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Figure 1: Our method builds a mesh from a medial surface. Left: the input is the medial surface S. The colors depict the radii

of medial atoms, from hot color tones for small values (details) to cold color tones for big values. Middle: a coarse mesh M1 is

first built, using a volumetric approach based on an octree construction. Right: the coarse mesh is refined to produce our final

result mesh M2.

Abstract

Medial surfaces are well-known and interesting surface skeletons. As such, they can describe the topology and the

geometry of a 3D closed object. The link between an object and its medial surface is also intuitively understood by

people. We want to exploit such skeletons to use them in applications like shape creation and shape deformation.

For this purpose, we need to define medial surfaces as Shape Representation Models (SRMs). One of the very first

task of a SRM is to offer a visualization of the shape it describes. However, achieving this with a medial surface

remains a challenging problem.

In this paper, we propose a method to build a mesh that approximates an object only described by a medial surface.

To do so, we use a volumetric approach based on the construction of an octree. Then, we mesh the boundary of

that octree to get a coarse approximation of the object. Finally, we refine this mesh using an original migration

algorithm. Quantitative and qualitative studies, on objects coming from digital modeling and laser scans, shows

the efficiency of our method in providing high quality surfaces with a reasonable computational complexity.

Keywords: Skeleton, Medial Surface, Octree, Shape Representation Models

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object representations

1. Introduction

A skeleton is a thin structure centered in an object, de-
scribing its topology and geometry. An object must then be
closed. A skeleton is an intuitive structure, in the sense that
people intuitively understand links between a skeleton and
the shape it describes.

One way to exploit this interesting property is to use a
skeleton for applications like shape creation or deformation.
This idea was explored in 2D in [DLCB], with very interest-
ing results for these applications. However, in [DLCB], the
skeleton is not a Shape Representation Model (SRM). An
implicit surface model was used to render the shape. Main-
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taining a coherence throughout the interaction between the
skeleton and the implicit surface model was very difficult.
Since a skeleton decribes both the topology and the geome-
try of an object, we could use a skeleton as a SRM to avoid
such problems.

There exist many types of skeletons, divided into two
main categories:

1. Curvilinear skeletons which are composed of curves.
They were successfully used for shape registration
[AJWB03], data reconstruction [TZCO09], and mesh
segmentation [ATC˚08]. Until recently in [SLSK07],
curvilinear skeletons had no mathematical definition and
they were defined only by procedural formulations. For
a comparative study of such skeletons, we refer to
[CSM07].

2. Surface skeletons, such as PISA axes [Ley87], Midpoint

locus [BA84] or medial surface [Blu67], are composed
of curves and surfaces. As exposed in [CSM07], a sur-
face skeleton better captures the geometry of an object
than a curvilinear skeleton, which is limited to cylindri-
cal shapes.

A surface skeleton seems a better candidate than a curvi-
linear one to be a SRM, as it can describe any type of object
in theory: in [SKS12], the authors showed we can tightly
approximate a shape with a skeleton. Thus, we have cho-
sen to study such a skeleton: the medial surface, introduced
by [Blu67], since PISA axes [Ley87] are not well defined.
Moreover, it is not clear how we can reach the geometry of
the object, described by a midpoint locus [BA84]. We recall
that each element of a medial surface, called a medial atom,
is a maximal inscribed ball inside the studied object.

If we want to use a medial surface S as a SRM, we should
be able to first define an object G from the geometry en-
coded within S. Then, we should find a way to display it.
We use the term garbing to denote this process of building
a surface G from S. Garbing is the very first task of what
we can do when using a medial surface as a SRM. Unfortu-
nately, garbing is not a straightforward task, as explained in
the Section 2.2. This is why we deal with garbing in the rest
of the paper, to make a step forward the use medial surfaces
as SRMs.

In this paper, we propose a new garbing algorithm for a
medial surface S. From this particular skeleton, we define
a shape G as the surface of a union of simple primitives.
This shape G is first approximated by a coarse mesh, using
a volumetric approach which is based on the construction of
an octree. Then, we refine this mesh by making each of its
vertices converge toward G.

2. Previous Work

In this section, we first introduce methods that produce a me-
dial surface S from a known object O. This to explain how

we can get some test skeletons for our garbing algorithm.
Then, we discuss the other existing garbing techniques.

One thing to keep in mind is that S is always a discrete set
of medial atoms, even if we use a continuous approach for
our computation. This is because, in practice, people always
use an approximation paradigm to extract medial surfaces
[ABE09].

2.1. Continuous Medial Surface Extraction

Medial atom locii can also be seen as points inside O with
at least two closest points on the boundary of O. This alter-
native definition justifies the three kinds of approaches used
to extract a medial surface S:

‚ Computing bisectors: Given two objects O1 and O2, their
bisector B is defined as the locus of equidistant points
from O1 and O2. If O1 “ O2, B is called an untrimmed
self-bisector, and S is a subset of B. This is the method
used in [dOdF03].

‚ Using Partial Differential Equations (PDEs): Medial
atoms can also be defined by an analogy, called the grass-
fire analogy. O is filled with an equally dense grass. A
fire is lit at t “ 0 all around the boundary of O. Quench
points of fire fronts along with their time of formation are
medial atoms. [KTZ95] has shown this is equivalent to
consider the set of shock positions in PDEs of motion at
fixed speed, in a direction initially normal to the object
boundary.

‚ Building Voronoi diagrams from a sampling of the bound-
ary of O: A Voronoi diagram is the dual of a Delaunay
tetrahedrization. It is composed of cells, each of which
contains points located closer to a particular sample point
than to any other. Those cells are delimited by Voronoi
vertices. All Voronoi vertices have four closer sample
points, as they are circumcenter of Delaunay tetrahedron
(See Figure 2 for an illustration in 2D). In [AK00], the au-
thors proved that a subset of the Voronoi vertices, called
poles, converges toward the medial surface as the sam-
pling density increases.

(a) (b)

Figure 2: Illustration of a medial surface extraction based

on a 2D Voronoi diagram. (a) A Delaunay triangulation (in

blue) is made on the object surface sampling (black dots). (b)

Its dual, the Voronoi diagram is represented in red. Voronoi

vertices (gree dots) are approximations of the medial atoms.

c© 2013 The Author(s)
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2.2. Medial Surface Garbing

Once we have a medial surface S, there exists three classes
of garbing methods: i) naively render the union of geometric
primitives, ii) use an implicit surface formulation, and iii)
mesh the object by taking into account some properties of
the skeleton.

2.2.1. Naive rendering

Naive methods consist in rendering the whole set of geomet-
ric primitives, in our case: spheres. This is generally done
through a ray caster, such as POV-Ray [pov]. A naive render-
ing is very simple, and do not require to use more than the
list of spheres in S. Naive rendering is then used to test the
skeleton. However, the produced objects can look “bumpy”
and normal discontinuities lead to annoying artifacts (See
Figure 3). Moreover, as spheres are not linked in any way, it
can be difficult to realize some operations on the surface of
their union, such as texturing.

Figure 3: Naive medial surface garbing of a torus. Bumpy

pattern can be seen at each sphere intersection.

2.2.2. Implicit surface formulation

Implicit surfaces are the level set of a scalar function F . They
are known to produce very soft objects and have the ability
to blend objects if we combine them. Thus implicit surfaces
can be used to remove bumpy patterns. A basic way to do so,
is to consider each atom as a blob [Bli82]. Considering radial
basis functions centered at medial atoms locii is another pos-
sible solution, introduced in [SAAY]. We can also consider
the whole skeleton S as a convolution skeleton; a technique
used in [PABME11] for vessels or in 2D in [DLCB].

Meshing an implicit surface is done by sampling the func-
tion F . In some cases, it is hard to find a good sampling to
capture the correct topology. For example, when two parts
of the shape are very close from each other. Thus, some-
times the surface can be missed or unwanted blending be-
tween some logical components can be encountered.

2.2.3. Meshing the boundary

Meshing the boundary of the primitive union seems a good
alternative. We can do it naively by meshing each primitive

s PS and make the garbing mesh evolve each time a primitive
mesh is added. At each step, one of these meshes is added
to the current garbing mesh, which is initially empty. To add
a primitive mesh to the current garbing mesh, the intersec-
tion between them is computed and a remeshing step is used.
This can be very time consuming. The surface obtained from
this union of spheres can be more efficiently meshed by a
skin surface [KV]. A skin surface is a more general formula-
tion than considering the boundary of the union of spheres.
A parameter, called the shrink factor, controls the distance
of the surface around the sphere centers. However with that
technique, bumpy patterns remain.

Instead of doing so, properties enclosed within S can be
used. For example in [YFJ˚03], the authors add information
to each medial atom, such as object angles and local frames.
Provided a quadrilateral mesh of medial atoms is known, the
authors build a cubic B-Spline model from the medial sur-
face. The result mesh is very smooth, with no bumpy pat-
terns. However the medial surface should have no branching,
which can be very restrictive in terms of available shapes.
Moreover, this additional information is obtained during the
skeletonization process. That means we need to know the
shape described by S in order to get it. If we use S as a
SRM, S will be modified, and object angles or local frames
should be updated accordingly, but the modified shape will
not be available.

The work we present in this paper proposes to mesh the
surface with no more information than the medial atom po-
sitions and radii, and no restriction on the structure of the
medial surface.

Outline

The next section presents our new garbing algorithm. From a
medial surface S, we define a shape G composed of a union
of cones and spheres. This shape G will be approximated by
a mesh M2 in three steps we summarize here:

‚ producing an octree T driven by four subdivision crite-
ria which uses the information of S and the topological
properties of the object O described by S;

‚ meshing the boundary of T to obtain a coarse approxima-
tion of the surface of the union of spheres contained in S,
the result mesh of this step is called M1;

‚ refining M1 by a new migration method which projects
elements of M1 on G, the result mesh is then called M2
and is our garbing mesh.

Then, we present some results to validate our work. We
finish with a conclusion and present some suggestions for
future work.

3. Visualizing The Object

We consider an unstructured medial surface S. This skeleton
can then be seen as a set of spheres S “ tai “ ppi,riq P R

3 ˆ
R

`u.

c© 2013 The Author(s)
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3.1. Building The Octree

The first step of our algorithm consists in building a dis-
cretization of the shape described by S. To do so, we have
chosen to build a regular octree T , because it allows the gen-
eration of uniformly sized faces, which improves the quality
of the final mesh. Moreover, an octree is a spatial hierarchy.
Thus, all queries asking for cells that contain point or geo-
metric primitives will be efficient. This octree T will be used
in the next step as a basis to extract a coarse garbing mesh.

Terminal cells of an octree are called leaves, and writ-
ten L. Each non leaf cell c has exactly eight sons Downpcq“
tc1, . . . ,c8u. The first cell, called Root is at the subdivision
level 0. The sons of a cell of level n are at the level n ` 1.

Each cell c P T defines a volume, called an octant:
Octantpcq. In this paper, all octants are cubes. Moreover,
all spheres of S that intersect the octant of c are writ-
ten Spherespcq. If Spherespcq is empty, c is said inactive,
otherwise c is said active.

The axes of OctantpRootq are aligned on the principal
axes of S and Root contains all spheres: SpherespRootq“S.
The four criteria we enumerate in the next sections, are used
to subdivide each cell, starting with Root. When a cell c is
subdivided, we cut Octantpcq into eight equal cubes, one for
each son.

3.1.1. Criterion #1: One Logical Component By Cell

During the subdivision procedure, a leaf c may contain more
than one logical component of O. For example, c can con-
tain spheres that belong to two different fingers of a human
hand. If we do not subdivide c, those logical components
(fingers in our example) would be glued when constructing
the approximation of the object. Thus our subdivision pro-
cess must ensure that distinct logical components are situ-
ated in different leaves. This is the purpose of this first crite-
rion.

To implement the Criterion #1, we must face a Level of
Detail (LoD) problem. At a close view, two spheres can be-
long to different parts of an object, e.g. distinct phalanxes of
a forefinger. But at a more general view, these spheres seem
to belong to the same part, in our example the same forefin-
ger. To solve this LoD problem, we will use Octantpcq as a
viewing volume.

We consider that two spheres S1 and S2 belong to the same
part of O with respect to c, if and only if: there exists a se-
quence a0,a1, . . . ,an,an`1 of spheres in Spherespcq, with
a0 “ S1 and an`1 “ S2 such that @i P v0,nw, ai and ai`1
intersect each other.

In our implementation, we build a graph GpN , Eq where
the nodes N are elements of Spherespcq and E “ tpni, n jq P
N | ni and n j intersect each otheru. If this graph has more
than one connected component, c is subdivided (See Fig-
ure 4). This simple technique works on every test we have

made on practical cases. However, if Octantpcq is not small
enough, small logical components can entirely fit inside a
cell, and then be missed.

(a) (b) (c) (d)

Figure 4: Illustration of the Criterion #1. a) A cell filled

with 7 atoms. b) This cell does not satisfy the Criterion #1:

there are two connected components if we draw the graph

GpN , Eq. c) Two subdivision steps are necessary to vali-

date this criterion within each cell. But this is not enough to

capture the local topology. Here, our Criterion #3 (See Sec-

tion 3.1.3) is needed. d) A failure case: this criterion does

not detect the very small logical component.

3.1.2. Criterion #2: A Hole Leads To Inactive Leaves

The object described by S can be of any genus. Conse-
quently each hole should be identified during the octree con-
struction, in order to capture the correct global topology of
this object. The second criterion aims at ensuring that every
hole leads to inactive leaves inside T .

The main concern of this criterion is to efficiently find ev-
ery holes. For that purpose, heuristics can be used during the
skeletonization process. For example, we could store along
with S a set S´ composed of negative atoms, i.e. maximal
tangential balls outside the object. If we divide all the radii of
those balls by 2, this criterion can be fulfilled by finding the
active leaves that intersect one of these reduced balls, and
subdivide them. Reduced balls are considered because the
sets of spheres S and S´ intersect each other. Thus a cell c

which intersects both elements of S and S´ could lead to an
infinite subdivision process.

However, these two sets S and S´ are redundant. A con-
sequence is that when we change one of these sets, the other
one must be updated accordingly. Maintaining a coherence
between those both sets is a tricky task. Instead we focus on
a minimal level d that active cells must reach in order to be
octree leaves. This level d acts as a LoD factor, and helps to
discover every hole with respect to this LoD.

We present here a definition of d which take into account
what we call the characteristic radius rc. Ideally, this ra-
dius represents at best the local thickness of the object. Ex-
perimentally, we found that rc “ rmin`rmax

2 is representative,
where rmin and rmax are the minimal radius and the maximal
radius of S. We ensure that every octant has a side less than
rc

8 , and d is the first octree level that passes this test. See
Figure 5 for an illustration of the characteristic radius.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 5: Illustration of the Criterion #2 and the character-

istic radius rc. Left: original object we skeletonized. Center:

a sphere with a radius equal to rc, rc gives an idea of the

local thickness of the shape. Right: the octree only built with

Criterion #2, it captures main parts of the object.

3.1.3. Criterion #3: Two Neighbor Leaves have

Intersecting Sphere Sets

This criterion is very similar to Criterion #1, as it deals
with unwanted blending between distinct logical compo-
nents. But unless Criterion #1 which prevents two logical
components from being glued together inside a leaf, Crite-
rion #3 avoid them to be glued by neighbor leaves. Neigh-
bors of a cell c are all cells of the same level whose octant
share at least one vertex with Octantpcq. Neighbors of c are
written N pcq.

Let c and c1 be two active neighbor leaves. If no sphere
from Spherespcq intersects a sphere of Spherespc1q, then
we consider that c and c1 have distinct logical components.
Thus, those cells are subdivided to ensure that these logical
components will not be glued together in the next algorithm
step (See Figure 7).

(a) (b) (c)

Figure 6: Illustration of the Criterion #3. a) Two neigh-

bor leaves have disjoint sphere sets. If we do not subdivide

them, during the surface extraction, logical components cor-

responding to those disjoint sets will be connected. b) After

one subdivision, the same situation occurs. At the second

subdivision step, inactive cells appear and this criterion is

valid. c) The surface approximation obtained by boundary

active leaves gives now the right local topology (See Sec-

tion 3.2 for the definition of a boundary leaf).

3.1.4. Criterion #4: One Level Difference Between

Adjacent Active Leaves

We impose the one level difference rule on our octree T . Let
c and c1 be two active leaves, respectively at level n and n1.
This rule says that if Octantpcq and Octantpc1q share at least
one edge (18-connexity), then n “ n1, or n “ n1 ˘ 1.

This rule is commonly used to control the mesh grada-
tion, i.e. the variation in edge size [BHPF98], and to control
element aspect ratios. On a more practical point of view, it
eases also the search of the leaves sharing a vertex with Oc-
tantplq, for l P L. Such leaves are called the leaf neighbors
of l, LN plq, and should then be found at level n, n ` 1 or
n ´ 1 if n is the level of l.

If a leaf l of level n does not satisfy this criterion, all the
cells c PLN plq of level n ´ 1 are subdivided (See Figure 7).

(a) (b)

Figure 7: Illustration of the Criterion #4. a) New cells in

red are subdivided to fulfill a criterion. These cells make the

fourth criterion invalid. b) Three cells of lower level are sub-

divided to satisfy this criterion.

3.2. Extracting A Coarse Approximation Of The

Surface

In Section 3.1, we have built an octree T , using information
captured by S. In this section, we show how to mesh the
boundary of T . The result mesh, called M1, is a coarse ap-
proximation of the surface of the union of spheres contained
in S.

First, we must define what we mean by the octree bound-
ary. Boundary faces BF are faces of leaf octants that sep-
arate active leaves from inactive leaves. If a leaf l PL has
a boundary face, we call it a boundary leaf. The boundary
of T is then the set of boundary leaves.

There are basically two ways to mesh boundary leaves:

1. connect their center by faces, using a face quality criterion
to choose which centers to interconnect. Such criterion
can take into account the face aspect ratio or the angles
between edges for instance. It is a hard task to build a
face quality measure which is robust enough for all the
objects that can be described by S.

2. use a subset of the boundary faces BF , as done
in [ISS09]: the technique we have chosen because of its
robustness.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Each cell c is a cube composed of the following faces:
Fpcq “ tFpcqdir, dir P tX`

,X´
,Y `

,Y ´
,Z`

,Z´uu. The
six directions X`

,X´
,Y `

,Y ´
,Z`

,Z´ belong to the frame
of T , which is aligned along the principal directions of S.
The direction of a face gives its outward oriented normal.
We write rf the face f with a reversed normal, called the op-
posite face of f .

Since leaves are not at the same level, we cannot take all
faces of BF (See Figure 8). To collect faces f in the di-
rection dir, we process all l PL. We set n: the level of l,
and LN plqdir: the leaf neighbor of l in the direction dir.
With these notations, a boundary face f is the mesh M1 if it
matches one of these four configurations (See Figure 9):

1. l is active and LN plqdir is an inactive leaf of level n:
f is Fplqdir

2. l is active and LN plqdir is an inactive leaf of level n´1:
f is Fplqdir

3. l is active and LN plqdir does not exist:
f is Fplqdir

4. l is inactive and LN plqdir is an active leaf of level n´1:

f is ČFplqdir

(a) (b)

Figure 8: The concept of boundary face in T . Plain lines de-

pict active leaves, and dashed ones are for inactive leaves.

(a) We want to collect Z´ oriented faces (in green). Among

these faces, the red f is not taken into account. This is be-

cause it is partially occluded by another active leaf. (b) In-

stead, we consider the Z` faces of inactive cells on the other

side of f , and we just take their opposite.

(a) (b) (c) (d)

Figure 9: The four different configurations for a X` face.

When all boundary faces for the six directions are col-
lected, M1 is complete. It gives a coarse but satisfying ap-
proximation of the object described by S (See Figure 10).

Figure 10: M1, the coarse approximation of the object de-

scribed by S. Here, the original object O is given in blue,

a shape with a genus of four. The mesh M1 has the same

genus, and remains very close to O.

3.3. Refining Step

So far, we have a mesh M1 that is a coarse approximation
of the object described by S. However, as we can see on Fig-
ure 10, M1 gives a voxelized aspect to the surface. The last
step of our method is a refining one, to improve both the as-
pect of the surface and the error made in the approximation.
The result mesh of this step is M2.

The target shape of this refining step is G. We cannot
define it as the surface of theunion of spheres contained
in S, since it would produce the same artifacts as those ex-
posed by Figure 3. Instead, we simply also consider a set of
cones: one cone for each pair of intersecting spheres (See
Figure 13 a)). A cone C for two intersecting spheres S1 and
S2 is such that the surface of tC,S1,S2u forms the convex
hull of tS1,S2u. All these cones are inserted inside the leaves
of T if they intersect their octants: for such a leaf l we write
them Conesplq. The set of all spheres and cones is written
P , and G is then the surface of the union of all g PP .

To compute M2, we first initialize it with the dual of M1.
Hence every vertex v of M2 is the center of its associated
face in M1. Similarly every face f of M2 connects vertices
associated to three adjacent faces in M1. If we do not take
the dual of M1, we obtain self intersecting faces after the
migration step, as shown in Figure 11.

A fact to take into account, is that spheres from S gen-
erally go out of the skeletonized object. This is due to the
approximation paradigm used for the skeletonization pro-
cess: spheres of S only touch the original object at sampling
points. Thus, the union of spheres looks bigger than the orig-
inal object. If we choose to project faces of M2 until they
touch G: the effect get worse (See Figure 12). Instead, we
consider each vertex of M2, and project it toward G.

Let v be a vertex of M2. It belongs to an active leaf c.
We will project v toward the set of primitives Ppcq “
Conespcq X Spherespcq. To this end, for each geometric
primitive g P Ppcq, we define a migration vector ÝÑm pvqg. The
migration direction for v is then ÝÑm pvq“ ´

ř
gPPpcq

ÝÑm pvqg.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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(a) (b)

Figure 11: The importance of taking the dual of M1. (a)

The migration step is directly done on M1. We can see some

self intersecting faces. (b) The migration step is done on the

dual of M1, there is not self intersecting faces and the mesh

gradation is better.

(a) (b) (c)

Figure 12: Principle of our migration method. The green

dots depict the boundary samples of O used during the skele-

tonization algorithm. The blue circles represent the spheres

of S. (a) The union of spheres is bigger than O. (b) If we

move a face f from M2 in a direction m until it touches G,

the resulting face is f 1. (c) Instead, we choose to stop the mi-

gration when all the vertices of f have met an element of G.

The resulting face f 2 allows to get closer to O than with f 1.

It also reduces the effect observed in (a).

We now explain how to define ÝÑm pvqg for a primitive g.
Each primitive has a symmetry axis s, which is a line for a
cone and is reduced to a point for a sphere. We first compute
a line l that passes through the point v and that is normal to
the surface of g (See Figure 13 b)). The point i is then the
intersection between l and g, and the point p is the intersec-

tion between l and s. We set ÝÑm pgqv“
‖p´i‖
‖v´p‖

ˆ
ÝÑpv

‖v´p‖
. When

we cannot define the line l for a cone, ÝÑm pgqv“
ÝÑ
0 . The way

ÝÑm pgqv is defined is such that ÝÑm pvq is directed toward bigger
and closer primitives.

Finally, every vertex v of M2 is projected toward G us-
ing ÝÑm pvq. M2 is then our garbing mesh. As such, it approxi-
mates the object described by a medial surface S, containing
no more information than a set of spheres.

4. Results

To validate our work, we rely on both quantitative and quali-
tative comparisons with other garbing methods. Those com-
parisons are made on eight medial surfaces we extracted

a) b)

Figure 13: The use of cones. a) The set of primitives P is

composed of three spheres from S and two cones which con-

nect each pair of intersecting spheres. b) Definition of the

migration vector of a vertex v for a primitive g which is here

a cone.

from models coming from laser scans or digital modeling.
To extract those skeletons, we chose to implement the pow-

ershape algorithm [ACK01], a technique which computes
the set of poles (See Section 2.1).

4.1. Quantitative comparison with other methods

We have first computed the error between an original
shape O and the produced garbing mesh M2. This error is
not only related to our work, but also to the skeletonization
process: S is an approximation of the medial surface, and
hence it introduces an approximation error. Thus, this mea-
sure gives an indication of the quality of both S and M2,
with respect to O.

We compared our work with an algorithm that produces
a skin surface [KV]. To do so, We have used the 3D Skin

Surface Meshing package of CGAL [cga]. The computation
times are almost the same as the ones obtained for with garb-
ing method (See Table 2).

Regarding this error, we have compared two different
shape distances: the Hausdorff distance, and the Root-Mean-
Square (RMS) distance. All these computations were ob-
tained with the MESH software [ASCE02]. We present in
Table 1 these relative distances, with respect to the bounding
box diagonal of O.

Considering the Hausdorff distance, we obtain less than
0.85% for simple objects and less than 2.18% for objects
with more details. Thus our garbing algorithm produces a
good approximation of the shape encoded by a medial sur-
face. Compared to the skin surface method [KV], we get bet-
ter results for simple objects. For complex objects, i.e. with
more atoms, we obtain similar results, except for the mon-
key. When we raise the minimal active leaf depth in T for
that model (lines for Monkey* and Monkey** in Table 1),
we manage to get the same RMS distance. Hence we com-
pare very well to the skin surface algorithm, while producing
meshes with less vertices (up to 27 times less vertices for the
Bumpy Torus model).

c© 2013 The Author(s)
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Original Object S Garbing Mesh Skin Surface
V F Atoms V F H RMS V F H RMS

Sphere 3 224 6 444 1 1 344 2 684 0.13 % 0.04 % 26 48 3.03 % 2.31 %
Torus 1 200 2 400 60 1 628 3 256 0.37 % 0.11 % 2 065 4 130 1.03 % 0.49 %
Knot 1 280 2 562 199 9 540 19 080 0.73 % 0.32 % 21 177 42 354 1.38 % 0.38 %
Eight 766 1 536 676 1 810 3 624 0.71 % 0.28 % 21 193 42 390 0.89 % 0.26 %
Hand 2 518 5 000 2 386 5 710 11 416 0.85 % 0.72 % 66 431 132 858 0.73 % 0.68 %

Monkey 7 790 15 408 6 092 3 362 6 713 2.18 % 0.27 % 165 597 331 142 1.67 % 0.17 %
Monkey* 7 790 15 408 6 092 10 075 20 139 1.64 % 0.19 % 165 597 331 142 1.67 % 0.17 %

Monkey** 7 790 15 408 6 092 27 411 54 813 1.63 % 0.17 % 165 597 331 142 1.67 % 0.17 %
Genus4 6 652 13 312 6 514 14 678 39 324 1.14 % 0.07 % 180 564 361 136 1.36 % 0.06 %

Bumpy Torus 15 876 31 752 15 611 16 296 32 592 0.94 % 0.08 % 441 006 882 012 0.49 % 0.06 %

Table 1: Statistics for test models. The minimal active leaf depth in T for the Monkey model is 5. In order to show that we can

improve the results with finer cells, we have raised the minimal depth to 6 for Monkey*, and to 7 for Monkey**.

Our Method Skin Surface
Sphere 0.02 0.01

Torus 0.03 0.12
Knot 0.15 0.77
Eight 0.31 1.10
Hand 3.06 3.84

Monkey 12.23 10.84
Genus4 13.32 10.38

Bumpy Torus 28.90 26.65

Table 2: Computation times in second for our method and

the skin surface algorithm.

4.2. Qualitative comparison with other methods

We also validated our work by comparing visually our garb-
ing meshes with their corresponding original shapes. The
union of spheres contained in medial surfaces were rendered
by the POV-Ray tool, to compare them with our method.
The skin surfaces were not considered in this comparison,
because they present some artifacts which are nonexistent
on POV-Ray images. The Figure 15 presents the results for
some of the eight models we have studied.

The approximation errors given by the quantitative com-
parison in Section 4.1 are confirmed by those results: our
garbing meshes are visually very close to the original ob-
jects. Compared to the unions of spheres, the garbing meshes
are more pleasant. This is due to bumpy pattern removal,
which leads to smoother surfaces.

4.3. Limitations

In practice, medial surfaces are not intended to be used for
models with sharp edges or planes. Because these parts re-
quire a higher atom density to build a garbing mesh with
the desired precision. Thus, our method has difficulties to
deal efficiently with such models. However, if we subdivide
a garbing mesh obtained for such a model and refine that
subdivided mesh with our migration step, we can improve
the results (See Figure 14 a) and b)).

Another limitation came from the size of the octree leaves.
If they are not small enough, details can be missed by the
garbing mesh, as the eyes, the nose or the mouth of the mon-
key in the Figure 15. Experimentally, when we raise the min-
imal active leaf depth in T , thus reducing the size of oc-
tree leaves, we can recover these details, as shown by Fig-
ure 14 c), d), and e)).

a) b)

c) d) e)

Figure 14: Limitations of our method. a) Garbing mesh

on the skeleton of a cube. The sharp edge is missed. b) If

we subdivide the previous mesh one time and refine it, the

sharp edge is almost recovered. c), d), and e) present garb-

ing meshes for Monkey, Monkey* and Monkey**.

5. Conclusion & Future Work

Medial surfaces are interesting structures for applications in
computer graphics. Their properties make them good candi-
dates to be efficient SRMs. One of their very basic tasks as
SRMs, is to build an approximation of the object they de-
scribe: a task called in this paper medial surface garbing.
This task is essential to visualize shapes only described by
medial surfaces. However, medial surface garbing is far from

c© 2013 The Author(s)
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straightforward: we must take care of unwanted blending,
deal with all kind of global topology and avoid bumpy pat-
terns.

In this paper we have proposed a method to achieve the
medial surface garbing on an unstructured medial surface S.
Our method runs as fast as an efficient meshing of the union
of spheres associated to S. Moreover the produced results
are more satisfying than those obtained with previous meth-
ods, since bumpy patterns have disappeared. Finally the ap-
proximation error remains of the same order for the two
methods.

The proposed method can be improved, especially on two
directions we are already working on. First, the geometric
data P of S could defined in a different way, to produce a
smoother surface. To realize such a goal, we are notably ex-
ploring the use of the Dupin cyclides. Second, we should
add a fifth criterion during the subdivision of T , to discover
small features of O. This will solve the limitation we have
when missing details in the garbing mesh. Currently, this
criterion is not working in all cases, this is why we do not
present it in this paper.

We have made a step forward for the effective use of me-
dial surfaces as SRMs in computer graphics. We are now
interested in exploiting those skeletons through this garbing
algorithm, for shape creation and shape deformation. An-
other research field can be addressed to take advantage of
this work: the skeletonization process itself. Indeed such a
garbing mesh can allow to check if the medial surface re-
mains acceptable, when an approximation or a simplification
is sought.
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Skeletonized Object O Union of Spheres Garbing Mesh M2

Figure 15: Graphical Results. The first column displays the original object and its medial surface. The second column depicts

the union of spheres contained in the medial surface. The third column shows our garbing mesh, which approximates the

original object.
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