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Introduction

Curved patches have been an important tool in design since the introduction of digital computers in engineering. Among them triangular Bézier patches are a natural extension of Bézier curves and have a very elegant mathematical presentation in terms of barycentric coordinates. See Farin´s essay: A History of Curves and Surfaces in CAGD in the Handbook of Computer Aided Geometric Design [Fa-Ho-Myu] for a short but informative historical sketch of triangular patches and also chapter 17 of his classical book [Fa], for a short introduction to the subject and the references therein. Triangular patches are also useful do reduce the size of a triangulation by replacing sets of planar triangles with approximating curved triangles. Frequently it is important that a triangular patch interpolates three given points and has prescribed tangent planes at these points. It is also desirable that patches have the lowest degree possible and are rationally parameterizable, ideally to be triangular pieces of quadrics. For arbitrary contact conditions this in general is not possible as observed in [B-H]. The next best thing are patches of Dupin cyclides which have parametric and algebraic degree less than or equal to four (1 ). Four sided Dupin cyclide patches have been introduced by R.R. Martin [START_REF] Martin | Existence of patches bounded by lines of curvature[END_REF][START_REF] Martin | Principal patches-a new class of surface patch based on differential geometry[END_REF] and more recently [D-G-L-M-B] used rings of Dupin cyclides to join spheres, planes and canal surfaces.

The result of the present article is an essential preliminary step before being able to match G 1 patches of Dupin cyclides along curves which are not characteristic circles.

Generalities about Dupin cyclides

Rotating a circle contained in R 3 around and axis contained in the plane of the circles we may obtain three types of surfaces (see fig 1) -a ring torus when the axis does not intersect the circle -a surface with one singular point when the axis is tangent to the circle (horn torus) -a surface with two conical singular points when the axis intersect the circle in two points (spindle torus).

To obtain a larger, but still geometrically interesting family of surfaces, we consider the image of the tori of revolution under the action of an element of the Möbius group g ∈ M. For us the Möbius group acts on R 3 ; wherever the action of g ∈ M is defined, its differential is a similarity. Figure 2 show a Dupin cyclide with two singular points from the inside of a compact component of its complement in R 3 .

From the viewpoint of differential geometry, Dupin cyclides are somehow the simplest surfaces after the planes, spheres, as, on a Dupin cyclide, the two principal curvatures k 1 and k 2 are constant along the corresponding lines of curvature (quadrics, from the algebraic viewpoint, may also be considered as surfaces simpler that Dupin cyclides, although their curvature functions are complicated). Let us now present a directly conformal definition of the Dupin cyclides as envelopes of very particular one-parameter family of spheres.

The space of oriented spheres

The Lorentz quadratic form L on R 5 and the associated Lorentz bilinear form L(•, •), are defined by

L(x 0 , • • • , x 4 ) = -x 2 0 + (x 2 1 + • • • + x 2 4 ) and L(u, v) = -u 0 v 0 + (u 1 v 1 + • • • + u 4 v 4 )
. The Euclidean space R 5 equipped with this pseudo-inner product L is called the Lorentz space and denoted by R 5 1 . The isotropy cone Light = {v ∈ R 5 1 | L(v) = 0} of L is called the light cone. Its non-zero vectors are also called light-like vectors. The light-cone divides the set of vectors v ∈ R 5 1 , v Light in two classes: A vector v in R 5 1 is called space-like if L(v) > 0 and time-like if L(v) < 0. A straight line containing the origin is called space-like (or time-like) if it contains a space-like (or respectively, time-like) vector. A subspace through the origin of dimension k is called space-like if its contains only space-like vectors, time-like if it contains one time-like vector; it will then contain a (k-1)cone of light-like vectors. It is called light-like if it is tangent along a generatrix to the light-cone; in that case, the generatrix direction is the unique light-like direction of the subspace. We will use the same terminology when affine subspaces are involved.

To get a model E 3 of the Euclidean space R 3 , we need to slice the light cone by an affine light-like hyperplane (see Figure 3 and,again, and [L-W]). Such an hyperplane intersects all the rays of the cone but one. We refer to this ray as corresponding to the point at infinity of E 3 (we get a 3-dimensional sphere adding a point "∞" to E 3 ).

To each point σ ∈ Λ 4 = {v ∈ R 5 1 | L(v) = 1} corresponds an oriented sphere or plane Σ = σ ⊥ ∩ E 3 (see Figure 4). The orientation of Σ determines a component B of E 3 \ Σ such that Σ is oriented as the boundary of B. We can see Λ 4 as a sphere for the Lorentz quadratic form; as for the usual Euclidean sphere, the tangent hyperplane T σ Λ 4 is orthogonal to σ (seen as a vector of R 5 1 ). It is time-like and T σ Λ 4 ∩ Λ 4 is a cone of dimension 3 formed of (affine) light-rays. Again tangent vectors at a point σ ∈ Λ 4 are of one of the three types: space, light or time.

Consider the hyperplanes T σ 1 Λ 4 tangent to Λ 4 at σ 1 and T -σ 1 Λ 4 . The intersections Λ 4 ∩ T ±σ 1 Λ 4 are cones of dimension 3. Depending to the location of the sphere σ 2 according to these cones, we can see if its intersects or not the first sphere Σ 1 , see Figure 5: -if σ 2 belongs to the "exterior" of both cones

Σ 2 intersects Σ 1 in a circle; in this case |L (σ 1 , σ 2 ) | < 1.
-if σ 2 belongs to one of the cones, the two spheres are tangent; then

|L (σ 1 , σ 2 ) | = 1.
-if σ 2 belongs to the "interior" of one of the cones the two spheres are disjoint; then

|L (σ 1 , σ 2 ) | > 1.
The position of σ in one of the four different parts of the "interiors" of the two cones distinguish different cases of intersection of the balls B 1 ; Σ 1 = ∂B 1 and B 2 ; Σ 2 = ∂B 2 . If σ 2 is in the "interior" of the cone C σ 1 of vertex σ 1 , the balls B 1 and B 2 intersect. If σ 2 belongs to the bottom part of the "interior" of
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Figure 4: The correspondence between Λ 4 and the space of spheres or planes in E 3 .

C σ 1 , then B 1 ∩ B 2 = B 1 . If it belongs to the upper part, B 1 ∩ B 2 = B 2 .
If σ 2 is in the "interior" of the cone C -σ 1 of vertex -σ 1 , the balls B 1 and B 2 are disjoint when σ 2 belong to the upper side of the "interior" of C -σ 1 . When σ 2 belongs to the lower component, the intersection 5). Notice that the restriction to a space-like vectorial plane P space containing the origin is, for the metric induced from the ambient Lorentz quadratic form, a positive definite quadratic form. We consider it as the Euclidean structure of P. The intersection of Λ 4 with P space is, for the metric induced from L on P space , a circle γ ⊂ Λ 4 of radius one. The center of this circle is the origin.

B 1 ∩ B 2 is a zone B 1 ∩ B 2 ≃ S 2 × [0, 1] (see Figure
The points of this circle correspond to the spheres of a pencil with base circle. The arc-length of a segment contained in γ is equal to the angle between the spheres corresponding to the extremities of the arc. This fact can be verified using the formula σ = km + n, where k is the curvature of the sphere Σ corresponding to the point σ ∈ Λ 4 (k=0 if Σ is a plane), m ∈ E 3 ⊂ Light is a light-like vector, and n is the unit vector contained in

T m E 3 ≃ R 3 normal to Σ (see [H-J] or [L-O] p. 276-278). As m is orthogonal to n ∈ T m E 3 ⊂ T m Light, we see that L(σ 1 , σ 2 ) = (n 1 | n 2 ) = cosθ,
where θ is the angle between n 1 and n 2 , that is the angle of Σ 1 and Σ 2 .

The intersection of Λ 4 with a time-like vectorial plane P time is not connected. For an Euclidean eye, seeing as orthonormal basis a Lorentz "unitary" basis, it is an equilateral hyperbola. We will often still refer to such a hyperbola as a "circle". The origin is its center both for an Euclidean eye and with the Lorentz viewpoint: the Lorentz distance from any point of the hyperbola to the origin is equal to 1. The points of this "circle" correspond to spheres of a Poncelet pencil or pencil with distinct limit point. The two light-directions of P time correspond to the two limit points of the pencil.

The intersection of Λ 4 with a light-like plane P light is the union of two parallel affine light-rays. The corresponding spheres form a pencil of spheres tangent to the point corresponding to the direction of the light-rays.

Intersection of Λ 4 with affine planes

In this subsection, P is an affine plane of R 5 1 .

Figure 5: The two cones C σ 1 and C -σ 1 . Case 1:

B 1 ∩ B 2 = B 2 . Case 2: B 1 ∩ B 2 = B 1 . Case 3: B 1 ∩ B 2 = ∅. Case 4: B 1 ∩ B 2 ≃ S 2 × [0, 1].
Let us first study the intersection P ∩ Λ 4 when P is space-like. The orthogonal projection π(O) of the origin O on P achieves the minimum value of L(x), x ∈ P. This value η = min (L(x), x ∈ P) maybe negative, zero or positive.

-If η < 0, the intersection is a circle of radius r larger that one; r 2 = 1η. We will see (subsection 3.4) that the envelope is a regular Dupin cyclide.

-If η = 0, the circle is of radius 1. Either the plane is a vectorial plane and the spheres corresponding to the points of γ = Λ 4 ∩ P form a pencil, or if P does not contain the origin, the spheres corresponding to the points of γ = Λ 4 ∩ P are tangent to a given direction at a point m. We will see (Subsection 3.4) that, when P does not contain the origin, the envelope is a Dupin cyclide with a unique singular point.

-If 0 < η < 1, the circle is of radius r less than 1, r 2 = 1η. The spheres corresponding to the points of γ = Λ 4 ∩ P contain two points which are singular point of the envelope (see Subsection 3.4).

-If η = 1, the plane P is tangent to Λ 4 , and intersects it at one point σ.

-If η > 1, the intersection P ∩ Λ 4 is empty.

Let us now suppose that P is time-like. The orthogonal projection π(O) of the origin on P is now a critical point of the function L(x), x ∈ P, but not a minimum. Let us still call η the value η = L(π(O)). This value is positive, as the vectorial space orthogonal to P is space-like.

-If η = 0, that is if P is a vectorial time-like plane, the intersection γ = Λ 4 ∩ P is the equilateral hyperbola formed of two time-like curves given by the equation L(x, y) = -x 2 + y 2 = 1, where x and y are coordinates defined using a Lorentz "orthonormal" basis of two vectors of the plane, one space-like and one time-like. The corresponding spheres form a Poncelet pencil.

-If 0 < η < 1, γ = Λ 4 ∩ P is still a hyperbola formed of two time-like curves. The corresponding spheres are nested.

-If η = 1, the plane P is tangent to Λ 4 . The intersection γ = Λ 4 ∩ P is the union of two affine light-rays.

-If η > 1, γ = Λ 4 ∩ P is a hyperbola formed of two space-like curves. The corresponding family of spheres has an envelope which is a surface with two conical singularities. Going to infinity on a branch of the hyperbola correspond to let the radius of the spheres go to zero; the spheres approach a singular point of the envelope (see Figure 2).

Finally, suppose that P is light-like. The intersection P ∩ Λ 4 is a space-like parabola. The corresponding envelope has a unique singular point. The infimum in f P L(x), x ∈ P is well defined, but achieved on an affine light-like line.

Envelopes of one-parameter family of spheres

A surface is always the envelope of a two-parameter family of spheres. Some particular surfaces: the canal surfaces, are envelopes of one-parameter family. For a C 1 curve γ ⊂ Λ 4 , that is a one-parameter family of spheres, to generate a canal surface, an extra condition is needed: the curve should be spacelike, that is its tangent vector should be everywhere space-like. With no special assumption, the envelope maybe singular.

To guarantee that the canal surface is locally immersed, an extra condition is needed. As the curve γ is time-like, we can suppose it is parameterized by arc-length, that is L( . γ(s)) = 1∀s. the geodesic curvature vector is the orthogonal projection of the acceleration on the tangent space to Λ 4 . It satisfies the formula → k g (s) = .. γ (s) + γ(s).

Figure 6 shows the behavior of the spheres corresponding to a space-like curve with time-like geodesic curvature in Λ 4 and to a time-like curve in Λ 4 .

Notice that a canal surface is a union of circles, the characteristic circles. They are obtained intersecting two spheres, one corresponding to a point σ ∈ γ, the second to the vector . γ(σ) tangent to γ at σ. We can suppose, as the curve γ is space-like, that the vector . γ(σ) is a unit vector, that is a point in Λ 4 which therefore corresponds to a sphere.

A presentation of Dupin cyclides as "circles" in Λ 4

A Dupin cyclide C is in two different ways the envelope of a one-parameter family of spheres (see [Dar] and Figure 8). This implies that it has two families of characteristic circles (see Figure 7). This implies also (see [L-W], pp. 161-168) that the two corresponding curves are "circles" of Λ 4 , that is intersection of Λ 4 with two affine planes that we call brothers. (1)

Notice that the brother P * * of P * is P. Remark: The intersection of three four dimensional affine tangent planes T m i Λ 4 , i = 1, 2, 3 at three points m i ∈ P ∩ Λ 4 is the 2-dimensional affine plane P * Proof: The affine tangent hyperplane T σ Λ 4 to Λ 4 at a point σ is orthogonal to R • σ at σ. It has therefore the equation L(y, σ) = 1. The condition ∀x ∈ P, L(x, y) = 1 is equivalent to the three conditions L(y, σ 1 ) = 1, L(y, σ 2 ) = 1, L(y, σ 3 ) = 1, for any choice of three different points on the circle C P = P ∩ Λ 4 .

Equation (1) implies that the brother P * of P is orthogonal to P. Moreover, the common perpendicular δ contains the origin; we can write δ = (p ⊕ p * ) ⊥ , where p and p * are the vectorial planes parallel respectively to P and P * . In fact, p * is orthogonal to span(P) and p is orthogonal to span(P * ). The line Let T be a unit vector tangent to C P at σ. It is contained in T σ Λ 4 , and therefore is orthogonal to σ. It is contained in p, and therefore is orthogonal to span(P * ), and in particular to σ * . The vector σ *σ generating the direction of ℓ σ,σ * is therefore orthogonal to T .

The direction of the light-ray ℓ σ,σ * correspond to the point of the Dupin cyclide C where the two spheres corresponding to σ and σ * are tangent.

When the two brother circles are both Euclidean circles, we can use their angle parameters θ and ψ to get a parameterization of the regular cyclide in R 3 envelope of spheres corresponding to the points of the circles.

Γ d (θ, ψ) =           x (θ, ψ) y (θ, ψ) z (θ, ψ)           =                             µ (c -a cos θ cos ψ) + b 2 cos θ a -c cos θ cos ψ b sin θ (a -µ cos ψ) a -c cos θ cos ψ b sin ψ (c cos θ -µ) a -c cos θ cos ψ                             (2) 
The characteristic circles are given in the parametric equation ( 2) by a constant value of θ or ψ, see Figure 7.

The points where the sphere of parameter θ 0 is tangent to the sphere of parameter ψ 0 is the point of intersection of the characteristic circle defined by θ = θ 0 and ψ = ψ 0 . The three parameters a, b, c; c 2 = a 2b 2 are associated to the two anticonics 2 set of the centers of the spheres of the two families; their equations are

x 2 a 2 + y 2 b 2 = 1; y 2 c 2 -z 2 c 2 = 1.
The parameter µ is related with the axis of the pencils of affine planes which intersect the cyclide along characteristic circles (see [For] 

and [D-G-L-M-B]).

One can also show that (see for example [L-W] pp. 161-168) -Any regular Dupin cyclide of R 3 is the image by a Möbius map of a torus of revolution.

Using some complex geometry one can prove a classical result (see [Vi]). Regular Dupin cyclides contain two families of circles which are not characteristic circles: the Villarceau circles. Unlike characteristic circles, where there is only one sphere of the pencil containing the circle which is tangent to the Dupin cyclide (along the whole characteristic circle), all the spheres of the pencil containing a Villarceau circle are tangent to the Dupin cyclide at exactly two points, which depend on the sphere. -Any Dupin cyclide with two singular points is conformally equivalent to a cone of revolution of R 3 completed by the point ∞.

Notice finally that Dupin cyclide are algebraic surfaces of degree at most 4.

Gluing Dupin cyclides and canal surfaces along a characteristic circle

The previous considerations show that a three-dimensional family of Dupin cyclides are tangent along a given characteristic circle; they correspond to suitable affine planes containing a given pair

σ ∈ Λ 4 , v ∈ T σ Λ 4 .
Gluing C 0 two smooth space-like arcs γ 1 and γ 2 with time-like geodesic curvature (see subsection 3.3) in Λ 4 such that the tangent vectors at the point where the arcs meet make an angle introduces a piece of the sphere corresponding to the angular point of the curve. Depending on how the two characteristic circles corresponding to the two arcs are dispatched on this sphere, the envelope maybe get cuspidal singularities where the annulus of Dupin cyclide meets the sphere. Considering these two characteristic circles, we can have three different relative positions: they can meat each other (Figure 10), they can be tangent (Figure 11), or they can be disjoint (Figure 12). The two canal surfaces and a piece of the sphere cannot be blended G 1 when the two characteristic circles intersect. Here we are interested in the circles of the sphere Σ. Oriented circles of a sphere form a 3-dimensional quadric Λ 3 ⊂ R 4

1 . The construction is the same as the construction of the set of spheres in R 3 we presented in Subsection 3.1.

The circles of Σ are the intersection of Σ with spheres orthogonal to Σ. The corresponding points of Λ 4 are the points of Λ 3 (σ) = (R • σ) ⊥ ∩ Λ 4 (see Figure 13). Notice that (R • σ) ⊥ is parallel to the hyperplane T σ Λ 4 . 14). Let Γ 1 and Γ 2 be the corresponding canal surfaces. The "last" characteristic circle C 1 of Γ 1 and the "first" characteristic circle C 2 of Γ 2 belong to the same sphere Σ which corresponds to the common point σ of γ 1 and γ 2 .

The vector . γ 1 (b 1 ) can be seen as a point of Λ 4 . In fact, it belongs to Λ 3 (σ). It corresponds to the sphere orthogonal to Σ along C 1 . This amounts to say that we also consider the points of Λ 3 (σ) as circles of Σ. The points of the two curves . γ 1 (t) and . γ 2 (t) correspond to the derivated spheres .

Σ i (t)
which are orthogonal to the spheres corresponding to the points γ i (t); the intersection .

Σ i (t) ∩ Σ i (t) is the characteristic circle of Γ i contained in Σ i .
The two circles are disjoint if the point . γ 2 (a 2 ) is in the "interior" of one of the cones C. γ 1 (b 1 ) or C -. γ 1 (b 1 ) . Then, we have to determine the "good" part of these cones, that is to say the side where the points correspond to oriented circles C 1 and C 2 , boundaries of two discs D 1 and D

2 , D 1 ⊂ D 2 (that is to say D 1 ∩ D 2 = D 1 ).
To do that, we will use the geodesic curvature vectors of each of the curves γ 1 and γ 2 noted

-→ k g 1 and -→ k g 2 .
The position of the two pieces of canal surfaces with respect to the sphere Σ associated to σ = γ 1 (b 1 ) = γ 2 (a 2 ) is "good" if the "last" characteristic circles of the end of Γ 1 and the "first" characteristic circles of the beginning of Γ 2 project on circles of Σ disjoint from the annulus of Σ bounded by

C 1 ∪ C 2 .
The projections of the characteristic circles will be the intersection with Σ of the spheres corresponding to the points of . γ 1 (t) and of . γ 2 (t). The two curves . γ i (t) are on Λ 4 and not in Λ 3 (σ). As we want to work in Λ3 (σ), we will consider a projection of these curves on Λ 3 (σ), pro j( . γ i (t)) = α i (t). Then, the intersection with Σ of the sphere corresponding to α i (t)) is the circle Σ ∩ .

Σ i (t); along this circle, the two spheres intersect orthogonally.

Consider the point σ and the point . γ i (t). They corresponds to two spheres which are in a pencil of spheres with base circle .

Σ i ∩ Σ. In Λ4 , the points σ and . γ i (t) are in a geodesic circle which cuts orthogonally Λ 3 (σ) at the point α i (t). This defines the projection wee need 3 . Let the curves α i be the images of the curves γ i through this projection. These curves are time-like curves in Λ 3 (σ). At the extremities α 1 (b 1 ) and α 2 (a 2 ) of these curves, the tangent vectors to α 1 and α 2 are the geodesic curvature vectors -→ k g 1 and -→ k g 2 (the geodesic curvature vectors -→ k g i are the projections of the vector ..

γ i on T σ Λ 4 ).
First, the oriented circles associated to α 1 (b 1 ) and α 2 (a 2 ) where the canal join the sphere Σ are "good", if they belong to a pencil of spheres with limit points (time like geodesic curve in Λ 4 ), that is if they are disjoint. Then we need to be able to join the points α 1 (b 1 ) and α 2 (a 2 ) by a time-like curve in Λ 3 . For that, the vector -----------→ α 1 (b 1 )α 2 (a 2 ) has to be a time-like vector. Moreover we want to join α 1 (b 1 ), the end of the curve α 1 to the beginning α 2 (a 2 ) of the curve α 2 by a time-like curve to obtain a curve where the time-variable x 0 is monotonous. Therefore the three vectors -→ k g 1 , -→ k g 2 and -----------→ α 1 (b 1 )α 2 (a 2 ) must be on the same side of the cone C. γ 1 (b 1 ) .

Of course if at the extremity of γ 1 and at the initial point of γ 2 the tangent vectors are the same, the two canal surfaces are joined (G 1 ) along a characteristic circle.

In particular, suppose that we want to blend a canal surface with a piece of Dupin cyclide along a characteristic circle. We just have to consider the sphere S 0 of the canal surface containing the blending circle C 0 . A point σ ∈ Λ 4 and a space-like vector .

σ tangent at σ to Λ 4 determine a circle on the sphere Σ associated to the point σ. The affine planes containing σ and .

σ which intersect Λ 4 in a space-like curve determine a Dupin cyclide. To the 3-parameter family of such planes H corresponds a 3-parameter family of such cyclides. We do not accept the vectorial plane containing σ and .

σ, as it defines only the characteristic circle contained in Σ.

Therefore, we get a 3-parameter family of cyclides that can be blended with a canal surface along a characteristic circle. The figures 15 and 16 show two Dupin cyclides tangent along a characteristic circle.

The family of spheres tangent to a Dupin cyclide along a family of characteristic circles defined by θ = c te contains two planes. The other family of spheres tangent along the other family of characteristic circles does not contain any plane. The planes can be seen in Λ 4 as the intersection of Λ 4 with the hyperplane

x 0 = x 4 (see [D-G-L-M-B]
). Therefore, we can distinguish the two brother circles (parameterized respectively by θ and ψ) using this hyperplane: if the intersection of the hyperplane and the 2-plane containing a brother circle of a cyclide is not empty, it corresponds to the family of spheres tangent to the cyclide along characteristic circles defined by θ = c te . Choosing one more sphere τ ∈ Λ 4 , the triple σ, .

σ, τ determines an affine plane H (the point τ cannot be of the form σ + λ .

σ as .

σ is space-like). If the intersection H ∩ Λ is space-like it provides a cyclide tangent to σ along the circle σ ⊥ ∩ . As two pairs (σ, .

σ) and (τ, . τ) are not, in general, contained in an affine plane, one cannot, in general, join two pieces of canal surfaces by one piece of Dupin cyclide. Using two pieces, the join is possible (see Figure 18; Boehm [Bo] studies a similar problem directly in R 3 ).

Figure 18: Example of blend between two canal surfaces using two parts of Dupin cyclides.

Contact condition

A contact condition in R 3 is a pair, a point m and a plane h contained in the 3-dimension tangent space to the ambient space, (m, h ⊂ T m R 3 ). It defines a pencil of spheres: the spheres tangent to h at m. We have seen that such a pencil is represented by two parallel light-rays, and if we specify the orientation of the spheres, one light-ray only (see Figure 19).

Two rays, the two orientations One ray, one orientation is chosen The points of Λ 4 representing spheres tangent to a surface M is a 3-dimensional set W(M). It is singular at the osculating spheres which form in general a 2-dimensional set. Let C be a curve drawn on M, then the points corresponding spheres tangent to M along C form a two-dimensional object W(C) that we will meet again.

Λ 4 Λ 4
When the surface M is a canal surface (see Subsection3.3), one of the components of the points representing osculating spheres is the curve γ generating the canal.

Recall that when the surface is a Dupin cyclide, it is in two different ways the envelope of a one parameter family of spheres. The osculating spheres to the Dupin cyclide are now the two corresponding curves C P and C P * = P * ∩ Λ 4 .

The unit tangent vector .

σ at a point σ ∈ C P corresponds to a sphere which intersects the sphere Σ corresponding to σ along a characteristic circle of the cyclide (see Figure 7).

The points corresponding to spheres tangent to the Dupin cyclide C is the union of the lines, which are light-rays, joining a point of C P to a point of

C P * . It is a 3-dimensional subset W(C) of Λ 4 .

Remark:

Given a Villarceau circle Γ ⊂ C we get a map from Γ to the pencil P Γ of spheres of axis Γ, which maps a point m ∈ Γ to the sphere Σ m of the pencil which is tangent to C at the point.

We get a plane

h m = T m C = T m Σ m ⊂ T m E 3 ⊂ T m
Light at each point m ∈ Γ, and therefore a light-ray ℓ m composed of the spheres tangent at m to the cyclide C. The union of these light-rays form a surface S contained in Λ 4 . One can prove that parallel affine hyperplanes orthogonal to δ intersect S in circles which correspond to a one parameter family of cyclides tangent to C along γ. This result we be a consequence of our general result Theorem 8.0.2. It can also be proved using complex geometry.

Three contact conditions

Let us consider three contact data (m 1 , h 1 ); (m 2 , h 2 ); (m 3 , h 3 ), where the three oriented planes h 1 , h 2 , h 3 are in T m 1 R 3 , T m 2 R 3 , T m 3 R 3 . We will use the three light-rays ℓ 1 , ℓ 2 et ℓ 3 in the de Sitter space Λ 4 formed by spheres through m 1 and tangent to h 1 , through m 2 tangent to h 2 , and through m 3 tangent to h 3 (the spheres inherit their orientations from the planes h 1 , h 2 or h 3 ). Remark: Let us consider three points m 1 , m 2 , m 3 of a Dupin cyclide C. An orientation of the Dupin cyclide determines the three light-rays ℓ 1 , ℓ 2 , ℓ 3 . Let us replace ℓ 1 by -ℓ 1 . Then C does not satisfying the new set of three contact conditions. We will later give examples where a cyclide, different from C satisfies the three contact conditions (see Figure 31).

The dimension of the set of three points on a Dupin cyclide is 15 = 9 + 2 + 2 + 2 (9 is the dimension of the affine Grassmann manifold of planes in R 5 1 , therefore the dimension of the set of cyclides). The dimension of the set of triple contact conditions in R 3 is 15 = 3(3 + 2), as (3 + 2) is the dimension of the set of pairs (m, a plane direction at m). We may expect that three contacts problems admits a finite number of solution (or none). The situation is quite different.

We can chose one sphere σ i in each light-ray ℓ i . This defines an affine plane P. The intersection P ∩ Λ 4 is a curve C P . If this curve C P is space-like, the corresponding envelope is a Dupin cyclide. In general it does not satisfy the given contact condition, as the characteristic circle Γ i contained in the sphere Σ i needs not to contain the point m i corresponding to the light-ray ℓ i . If the point m i belongs to the characteristic circle Γ i ⊂ Σ i , the cyclide satisfies contact condition at m i and the light-ray ℓ i intersects the brother affine plane P * .

ℓ i σ 1 σ 2 σ 3 π(O) π(ℓ i ) C P C P * P Figure 20:
The projections of a light-ray ℓ i contained in Λ 4 when the cyclide satisfies the three contact conditions Recall that p denotes the vector space parallel to P, p * the vector space parallel to P * and δ the line (p ⊕ p * ) ⊥ . Let π be the orthogonal projection on P (the kernel is the space p * ⊕ δ). For an arbitrary choice of σ i ∈ ℓ i , the light-rays ℓ i do not cross P * . Therefore the projection of a light-ray ℓ i in general does not contain the point π(O) of P, orthogonal projection on P along p * ⊕ δ of the origin O of R 5 1 , that we will take as origin of P. If the "'circle" C P = P ∩ Λ 4 defines a cyclide tangent to the three contact conditions, it does contain the origin, as in this case each of the light-ray crosses C * P = P * ∩ Λ 4 at a point which projects on the origin π(O). It is not a priori clear that such an affine plane P exists. We will prove that, to guarantee the existence of an affine plane P = A f f (σ 1 , σ 2 , σ 3 ); σ i ∈ ℓ i the contact conditions should satisfy a condition. A necessary condition is that the light-rays ℓ i should project orthogonally on P (parallel to p * ⊕ δ) into lines containing the origin π(O) of P (see figure 20). More work would be necessary to prove that the conditions obtained are also sufficient to guarantee the existence of a Dupin cyclide satisfying the three contact conditions.

We will not perform the computations involved as another, more dynamical, viewpoint will provide more easily a necessary and sufficient condition which guarantees the existence of a cyclide satisfying the three contact conditions.

6 Find a Dupin cyclide satisfying three contact conditions 6.1 The homographies pang, pong and ping

In the previous sections, we were dealing with Möbius geometry an the space of oriented spheres. Now we will need another tool: projective geometry.

An homography Φ : R → R is defined by the formula 

x 2 = ax 1 +b cx 1 +d ,
b ′ c ′ 0 is b ′ c ′ 0 0 b ′ c ′ .
The corresponding homography is therefore the identity.

Reciprocally, an invertible linear map of zero trace which has no fixed line has eigenvalues of the form ±ρi, ρ ∈ R + . In the plane endowed with the Euclidean metric such that the basis is orthonormal, it is the composition of a rotation of angle π/2 or -π/2 and a homothety. The corresponding homography is therefore an involution exchanging pairs of lines.

Homographies between two affine lines ℓ 1 and ℓ 2 contained in some vector space R 2 are obtained considering the intersection of these two lines with a pencil of affine hyperplanes P of R n such that all the hyperplanes of the pencil are transverse to the two lines; that way we get a map ℓ 1 → ℓ 2 defined whenever the hyperplane P ∈ P of the pencil intersects transversally ℓ 1 and ℓ 2 .

Quadratic hyperboloids of R 3 contain two families of lines. Given two lines ℓ 1 and ℓ 2 of one family, the lines of the other family provide a homography ϕ : ℓ 1 → ℓ 2 . The proof of the latter fact relies on classical geometry of quadrics ( [Cha]).

It is not surprising that the quadric Λ 4 ⊂ R 5 1 also provides homographies between disjoint affine light-rays.

Here we obtain a homography using a contained in Λ 4 construction slightly different from the two mentioned above. The lines ℓ 1 and ℓ 2 are disjoint affine light-rays contained in Λ 4 .At each point σ ∈ ℓ i , we consider the affine tangent hyperplane T σ Λ 4 to Λ 4 at σ. We suppose that the light-ray ℓ 2 is not contained in any of the hyperplanes T σ Λ 4 . Let us first define the map pang at the points

σ 1 ∈ ℓ 1 such that T σ 1 Λ 4 ∩ ℓ 2 ∅ pang : ℓ 1 → ℓ 2 ; pang(σ 1 ) = T σ 1 Λ 4 ∩ ℓ 2 (3)
Let us call l1 = ℓ 1 ∪ ∞ the projective completion of ℓ 1 and l2 = ℓ 2 ∪ ∞ the projective completion of ℓ 2 .

We can extend the previous pang map to the projective completions of ℓ 1 and ℓ 2 , and still call it pang, by pang : l1

→ l2 ; pang(σ 1 ) = T σ 1 Λ 4 ∩ ℓ 2 if T σ 1 Λ 4 ∩ ℓ 2 ∅ pang(σ 1 ) = ∞ if T σ 1 Λ 4 ∩ ℓ 2 = ∅, pang(∞) = lim σ→∞ T σ 1 Λ 4 ∩ ℓ 2 . ( 4 
)
Proposition 6.1.1. The map pang is a homography.

Proof: Two disjoint light-rays ℓ 1 ⊂ Λ 4 and ℓ 2 ⊂ Λ 4 span a 3-dimensional affine space Q which, because it contains two independent light directions, is time-like. The intersection Q ∩ Λ 4 is a 2-dimensional quadratic hyperboloid Q2 . The tangent hyperplane at σ 1 ∈ ℓ 1 to Λ 4 intersects Q in the tangent plane at σ 1 to Q2 ; this tangent plane intersects Q2 in two lines, ℓ 1 and another line ℓ 12 (σ 1 ). Completing the fivedimensional space R 5 1 in a projective space RP 5 , Q is contained in the 3-dimensional projective space Q ≃ RP 3 , projective completion of Q, and the light-rays ℓ i and ℓ 12 (σ 1 ) are completed into projective lines li and l12 (σ 1 ). Consider now a point σ 1 ∈ l1 . In this projective context, let us denote by PT the projective subspace tangent to a surface contained in a projective space. The intersection Q2 ∩ PT σ 1 Q2 contains the two projective lines: l1 and l12 (σ 1 ). The projective line l12 (σ 1 ) intersects l2 at a point pang(σ 1 ). As the family of lines l12 (σ 1 ) is the second family of projective lines ruling Q2 , using Chasles work, we see that the map pang is a homography. Let us define now two other maps

pong : ℓ 2 → ℓ 3 ; pong(σ 2 ) = T σ 2 Λ 4 ∩ ℓ 3 ping : ℓ 3 → ℓ 1 ; ping(σ 3 ) = T σ 3 Λ 4 ∩ ℓ 1 (5)
As we did for the map pang (see Formula 3 and 4), we can extend the maps pong and ping to the projective completions l2 of ℓ 2 , and l3 of ℓ 3 respectively.

Objects naturally associated to three contact conditions

A circle and six spheres are naturally associated to the situation. Through the three points m 1 , m 2 , m 3 passes a circle-or-line Γ 123 ⊂ R 3 . Among the oriented spheres tangent to the given oriented plane In order to turn computations easier, we will chose -on the light-ray ℓ 1 , the origin σ 112 , the point corresponding to the sphere which also contains m 2 , -on the light-ray ℓ 2 , the origin σ 223 , the point corresponding to the sphere which also contains m 3 , -on the light-ray ℓ 3 , the origin σ 331 , the point corresponding to the sphere which also contains m 1 . We will also chose the light-like vectors m i such that

h 1 ⊂ T m 1 R 3 ,
L(m i , m j ) = -1. (6)
Then, in a model H ∩Light of the Euclidean space containing the three points m i , they form an equilateral triangle inscribed in Γ 123 the sides of which are of length 2. We will use the same notation for the points m i ⊂ R 3 , and for the light vectors contained in the model H ∩ Light (recall that H is an affine hyperplane of R 5 1 ; to chose it is equivalent to the choice of the metric on R 3 (see Figure 3)).

Points on ℓ 1 are of the form σ 1 = σ 112 + k 1 m 1 , points on ℓ 2 are of the form σ 2 = σ 223 + k 2 m 2 and points on ℓ 3 are of the form σ 3 = σ 331 + k 3 m 3 .

The point pang(σ 1 ), as it belongs to the affine hyperplane T σ 1 Λ 4 of equation L(σ 1 , σ) = 1, has coordinate k 2 solution of the equation

L(σ 112 + k 1 m 1 , σ 223 + k 2 m 2 ) = 1 Therefore k 2 = -1 + L(σ 223 , σ 112 ) + k 1 L(σ 223 , m 1 ) k 1 . ( 7 
)
In the same way we compute the coordinate k 3 of pong(σ 2 ) and k 1 of ping(σ 3 )

k 3 = -1 + L(σ 331 , σ 223 ) + k 2 L(σ 331 , m 2 ) k 2 k 1 = -1 + L(σ 112 , σ 331 ) + k 3 L(σ 112 , m 3 ) k 3 . (8) Let                                α 1 = L(σ 112 , m 3 ) α 2 = L(σ 223 , m 1 ) α 3 = L(σ 331 , m 2 )
β 1 = -1 + L(σ 223 , σ 112 ) β 2 = -1 + L(σ 331 , σ 223 )
β 3 = -1 + L(σ 112 , σ 331 ) (9)
Notice also that the four terms α i and β i are conformal invariant of the picture determined by the three oriented contact conditions.

We have seen that the three oriented contact conditions determine one circle Γ 123 and six spheres. Here we have selected three of the six oriented spheres as origin on the light-rays ℓ i . As any pair taken among the six spheres intersect, the terms β i are of the form -1 + cosθ, where θ is the angle between the two spheres involved. The term α i is a function of the angle of the circle Γ 123 and one of the spheres.

We can now write matrices corresponding to the homographies pang : l1 → l2 , pong : l2 → l3 and ping : l3 → l1

pang = α 2 β 1 1 0 pong = α 3 β 2 1 0 ping = α 1 β 3 1 0 (10) On Figure 22, σ ′ 2 = pang(σ 1 ), σ 3 = pong(σ ′ 2 ), σ ′ 1 = ping(σ 3 ), σ 2 = pang(σ ′ 1 ), σ ′ 3 = pong(σ 2 ) and finally ping(σ ′ 3 ) = σ 1 . σ 1 σ 2 σ 3 σ ′ 1 σ ′ 2 σ ′ 3 ℓ 1 ℓ 2 ℓ 3 ping pong pang Figure 22: ping • pong • pang map
If the oriented contacts are tangent to a cyclide, then the composition ping • pong • pang need to exchange the two points of intersection of ℓ 1 with the brother circles (see Figure 22). A homography which exchanges two points have to be an involution different from the identity.

The corresponding linear map is, up to a factor c• Id, an involution of R 2 . We have seen in Subsection 6.1 that an invertible linear map of R 2 induces an involution different from the identity if and only if it has trace zero.

The trace of the product ping

• pong • pang is A = α 1 α 2 α 3 + β 3 α 2 + β 2 α 1 + β 1 α 3 (11)
So we get the necessary condition for the contact conditions to be tangent to a cyclide

A = α 1 α 2 α 3 + β 3 α 2 + β 2 α 1 + β 1 α 3 = 0 ( 12 
)
Remark: It is now natural to replace the whole Lorentz space R 5 1 by its projective completion RP 5 . This projective space is the space of lines of R 6 . The 6-dimensional space is now endowed with a definite quadratic form of signature 2. The intersection of the light-cone of the latter quadratic form an the affine chart R 5 1 is the quadric Λ 4 . The geometry induced on RP 6 by linear isomorphisms of R 6 preserving the light cone is called Lie sphere geometry. A detailed reference is [Ce]. The quadric Λ 4 is completed in a smooth quadric. The lines, hyperplanes and planes are completed into projective lines, hyperplanes and planes. Therefore the maps pang, pong, ping and their inverses admit projective completions. The quadric Λ 4 is contained in a smooth projective quadric. Therefore the tangent hyperplanes T σ Λ 4 to Λ 4 when σ goes to infinity on a light-ray have a limit in Λ4 ⊂ RP 5 . The fact the ping• pong• pang map is an involution implies that for any σ 1 ∈ ℓ 1 , such that all the maps pang, pong, ping, pang -1 , pong -1 , ping -1 and the maps obtained composing up to 6 of the previous maps do not send σ 1 "to infinity", the affine planes

A f f (σ 1 , pong • pang(σ 1 ), pang • pong • ping • pang(σ 1 )) and A f f (pang(σ 1 ), ping • pong • pang(σ 1 ), pong • pang • ping • pong • pang(σ 1 )) are brothers.
For example, let us prove that the ping

• pong • pang(σ 1 ) belongs to the intersection T σ 1 Λ 4 ∩ T pong•pang(σ 1 ) Λ 4 ∩ T pang•ping•pong•pang(σ 1 ) Λ 4 . -As ping • pong • pang(σ) belongs to ℓ 1 it belongs to T σ 1 Λ 4 . -As ping • pong • pang(σ 1 ) = ping(pong • pang(σ 1 )), it belongs to T pong•pang(σ) Λ 4 . -As ping•pong•pang(σ 1 ) = pang -1 (pang•ping•pong•pang(σ)), it belongs to T pang•ping•pong•pang(σ) Λ 4 .

Remark:

The cases where one product of less that 6 of the maps ping, pong, pang, ping -1 , pong -1 , pang -1 send σ "to infinity" can be dealt with using an argument of continuity, extending the maps to l1 , l2 and l3 , and using the fact that the tangent hyperplanes T σ Λ 4 have a limit when σ goes "to infinity" on a light-ray, is left to the reader.

It is proved in [L-W] that the brother P * of the plane P it enough to is enough to take the intersection of the tangent hyperplanes to Λ 4 at three different points of P∩Λ 4 and that the brother P of P * is obtained taking the intersection of the tangent hyperplanes to Λ 4 at three different points of P * ∩ Λ 4 . Therefore a pair σ 1 ∈ ℓ 1 , pang • pong • ping(σ 1 ) ∈ l1 determines, when the map ping • pong • pang is an involution without fixed points, a pair of brother planes.

This give a one-parameter family of cyclides, as the initial point σ 1 ∈ l1 is arbitrary.

We have proven the following Theorem 6. 

The common tangent curve

A particular case of Dupin cyclide which are tangent along a curve which is not a characteristic circle is provided by complex geometry.

Let T a,b ⊂ S 3 ⊂ C 2 be the torus of equations Remark:We accept a contact at a singular point if the plane is tangent to the cone tangent to the cyclide at the singular point.

|z 1 -2 = a 2 , |z 2 | 2 = b 2 , z 1 ∈ C, z 2 ∈ C, a ∈ R, b ∈ R, a 2 + b 2 = 1.
The light-rays joining one point of P and one point of P * correspond to all contacts conditions obtained from a point of the cyclide C envelope of the spheres corresponding to the points of C P = P∩Λ 4 . Therefore the homography Φ which defines a one-parameter family of light-rays, defines a curve on C. This curve is of homology class (1, ±1) ∈ H 1 (C) if the cyclide is regular and the generators of the homology of the cyclide are one characteristic circle in each family. Remark: Let us rephrase our results using Lie sphere geometry (see Remark 6.3). The 6-dimensional space underlying the projective completion of the Lorentz space R 5 1 can be endowed with a structure of Minkowski space of signature (4,[START_REF]Choice of two points M 1 and M 2 belonging to a characteristic circle on the sphere Σ (t 1 ) and Σ (t 2 ) respectively[END_REF]. Let us consider the coordinates x -1 , x 0 ,

x 1 • • • x 4 on R 6 2 endowed with the Minkowski form L(x -1 , x 0 , x 1 • • • x 4 ) = -x 2 -1 -x 2 0 + x 2 1 + • • • + x 2 4 ; R 5 1 is identified with the hyperplane of equation x -1 = 1 of R 6 2 . We see that the quadric Λ 4 ⊂ R 5 1 ≃ {x -1 = 1} is now contained is the light-cone Light of equation -x 2 -1 -x 2 0 + x 2 1 + • • • + x 2 4 = 0.
For this pseudo-metric, the 3-dimensional spaces P = span(P) and P * = span(P * ) are orthogonal.

The homography Φ is obtained from a linear map F : P → P * (defined up to a constant factor).

Let now start with a point σ λ ∈ ℓ 1 which is a barycentric combination of σ = P∩ℓ 1 and σ * = P * ∩ℓ 1 ,

σ λ = λσ + (1 -λ)σ * .
We need to prove that all the cyclides of the one parameter family defined changing the initial point σ λ ∈ ℓ 1 are tangent to the contact data defined by a light-ray ℓ τ joining a point τ ∈ Λ 4 ∩ P σ to the point Φ(τ) ∈ P * σ . For that, let us first remark that the affine planes

P λ = A f f (σ λ , pong • pang(σ λ ), ping • pong • pang • ping(σ λ ))
are the intersection of 3-dimensional vector spaces Pλ of the form Pλ = {λX + (1λ)F(X)}, X ∈ P with the hyperplane of equation x -1 = 1. This implies that, if X τ belongs to the line in R 6 2 joining the origin and τ ∈ C P ⊂ {x -1 = 1}, the intersection of the line joining the origin and the point λX τ + (1λ)F(X τ ) with {x -1 = 1} is contained in the light-ray ℓ τ ⊂ {x -1 = 1}. Let us insist: for an arbitrary map Ψ : C P → C P * , the points λτ + (1λ)Ψ(τ) would have no reason to be contained in the plane P λ .

Let . τ be a vector tangent at τ to the curve C P , .

Φ(τ) a vector tangent at Φ(τ) to the curve C P * and .

τ λ a vector tangent at τ λ = f 1 (λ, τ)τ + f 2 (λ, τ)Φ(τ) to the curve .

C P λ . The curve C P λ can be parameterized by f 1 (λ, τ)τ + f 2 (λ, τ)Φ(τ), τ ∈ C P , therefore . τ λ is a linear combination of . τ, .

Φ(τ), τ and Φ(τ). This implies that the light-ray ℓ τ is orthogonal to C P λ as . τ and .

Φ(τ), τ and Φ(τ) are all orthogonal to ℓ τ (recall that the light-rays joining the two brother "circles" C P and C P * are orthogonal to the tangents to the two brother "circles" at the points where they intersect them, see Proposition 3.4.2).
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. With what precedes, it is very easy to understand how to compute the value of the parameters on the light-rays, Formula (7), and Formula (8). Notice that the choice of origin on the light-rays which was convenient for the proofs is not necessary for the algorithm. We can also see that it is not necessary to impose the condition L m i , m j = -1, Formula (6).

Remark: With i equals to 1 or 2, let l i : t → σ i + t m i be a light-ray belonging to Λ 4 . We suppose that these lines are disjoint. From the relation

L (σ 1 + a 1 m 1 , σ 2 + b 2 m 2 ) = 1, we deduce that, The point l 2 (b 2 ) belongs to the tangent hyperplane T l 1 (a 1 ) Λ 4 if we have b 2 = f (σ 1 , m 1 , σ 2 , m 2 , a 1 ) where f is given by f : Λ 4 × E 3 × Λ 4 × E 3 × R -→ R (σ 1 , m 1 , σ 2 , m 2 , a 1 ) -→ 1 -L (σ 1 , σ 2 ) -a 1 L (m 1 , σ 2 ) L (σ 1 , m 2 ) + a 1 L (m 1 , m 2 ) . ( 13 
)
The same function is called to compute the parameters during the ping, pang and pong steps.

In the algorithm 1, we give a method, when the problem has a one-parameter of solutions, to compute one Dupin cyclide which is tangent to three couples points-planes.

One can note that the condition a 0 == a 1 is equivalent to the previous conditions : A = 0 or the composition of the six homographies is the identity.

In the algorithm 1, if we delete the step 3, we obtain a one-parameter family of Dupin cyclides. So, we can compute the centres Ω a and Ω b of the two circles passing through the two couples of three points

σ a i [[1,3]] and σ b i [[1,3]]
. Each center depends on the parameter a 1 and then, using the sign of L (Ω a , Ω a ) or L (Ω b , Ω b ), we can determine the type of the Dupin cyclides :

• if L (Ω a , Ω a ) = 0 or L (Ω b , Ω b ) = 0 then the Dupin cyclide has one singular point ;

• if L (Ω a , Ω a ) > 0 then the Dupin cyclide has two singular points ;

• if L (Ω a , Ω a ) < 0 then the Dupin cyclide has no singular point ;

The figure 27 shows a favorable case : we take three contact conditions on a Dupin cyclide (each tangent plane is oriented by the vector normal to the Dupin cyclide), so we are sure to have a oneparameter family of solutions.

Index

Point M i Figure 30 shows the common curve : all the Dupin cyclides of a one-parameter family are tangent along this curve.

Determination of two families of Dupin cyclides

An oriented contact condition can be given by a point and an oriented plane through it, or by a point and an oriented sphere containing the point. Here, as we start with a cyclide C, it is easier to define a contact condition (m, T m C) by (m, Σ m ) where Σ m is a sphere tangent at m to C, for example the sphere of one of the two families defining C containing m. In general, if we change the orientation of one of the three spheres, the previous conditions is not satisfied. So, we propose an algorithm which permits the construction of another one-parameter family of Dupin cyclides, algorithm 2.

Figure 31 shows two Dupin cyclides which are tangent only at three points. The green Dupin cyclide is same as in Figure 27. Its parameters are a = 10, c = 2 and µ = 3.5. We consider he family of the spheres which are centered on the ellipse. The coordinates of points, centers and the value of the radius of the spheres are given by Table 3. Algorithm 1 Computation of tri-tangent Dupin cyclides. Input: Three (M i ; P i ) i∈ [[1;3]] couples of oriented contact conditions where each plane is oriented by a normal vector.

1. For i from 1 to 3 do computation of m i , representation of the point M i in the paraboloid E 3 od.

2. For i from 1 to 3 do computation of σ i , representation of the oriented plane P i in Λ 4 od.

3. Choice of a real number a 1 .

4. Computation of b 2 = f (σ 1 , m 1 , σ 2 , m 2 , a 1 ), (see Formula ( 13)). 

Conclusion and perspectives

In this paper, when it is possible, we have proposed a method to construct, in the usual 3D Euclidean space, a one-parameter family of Dupin cyclides which are tangent to three given oriented planes (or spheres) at three given points. Sometimes, we can obtain another one-parameter family of Dupin cyclides by changing the orientation of one of the three planes. To solve the three contacts problem, we have represented the Dupin cyclide in the space of (oriented) spheres, the quadric Λ 4 ⊂ R 5 1 . In this space, a Dupin cyclide is defined by two brother circles for the Lorentz form. Our problem is translated into a dynamical problem involving light-rays of Λ 4 . The maps between light-rays are homographies. This indicates that projective geometry may also be involved. That is why we construct a 6-dimensional space R 6 2 , endowed with a quadratic form of signature two. The Lorentz space R 5 1 is the affine subspace H L of R 6 2 of equation x -1 = 1. The light-cone of R 6 2 is the cone on Λ 4 ⊂ H L .

The linear maps of R 6 2 preserving the cone on Λ 4 plays already an important role in our present work. A deeper understanding will include our work in the frame of Laguerre geometry.

Staying in Λ 4 , one can notice that both Dupin Cyclides and quadrics are envelopes of spheres forming a doubly ruled surface, that is a surface filled by two families of geodesics, like the two dimensional hyperboloid of revolution filled by two families of lines. It would by interesting to know if there are envelopes of spheres belonging to a doubly ruled surface other than Dupin cyclides, quadrics and their images by the Möbius group.

We also would like to construct surfaces using 3D triangles made of pieces of cyclides. We hope that these patches will replace the meshes using planar triangles: the computations should be faster because we will need fewer triangles, fewer topological informations to connect the triangles. We can remark that these triangles have a parametric equation and a quartic implicit equation.

Moreover, some particular 3D triangles can have circular edges: the patch is then bounded by two arcs of characteristic circles and one arc of Villarceau circle. We will study the conditions that contact conditions picked on a smooth surface should satisfy in order to obtain such a triangular patch of cyclide.

Another possibility is the computation of subdivisions surfaces which have not the same shape: along a circle arc, it will be possible to join a 3D triangle with a 3D quadrilateral which will be modelized by a rational quadratic Bézier patch representing a Dupin cyclide patch.

Likely to be more difficult is the construction of such a surface made of patches of cyclide from a point cloud. A distance functional from the point cloud to the surface should then be constructed 4 .

Finally Dupin cyclides and the ping • pong • pang map we constructed in this article may become a useful tool to study the local conformal geometry of surfaces in R 3 .
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 13 Figure 13: Representation of the space of circles on a sphere in Λ 4 .
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 14 Figure 14: Representation of the problem in Λ 4 ; the dotted lines α i (t) are the projections of the curves . γ i (t) on Λ 3 (σ).
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 15 Figure 15: Two parts of Dupin cyclides tangent along a characteristic circle, on each cyclide the characteristic circle is obtained by a constant value of θ in the parametric equation.
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 16 Figure 16: Two parts of Dupin cyclides tangent along a characteristic circle, on one cyclide the circle is obtained by a constant value of θ whereas, on the other cyclide, it is obtained by a constant value of ψ.

  τ along a circle. This cyclide may have a singular point (see Figure17).
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 17 Figure 17: Examples of blend between a canal surface and a plane using a part of Dupin cyclide.
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 19 Figure 19: Tangent spheres at a point m

  where a, b, c, d are real numbers such that det a b c d 0. Let us consider the line R as the affine line y = 1 of R 2 . The invertible linear map of matrix a b c d maps the line (O, x 1 ) to the line (O, x 2 ) whenever the fraction x 2 = ax 1 +b cx 1 +d has a finite value. It is convenient to write x 2 = ∞ when x 2 = ax 1 +b cx 1 +d is not defined. The image of the point ∞ is the point x 2 = a b . In this way we are extending the homographies to continuous bijection of the projective line P 1 = R ∪ ∞ onto itself. The homographies are also characterized by the fact they preserve cross-ratios. Notice that, if the invertible linear map of matrix a b c d exchanges two lines, its matrix in a basis formed of vectors of these two lines becomes of the form 0 b ′ c ′ 0 . Observe that the latter matrix is of trace zero. Then trace a b c d was already null. The square of the matrix 0
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 21 Figure 21: The circle Γ 123 , the three points m 1 , m 2 , m 3 and the sphere Σ 112 tangent at m 1 to the plane h 1
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 31323 Figure 23: The two spheres which define a solution singular at m 3

  The action of the unit circle U = {e iθ } ⊂ C on C × C globally preserves the sphere S 3 and the torus T a,b . Its orbit are circles, in particular its orbits contained in T a,b form one of the families of Villarceau circles. Consider a sphere Σ tangent to T a,b at a point m. The orbit of the sphere Σ envelopes a torus which is tangent to T a,b along the whole Villarceau circle orbit of the point m i nT a,b . Using a stereographic projection on R 3 , we obtain cyclides tangent along a Villarceau circle (see Figure24).Let us show that Dupin cyclides maybe tangent along a more general family of curves.Theorem 8.0.2. Three contact conditions on a Dupin cyclide determine a homography Φ between the two conics C P and C P * . The graph of this homography determines a curve Γ in the cyclide which is where all the cyclide solutions of the three contacts problem are tangent.
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 24 Figure 24: Cyclides tangent along a Villarceau circle
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 25 Figure 25: A torus and a tritangent cyclide

  Figure 26: Orthogonal spaces P, P * in R 6 2 and a subspace Pλ ⊂ R 6
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 27 Figure 27: Initialization of the problem with three points belonging to a Dupin cyclide and three planes tangent to the Dupin cyclide at the previous points, table 1.

Figure 28 (

 28 Figure 28 (resp. Figure 29) shows two examples with ring (resp. horned) Dupin cyclides. The table 2 shows the parameters of the Dupin cyclides and the affine transformations to put the computed Dupin cyclide in the initial Dupin cyclide orthonormal basis.Figure30shows the common curve : all the Dupin cyclides of a one-parameter family are tangent along this curve.
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 2829 Figure 28: Two examples with ring Dupin cyclides (the parameters are given in the table 2). (a) : the texture of the initial Dupin cyclide is glass. (b) : the texture of the initial Dupin cyclide is wood.

  5. Computation of a3 = f (σ 2 , m 2 , σ 3 , m 3 , b 2 ). 6. Computation of b 1 = f (σ 3 , m 3 , σ 1 , m 1 , a 3 ). 7. Computation of a 2 = f (σ 1 , m 1 , σ 2 , m 2 , b 1 ). 8. Computation of b 3 = f (σ 2 , m 2 , σ 3 , m 3 , a 2 ). 9. Computation of a 0 = f (σ 3 , m 3 , σ 1 , m 1 , b 3 ). 10. if a 0 == a 1 then for i from 1 to 3 do Computation of σ a i = σ i + a i m i . Computation of σ b i = σ i + b i m i . return two couples of three points σ a i [
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 303 Figure 30: All Dupin cyclides of the family are tangent along a curve. Index Point Dupin cyclide map Center Radius

Figure 31 :

 31 Figure 31: The two Dupin cyclides are tangent only at three points.

  

  one, σ 11,2 passes through m 2 and one σ 11,3 passes through m 3 . Similarly, we can define two oriented spheres σ 221 and σ 223 tangent to h 2 at m 2 and two oriented spheres σ 331 and σ 332 tangent to h 3 at m 3 .

Table 1 :

 1 Values of the three (M

	Oriented normal vector -→ n i

i ; P i ) i∈

[[1;3]

] couples of oriented contact conditions, figure 27. Each plane P i is defined by the point M i and the vector -→ n i .

table 2 )

 2 

	Figure	(a, c, µ)	Matrix of the transformation	Translation
	28(a)	(10.817, 0.401, 1.316)	         	-0.254 -0.949 0.188 0.962 -0.269 -0.055 0.103 0.167 0.981	         	(-0.697, -0.303, 2.048)
	28(b)	(9.658, 4.125, 5.735)	         	0.965 -0.160 0.208 0.142 -0.985 -0.098 0.221 0.065 -0.973	         	(0.714, 0.310, -2.096)
	29(a)	(11.365, 1.279, 0.230)	         	-0.876 -0.400 0.269 0.396 -0.915 -0.073 0.275 0.043 0.960	         	(-1.044, -0.453, 3.066)
	29(b) (12.1812, 2.623, 1.1661)	         	0.901 -0.245 -0.360 -0.229 -0.960 0.087 -0.370 0.003 -0.929	         	(-1.490, -0.646, 4.374)

Table 2 :

 2 Computation of the Dupin cyclides in the orthonormal basis associated to the initial cyclide.

Algebraic degree three patches have been studied in[Mu] 

the two conics are contained in perpendicular planes; moreover the foci of one are the vertices of the other

The circles A f f (σ, τ) ∩ Λ

, where τ describes Λ 3 (σ), form a foliation of the region ({|L(., σ| ≤ 1} ∩ Λ 4 ) \ {σ ∪ (-σ)} the leaves of which arrive orthogonally on Λ 3 (σ). The arcs cut on these circles by σ and -σ define a projection of ({|L(., σ| ≤ 1} ∩ Λ 4 ) \ {σ ∪ (-σ)} on Λ3 (σ) 

for i from 1 to 3 do

belonging to each brother circle. od else there is no solution.

fi Output: emptyset or a Dupin cyclide tri-tangent to C 0 only at three points.