities for object relationships that 
we might find, since it is useful to declare relationship in term of conditions or even rules. 
These rules are used through different rules languages to enhance the knowledge possess in 
an ontology. 

Within the actual research, the domain ontologies are used to define the concepts, and the 
necessary and sufficient conditions on them. These conditions are of value, because they 
are used to populate new concepts. For instance, the concept 

Goem:Vertical_BoudinBox can be specialized into DC:Signal if it contains a 
Goem:VerticalLines. Consequently, the concept DC:Signal will be populated with 
all Goem:Vertical_BoudinBox if they are linked to a Goem:VerticalLines with 
certain parameters. In addition, the rules are used to compute more complex results such 
as the topological relationships between objects. For instance, the relations between two 
objects are used to get new efficient knowledge about the object. The ontology is than 
enriched with this new relationship. The topological relation built-ins are not defined in 
the SWRL language. Consequently, the language was extended.  To support the defined 
use cases, two basic further layers to the semantic one are added to ontology in order to 
ensure the geometry detection and annotation process tasks. These operations are the 3D 
processing and topological relations qualification respectively. 

6.1 Integration of 3D processing operations  

The 3D processing layer contains all relevant aspects related to the 3D processing algorithms. 

Its integration into the suggested semantic framework is done by special Built-Ins. They 

manage the interaction between processing layers and the semantic one. In addition, it 

contains the different algorithm definitions, properties, and the related geometries to the each 

defined algorithms. An importance achievement is the detection and the identification of 

objects with specific characteristics such as a signal, indicator columns, and electric pole, etc. 

through utilizing their geometric properties. Since the information in point cloud data 

sometimes is unclear and insufficient, the Semantic Web Rule Language within extended built-

ins is used to execute a real 3D processing algorithm, and to populate the provided knowledge 

within the ontology (e.g. Table 4). The equation 2 illustrate the "3D_swrlb_Processing: 

VerticalElementDetection" built-ins for example, it aims at the detection of geometry with 

vertical orientation. The prototype of the designed Built-in is:  

 3D_swrlb_Processing:VerticalElementDetection(?Vert, ?Dir)             (2) 

Where the first parameter presents the target object class, and the last one presents the point 
clouds' directory defined within the created scene in the ontology structure. At this point, 
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the detection process will result bounding boxes, representing a rough position and 
orientation of the detected object. Table 4 shows the mapping between the 3D processing 
built-ins, which is computer and translated to predicate, and the corresponding class. 

 

3D Processing Built-Ins Correspondent Simple class 
3D_swrlb_Processing: 

VerticalElementDetection 

(?Vert,?Dir) 

Geom:Vertical_BoundingBox(?x) 

 

3D_swrlb_Processing: 

HorizentalElementDetection 

(?Vert,?Dir) 

Geom:Horizental_BoundingBox(?y) 

 

Table 4. 3D processing Built-Ins mapping. 

6.2 Integration of topological operations  

The layer of the topological knowledge represents topological relationships between scene 
elements since the object properties are also used to link an object to others by a topological 
relation. For instance, a topological relation between a distant signal and a main one can be 
defined, as both have to be distant from one kilometer. The qualification of topological 
relations in to the semantic framework is done by new topological Built-Ins. This step aims 
at verifying certain topology properties between detected geometries. Thus, 3D_Topologic 
built-ins have been added in order to extend the SWRL language. Topological rules are used 
to define constrains between different elements. After parsing the topological built-ins and 
its execution, the result is used to enrich the ontology with relationships between 
individuals that verify the rules. Similarly to the 3D processing built-ins, our engine 
translates the rules with topological built-ins to standard rules, Table 5. 

 

Function Correspondent topologic Built-Ins 
Correspondent object 

property 
Characteristics 

Upper 3D_swrlb_Topology:Upper(?x, ?y) 
Upper(?x,?y) 

 
Transitive 

Intersect 3D_swrlb_Topology:Intersect(?x, ?y) 
Intersect(?x,?y) 

 
Symmetric 

Distance 
3D_swrlb_Topology: Distance 

(?x, ?y,?d) 
Distance(?x, ?y, ?d) Symmetric 

Table 5. Example of topological built-ins. 

6.3 Guiding 3D processing algorithms 

Actually, the created knowledge base aims to satisfy two basic purposes, which are, guiding 
the processing algorithm sequence creation based on the target object characteristics, and 
facilitate the semantic annotation of the different detected objects inside the target scene. 
Let�s remember that one of the main ideas behind our suggestions is to direct, adapt and 
select the most suitable algorithms based on the object's characteristics. In fact, one 
algorithm could not detect and recognize different existent objects in the 3D point clouds, 
since they are distinguished by different shapes, size and capture condition. The role of 
knowledge is to provide not only the object's characteristics (shape, size, color...) but also 
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object's status (visibility, correlation) to algorithmic part, in order to adjust its parameters to 
adapt with a current situation. Based on these observations, we issue a link from algorithms 
to objects based on the similar characteristics as Fig.13 shows. 

 

Fig. 13. Algorithms selection based on object's characteristics. 

In fact, knowledge controls one or more algorithms for detecting an object. To do, a match 

between the object�s characteristics and characteristics that a certain algorithm can be used 

for is achieved. For example, object O has characteristics: C1, C2, C3; and algorithm Ai can 

detect characteristic C1, C3, C4, while the algorithm Aj can detect characteristic C2, C5. Then, 

the decision algorithm will select Ai and Aj since these algorithms have the capability to 

detect the characteristics of an object O. The set of characteristics are determined by the 

object�s properties such as geometrical features and appearance. Once done, selected 

algorithms will be executed and target characteristics will be detected. Let�s recall that the 

whole process takes as input, the 3D point clouds scenes, and an ontology structure 

presenting a knowledge base to manipulate objects, geometries, topologies and relations 

(Object and data property) and produces as an output, an annotated scene within the same 

ontology structure. As intermediate steps, the different geometries within a specific 3D point 

cloud scene are detected and stored in the ontology structure. Once knowledge about 

geometries and the topologies are experienced, SWRL rules aim at qualifying and 

annotating the different detected geometries. The following equation 3 illustrates the DL 

definition of a Mast element while the simple example, equation 4, shows how a SWRL rule 

can specify the class of a VerticalBoundingBox, which is of type Mast regarding its altitude. 

The altitude is highly relevant only for this element. 

 DCǤ Mast َ eomǤܩ VerticalBB໋׌ hasheightǤ ሼ൐ ͸ሽ  (3) ͵DProcessingSWRLǣ VerticalElementDetectionሺǫ Vertǡ ǫ dirሻ altitude ሺǫ xǡ ǫ altሻ 

 ̰swrlbǣ moreThan ሺǫ altǡ ͸ሻ      ՜  DCǣ Mast ሺǫ Vertሻ  (4) 

In other cases, geometric knowledge is not sufficient for the previous process. In such 
scenario, the topological relationships between detected geometries are helpful to manage 
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the annotation process, equation 5. Equation 6 demonstrates how semantic information 
about existing objects is used conjunctly with topological relationships in order to define the 
class of another object. 

 DCǣ Mast َ ǣܥܦ ǣ݉݋݁ܩ໋ݐݏܽܯ ܤܤ݈ܽܿ݅ݐݎܸ݁ ِ ሼ൐ݐ݄݄݃݅݁ݏ݄ܽ  ׌ ͸ሽ  

 ِ Ǥ݉݋ݎܨ݁ܿ݊ܽݐݏ݅ܦݏ݄ܽ׌ ǣܥܦ Ǥݐݏܽܯ ሼ൐ ͷͲሽ (5) 

 DCǣ Mast ሺǫ vertͳሻ VerticalBB ሺǫ Vertʹሻ hasDistanceFrom   

 ሺǫ vertͳǡ ǫ vertʹǡ ͷͲሻ  ՜  DCǣ Mastሺǫ vertʹሻ (6) 

7. WiDOP prototype 

The created WiDOP prototype takes in consideration the adjustment of the old methods 

and, in the meantime, profit from the advantages of the emerging cutting-edge technology. 

From the principal point of view, the developed system still retains the storing mechanism 

within the existent 3D processing algorithms; in addition, suggest a new field of detection 

and annotation, where we are getting a real-time support from the created knowledge. Add 

to that, we suggest a collaborative Java Platform based on semantic web technology (OWL, 

RDF, and SWRL) and knowledge engineering in order to handle the information provided 

from the knowledge base and the 3D packages results. 

The process enriches and populates the ontology with new individuals and relationships 

between them. In addition, the created WiDOP platform offers the opportunity to 

materialize the annotation process by the generation and the visualization based on a VRML 

structure, (W3C, 1995) alimented from the knowledge base. It ensures an interactive 

visualization of the resulted annotation elements beginning from the initial state, to a set of 

intermediate states coming finally to an ending state, Fig 17 where the set of rules are totally 

executed. The resulting ontology contains enough knowledge to feed a GIS system, and to 

generate IFC file (Vanland, et al., 2008) for CAD software. The created system is composed 

of three main parts. 

 Generation of a set of geometries from a point could file based on the target object 
characteristics. 

 Computation of business rules with geometry, semantic and topological constrains in 
order to annotate the different detected geometries.  

 Generation of a VRML model related to the scene within the detected and annotated 
elements. 

As a first impression, the system responds to the target requirement since it would take a 
point cloud of a facility as input and produce a fully annotated as-built model of the facility 
as output. 

7.1 System evaluation 

For the demonstration of the created system, a scanned point cloud section related to 

Deutsch Bahn scene in the city of Nürnberg was extracted. While the last one measure 87 

kms, we have just taken a small scene of 500m. It contains a variety of the target objects. The  
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Fig. 14. Snapshot of the WiDOP prototype (top), Detected and annotated elements 
visualization within VRML language (bottom). 

whole scene has been scanned using a terrestrial laser scanner fixed within a train, resulting 
in a large point cloud representing the surfaces of the scene objects. Within the created 
prototype, different SWRL rules are processed. First, geometrical elements will be searched 
in the area of interest based on dynamic 3D processing algorithm sequence created 
depending on semantic object properties. The second step aims to identify existing 
topologies between the detected geometries. Thus, useful topologies for geometry 
annotation are tested. Topological Built-Ins like topo:isConnected, topo:touch, 

topo:Perpendicular, topo:isDistantfrom are created. As a result, relations found 
between geometric elements are propagated into the ontology, serving as an improved 
knowledge base for further processing and decision.  
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The last step consists in annotating the different geometries. Vertical elements with certain 
characteristics can be annotated directly. Subsequently, further annotation may be relayed 
on aspects expressing facts to orientation or size of elements, which may be sufficient to 
finalize a decision upon the semantic of an object or, in more sophisticated cases, our 
prototype allows the combination of semantic information and topological ones that can 
deduce more robust results minimizing the false acceptation rate. The extracted scene 
contains 37 elements. As well, in most cases, our annotation process is able to affect the right 
label to the detected Bounding box based on knowledge on its component, its internal and 
external topology where among 13 elements are classified as Masts, three as a SchaltAnlage 
and 18 signals, Table 6, Table 7, Fig.15. 

 

 Scene Size Detected          Bounding Box Annotated elements Truth data 

Scene1 500m 105 34 37 

Table 6. Detected Element within the scene and annotated ones. 

 

 Masts signal Schaltanlage 

Annotated 13 18 3

Truth data 12 20 5

Table 7. Detected and annotated elements within the scene1. 

 
 

 
 

Fig. 15. Knowledge base after the annotation process. 
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Some limits are detected while making extra tests, especially with the SchaltAnlage object 

detection where the rate of false detection still high. Before explaining the reason behind this 

false detection, let's recall that the Schaltanlage present very small electronic boxes installed 

on the ground. In the some cases, lots of bounding boxes are detected where a high average 

of them presents small noise on the ground. The reason for the false annotation is the lack of 

semantic characteristics related to such elements since, until now; there is no real internal or 

external topology neither internal geometric characteristic that discriminate such an element 

compared to others. 

8. Conclusion and discussion 

By this chapter, we tried to contribute on the ongoing enhancement of the Semantic Web 

technologies through focusing on the possibility of integrating 3D processing and spatial 

topological components within its framework. It makes an attempt to cross the boundary of 

using semantics within the 3D processing researches to provide interoperability and takes it 

a step forward in using the underlying knowledge technology to provide 3D processing and 

topological analysis through knowledge. 

The presented contribution raises the issue of object detection and recognition in 3D point 

clouds within the laser scanner by using available knowledge on the target domain, the 

processing algorithms and the 3D spatial topological relations. 

The WiDOP framework is primarily designed to facilitate the object detection and 

recognition in 3D point clouds. It being based on Semantic Web technologies and has 

ontology in its core. The top level ontology provides the base for functionalities of the 

application. This prior knowledge modeled within an ontology structure. SWRL rules are 

used to control the 3D processing execution, the topological qualification and finally to 

annotate the detected elements in order to enrich the ontology and to drive the detection of 

new objects. 

The designed prototype takes 3D point clouds of a facility, and produce fully annotated 

scene within a VRML model file. The suggested solution for this challenging problem has 

proven its efficiency through real tests within the Deutsche Bahn scene. The creation of 

processing and topological Built-Ins has presented a robust solution to resolve our 

problematic and to prove the ability of the semantic web language to intervene in any 

domain and create the difference.  

The benefits of the emerging Semantic Web technology through its knowledge tools are 

quite visible to the convention technologies that rely heavily on database systems. More 

precisely, the benefits that have been experienced during the design and development of the 

WiDOP platform is quite strong. The flexibility nature of ontology based system allows 

integrating new components at any time of development and even implementations.  

Future work will include the integration of new knowledge intervening during the 

annotation process. It will also include the update of the general platform architecture, by 

ensuring more interaction between the scene knowledge and the 3D processing. Add to that, 

it will include a more robust identification and annotation process of objects based on each 

object characteristics add to the integration of new 3D parameter knowledge�s that can 
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intervene within the detection and annotation process to make the process more flexible and 

intelligent. 
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