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Abstract

Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential

geometry, the simplest after planes and spheres. We prove here that, given three oriented contact

conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs

to a codimension one subset, then there is a one-parameter family of solutions, which are all tangent

along a curve determined by the three contact conditions.

1 Introduction

Curved patches have been an important tool in design since the introduction of digital computers in

engineering. Among them triangular Bézier patches are a natural extension of Bézier curves and have a

very elegant mathematical presentation in terms of barycentric coordinates. See Farin´s essay: A History

of Curves and Surfaces in CAGD in the Handbook of Computer Aided Geometric Design [Fa-Ho-Myu]

for a short but informative historical sketch of triangular patches and also chapter 17 of his classical

book [Fa], for a short introduction to the subject and the references therein. Triangular patches are also

useful do reduce the size of a triangulation by replacing sets of planar triangles with approximating

curved triangles. Frequently it is important that a triangular patch interpolates three given points and has

prescribed tangent planes at these points. It is also desirable that patches have the lowest degree possible

and are rationally parameterizable, ideally to be triangular pieces of quadrics. For arbitrary contact

conditions this in general is not possible as observed in [B-H]. The next best thing are patches of Dupin

cyclides which have parametric and algebraic degree less than or equal to four (1). Four sided Dupin

cyclide patches have been introduced by R.R. Martin [Ma1, Ma2] and more recently [D-G-L-M-B] used

rings of Dupin cyclides to join spheres, planes and canal surfaces.

The result of the present article is an essential preliminary step before being able to match G1 patches

of Dupin cyclides along curves which are not characteristic circles.

2 Generalities about Dupin cyclides

Rotating a circle contained in R3 around and axis contained in the plane of the circles we may obtain

three types of surfaces (see fig 1)

- a ring torus when the axis does not intersect the circle

- a surface with one singular point when the axis is tangent to the circle (horn torus)

- a surface with two conical singular points when the axis intersect the circle in two points (spindle

torus).

To obtain a larger, but still geometrically interesting family of surfaces, we consider the image of the

tori of revolution under the action of an element of the Möbius group g ∈ M. For us the Möbius group

acts on R3; wherever the action of g ∈ M is defined, its differential is a similarity. Figure 2 show a Dupin

cyclide with two singular points from the inside of a compact component of its complement in R3.

From the viewpoint of differential geometry, Dupin cyclides are somehow the simplest surfaces after

the planes, spheres, as, on a Dupin cyclide, the two principal curvatures k1 and k2 are constant along

the corresponding lines of curvature (quadrics, from the algebraic viewpoint, may also be considered as

surfaces simpler that Dupin cyclides, although their curvature functions are complicated).

1Algebraic degree three patches have been studied in [Mu]
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Figure 1: The three types of tori of revolution

3 Dupin cyclides as envelopes of spheres

Let us now present a directly conformal definition of the Dupin cyclides as envelopes of very particular

one-parameter family of spheres.

3.1 The space of oriented spheres

The Lorentz quadratic form L on R5 and the associated Lorentz bilinear form L(·, ·), are defined by

L(x0, · · · , x4) = −x2
0
+ (x2

1
+ · · · + x2

4
) and L(u, v) = −u0v0 + (u1v1 + · · · + u4v4).

The Euclidean space R5 equipped with this pseudo-inner product L is called the Lorentz space and

denoted by R5
1
.

The isotropy cone Light = {v ∈ R5
1
| L(v) = 0} of L is called the light cone. Its non-zero vectors are

also called light-like vectors. The light-cone divides the set of vectors v ∈ R5
1
, v < Light in two classes:

A vector v in R5
1

is called space-like if L(v) > 0 and time-like if L(v) < 0.

A straight line containing the origin is called space-like (or time-like) if it contains a space-like (or

respectively, time-like) vector. A subspace through the origin of dimension k is called space-like if its

contains only space-like vectors, time-like if it contains one time-like vector; it will then contain a (k−1)-

cone of light-like vectors. It is called light-like if it is tangent along a generatrix to the light-cone; in that

case, the generatrix direction is the unique light-like direction of the subspace. We will use the same

terminology when affine subspaces are involved.

To get a model E3 of the Euclidean space R3, we need to slice the light cone by an affine light-like

hyperplane (see Figure 3 and, again, [H-J] and [L-W]). Such an hyperplane intersects all the rays of the

cone but one. We refer to this ray as corresponding to the point at infinity of E3 (we get a 3-dimensional

sphere adding a point “∞” to E3).

To each point σ ∈ Λ4 = {v ∈ R5
1
| L(v) = 1} corresponds an oriented sphere or plane Σ = σ⊥ ∩ E3

(see Figure 4). The orientation of Σ determines a component B of E3 \ Σ such that Σ is oriented as the

boundary of B.
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Figure 2: View from the interior of a singular locus
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Figure 3: Euclidean models in the Lorentz space R5
1
.

We can see Λ4 as a sphere for the Lorentz quadratic form; as for the usual Euclidean sphere, the

tangent hyperplane TσΛ
4 is orthogonal to σ (seen as a vector of R5

1
). It is time-like and TσΛ

4 ∩ Λ4 is a

cone of dimension 3 formed of (affine) light-rays. Again tangent vectors at a point σ ∈ Λ4 are of one of

the three types: space, light or time.

Consider the hyperplanes Tσ1
Λ4 tangent to Λ4 at σ1 and T−σ1

Λ4. The intersectionsΛ4 ∩T±σ1
Λ4 are

cones of dimension 3. Depending to the location of the sphere σ2 according to these cones, we can see

if its intersects or not the first sphere Σ1, see Figure 5:

- ifσ2 belongs to the “exterior” of both cones Σ2 intersects Σ1 in a circle; in this case |L (σ1, σ2) | < 1.

- if σ2 belongs to one of the cones, the two spheres are tangent; then |L (σ1, σ2) | = 1.

- if σ2 belongs to the “interior” of one of the cones the two spheres are disjoint; then |L (σ1, σ2) | > 1.

The position of σ in one of the four different parts of the “interiors” of the two cones distinguish

different cases of intersection of the balls B1; Σ1 = ∂B1 and B2; Σ2 = ∂B2. If σ2 is in the “interior” of the

cone Cσ1
of vertex σ1, the balls B1 and B2 intersect. If σ2 belongs to the bottom part of the “interior” of

4
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Figure 4: The correspondence between Λ4 and the space of spheres or planes in E3.

Cσ1
, then B1∩B2 = B1. If it belongs to the upper part, B1∩B2 = B2. If σ2 is in the “interior” of the cone

C−σ1
of vertex −σ1, the balls B1 and B2 are disjoint when σ2 belong to the upper side of the “interior” of

C−σ1
. When σ2 belongs to the lower component, the intersection B1 ∩ B2 is a zone B1 ∩ B2 ≃ S2 × [0, 1]

(see Figure 5).

Notice that the restriction to a space-like vectorial plane Pspace containing the origin is, for the metric

induced from the ambient Lorentz quadratic form, a positive definite quadratic form. We consider it as

the Euclidean structure of P. The intersection of Λ4 with Pspace is, for the metric induced from L on

Pspace, a circle γ ⊂ Λ4 of radius one. The center of this circle is the origin.

The points of this circle correspond to the spheres of a pencil with base circle. The arc-length of a

segment contained in γ is equal to the angle between the spheres corresponding to the extremities of the

arc. This fact can be verified using the formula σ = km + n, where k is the curvature of the sphere Σ

corresponding to the point σ ∈ Λ4 (k=0 if Σ is a plane), m ∈ E3 ⊂ Light is a light-like vector, and n is

the unit vector contained in TmE
3 ≃ R3 normal to Σ (see [H-J] or [L-O] p. 276–278). As m is orthogonal

to n ∈ TmE
3 ⊂ TmLight, we see that L(σ1, σ2) = (n1 | n2) = cosθ, where θ is the angle between n1 and

n2, that is the angle of Σ1 and Σ2.

The intersection of Λ4 with a time-like vectorial plane Ptime is not connected. For an Euclidean eye,

seeing as orthonormal basis a Lorentz “unitary” basis, it is an equilateral hyperbola. We will often still

refer to such a hyperbola as a “circle”. The origin is its center both for an Euclidean eye and with the

Lorentz viewpoint: the Lorentz distance from any point of the hyperbola to the origin is equal to 1. The

points of this “circle” correspond to spheres of a Poncelet pencil or pencil with distinct limit point. The

two light-directions of Ptimecorrespond to the two limit points of the pencil.

The intersection of Λ4 with a light-like plane Plight is the union of two parallel affine light-rays. The

corresponding spheres form a pencil of spheres tangent to the point corresponding to the direction of the

light-rays.

3.2 Intersection of Λ4 with affine planes

In this subsection, P is an affine plane of R5
1
.

5



Figure 5: The two cones Cσ1
and C−σ1

. Case 1: B1 ∩ B2 = B2. Case 2: B1 ∩ B2 = B1. Case 3:

B1 ∩ B2 = ∅. Case 4: B1 ∩ B2 ≃ S2 × [0, 1].

Let us first study the intersection P ∩ Λ4 when P is space-like. The orthogonal projection π(O) of

the origin O on P achieves the minimum value of L(x), x ∈ P. This value η = min(L(x), x ∈ P) maybe

negative, zero or positive.

- If η < 0, the intersection is a circle of radius r larger that one; r2 = 1 − η. We will see (subsection

3.4) that the envelope is a regular Dupin cyclide.

- If η = 0, the circle is of radius 1. Either the plane is a vectorial plane and the spheres corresponding

to the points of γ = Λ4 ∩ P form a pencil, or if P does not contain the origin, the spheres corresponding

to the points of γ = Λ4 ∩ P are tangent to a given direction at a point m. We will see (Subsection 3.4)

that, when P does not contain the origin, the envelope is a Dupin cyclide with a unique singular point.

- If 0 < η < 1, the circle is of radius r less than 1, r2 = 1− η. The spheres corresponding to the points

of γ = Λ4 ∩ P contain two points which are singular point of the envelope (see Subsection 3.4).

- If η = 1, the plane P is tangent to Λ4, and intersects it at one point σ.

- If η > 1, the intersection P ∩ Λ4 is empty.

6



Let us now suppose that P is time-like. The orthogonal projection π(O) of the origin on P is now a

critical point of the function L(x), x ∈ P, but not a minimum. Let us still call η the value η = L(π(O)).

This value is positive, as the vectorial space orthogonal to P is space-like.

- If η = 0, that is if P is a vectorial time-like plane, the intersection γ = Λ4 ∩ P is the equilateral

hyperbola formed of two time-like curves given by the equation L(x, y) = −x2 + y2 = 1, where x and y

are coordinates defined using a Lorentz “orthonormal” basis of two vectors of the plane, one space-like

and one time-like. The corresponding spheres form a Poncelet pencil.

- If 0 < η < 1, γ = Λ4 ∩ P is still a hyperbola formed of two time-like curves. The corresponding

spheres are nested.

- If η = 1, the plane P is tangent to Λ4. The intersection γ = Λ4 ∩ P is the union of two affine

light-rays.

- If η > 1, γ = Λ4 ∩ P is a hyperbola formed of two space-like curves. The corresponding family of

spheres has an envelope which is a surface with two conical singularities. Going to infinity on a branch

of the hyperbola correspond to let the radius of the spheres go to zero; the spheres approach a singular

point of the envelope (see Figure 2).

Finally, suppose that P is light-like. The intersection P ∩ Λ4 is a space-like parabola. The corre-

sponding envelope has a unique singular point. The infimum

in fPL(x), x ∈ P

is well defined, but achieved on an affine light-like line.

3.3 Envelopes of one-parameter family of spheres

A surface is always the envelope of a two-parameter family of spheres. Some particular surfaces: the

canal surfaces, are envelopes of one-parameter family. For a C1 curve γ ⊂ Λ4, that is a one-parameter

family of spheres, to generate a canal surface, an extra condition is needed: the curve should be space-

like, that is its tangent vector should be everywhere space-like. With no special assumption, the envelope

maybe singular.

To guarantee that the canal surface is locally immersed, an extra condition is needed. As the curve

γ is time-like, we can suppose it is parameterized by arc-length, that is L(
.
γ(s)) = 1∀s. the geodesic

curvature vector is the orthogonal projection of the acceleration on the tangent space to Λ4. It satisfies

the formula
→
kg(s) =

..
γ (s) + γ(s).

Figure 6 shows the behavior of the spheres corresponding to a space-like curve with time-like

geodesic curvature in Λ4 and to a time-like curve in Λ4.

Notice that a canal surface is a union of circles, the characteristic circles. They are obtained inter-

secting two spheres, one corresponding to a point σ ∈ γ, the second to the vector
.
γ(σ) tangent to γ at σ.

We can suppose, as the curve γ is space-like, that the vector
.
γ(σ) is a unit vector, that is a point in Λ4

which therefore corresponds to a sphere.

3.4 A presentation of Dupin cyclides as “circles” in Λ4

A Dupin cyclide C is in two different ways the envelope of a one-parameter family of spheres (see [Dar]

and Figure 8). This implies that it has two families of characteristic circles (see Figure 7).

This implies also (see [L-W], pp. 161–168) that the two corresponding curves are “circles” of Λ4,

that is intersection of Λ4 with two affine planes that we call brothers.
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Characteristic circle

space-like path with light-like geodesic curvature

time-like path

Figure 6: Spheres corresponding to space-like and time-like paths.
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Figure 7: A Dupin cyclide and its two families of characteristic; the two brother “circles” in Λ4 are

circles

Definition 3.4.1. The brother affine plane P∗ of an affine plane P intersection of which with Λ4 is space-

like is defined by

P∗ = {y} such that ∀x ∈ P,L(x, y) = −1. (1)

Notice that the brother P∗∗ of P∗ is P.

Remark: The intersection of three four dimensional affine tangent planes Tmi
Λ4, i = 1, 2, 3 at three

points mi ∈ P ∩ Λ4 is the 2-dimensional affine plane P∗

Proof: The affine tangent hyperplane TσΛ
4 toΛ4 at a point σ is orthogonal to R ·σ at σ. It has therefore

the equation L(y, σ) = 1. The condition ∀x ∈ P,L(x, y) = 1 is equivalent to the three conditions

L(y, σ1) = 1, L(y, σ2) = 1, L(y, σ3) = 1, for any choice of three different points on the circle CP =

P ∩ Λ4. �

Equation (1) implies that the brother P∗ of P is orthogonal to P. Moreover, the common perpendicular

δ contains the origin; we can write δ = (p ⊕ p∗)⊥, where p and p∗ are the vectorial planes parallel

respectively to P and P∗. In fact, p∗ is orthogonal to span(P) and p is orthogonal to span(P∗). The line
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Figure 8: The two familly of spheres having a Dupin cyclide as the envelope

δ is also the intersection span(P) ∩ span(P∗). The (vectorial) line δ is time-like when the Dupin cyclide

is regular.

Let CP = P ∩ Λ4 and CP∗ = P∗ ∩ Λ4. The curves CP and CP∗ are the “circles” the points of which

correspond to the two families of spheres defining the Dupin cyclide C as an envelope.

Proposition 3.4.2. The line ℓσ,σ∗ joining a point σ ∈ CP to a point σ∗ ∈ CP∗ is a light-ray contained in

Λ4 orthogonal to CP at σ and to CP∗ at σ∗.

Proof: The curve CP∗ is contained in the cone, of vertex σ, formed of light-rays TσΛ
4 ∩Λ4. Therefore

a light-ray of this cone joins σ to σ∗ ∈ CP∗ .

Let T be a unit vector tangent to CP at σ. It is contained in TσΛ
4, and therefore is orthogonal to σ.

It is contained in p, and therefore is orthogonal to span(P∗), and in particular to σ∗. The vector σ∗ − σ
generating the direction of ℓσ,σ∗ is therefore orthogonal to T . �

The direction of the light-ray ℓσ,σ∗ correspond to the point of the Dupin cyclide C where the two

spheres corresponding to σ and σ∗ are tangent.

When the two brother circles are both Euclidean circles, we can use their angle parameters θ and ψ

to get a parameterization of the regular cyclide in R3 envelope of spheres corresponding to the points of

the circles.

Γd (θ, ψ) =





















x (θ, ψ)

y (θ, ψ)

z (θ, ψ)





















=

























































µ (c − a cos θ cosψ) + b2 cos θ

a − c cos θ cosψ

b sin θ (a − µ cosψ)

a − c cos θ cosψ

b sinψ (c cos θ − µ)

a − c cos θ cosψ

























































(2)

The characteristic circles are given in the parametric equation (2) by a constant value of θ or ψ, see

Figure 7.

The points where the sphere of parameter θ0 is tangent to the sphere of parameter ψ0 is the point of

intersection of the characteristic circle defined by θ = θ0 and ψ = ψ0. The three parameters a, b, c; c2 =

a2 − b2 are associated to the two anticonics2 set of the centers of the spheres of the two families; their

2the two conics are contained in perpendicular planes; moreover the foci of one are the vertices of the other

9



equations are x2

a2 +
y2

b2 = 1;
y2

c2 − z2

c2 = 1. The parameter µ is related with the axis of the pencils of affine

planes which intersect the cyclide along characteristic circles (see [For] and [D-G-L-M-B]).

One can also show that (see for example [L-W] pp. 161–168)

- Any regular Dupin cyclide of R3 is the image by a Möbius map of a torus of revolution.

Using some complex geometry one can prove a classical result (see [Vi]). Regular Dupin cyclides

contain two families of circles which are not characteristic circles: the Villarceau circles. Unlike charac-

teristic circles, where there is only one sphere of the pencil containing the circle which is tangent to the

Dupin cyclide (along the whole characteristic circle), all the spheres of the pencil containing a Villarceau

circle are tangent to the Dupin cyclide at exactly two points, which depend on the sphere.

Figure 9: Torus and Villarceau circles

- Any Dupin cyclide with one singular point is conformally equivalent to a revolution cylinder of R3

completed by the point∞.

- Any Dupin cyclide with two singular points is conformally equivalent to a cone of revolution of R3

completed by the point∞.

Notice finally that Dupin cyclide are algebraic surfaces of degree at most 4.

4 Gluing Dupin cyclides and canal surfaces along a characteristic circle

The previous considerations show that a three-dimensional family of Dupin cyclides are tangent along a

given characteristic circle; they correspond to suitable affine planes containing a given pair σ ∈ Λ4, v ∈
TσΛ

4.

Gluing C0 two smooth space-like arcs γ1 and γ2 with time-like geodesic curvature (see subsection

3.3) in Λ4 such that the tangent vectors at the point where the arcs meet make an angle introduces a piece

of the sphere corresponding to the angular point of the curve. Depending on how the two characteristic

circles corresponding to the two arcs are dispatched on this sphere, the envelope maybe get cuspidal

singularities where the annulus of Dupin cyclide meets the sphere. Considering these two characteristic

circles, we can have three different relative positions: they can meat each other (Figure 10), they can be

tangent (Figure 11), or they can be disjoint (Figure 12). The two canal surfaces and a piece of the sphere

cannot be blended G1 when the two characteristic circles intersect.

10



Figure 10: Two intersecting characteristic circles

Now, let us see how to distinguish these different situations looking at the two arcs in the space of

spheres.

In Subsection 3.1, we explained that the relative position of two spheres Σ1 and Σ2 can be determined

from the position of the two corresponding points σ1 and σ2 in Λ4.

(a) (b)

Figure 11: (a) An example of G1 blend between two canal surfaces along two circles on a sphere without

singularities. (b)The blend using the two other parts of the two canal surfaces form an enveloppe surface

with singularities.
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(a) (b)

Figure 12: (a) Another example without singularities. (b) Another example with singularities.
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Here we are interested in the circles of the sphere Σ. Oriented circles of a sphere form a 3-dimensional

quadricΛ3 ⊂ R4
1
. The construction is the same as the construction of the set of spheres in R3 we presented

in Subsection 3.1.

The circles of Σ are the intersection of Σ with spheres orthogonal to Σ. The corresponding points

of Λ4 are the points of Λ3(σ) = (R · σ)⊥ ∩ Λ4 (see Figure 13). Notice that (R · σ)⊥ is parallel to the

hyperplane TσΛ
4.

Figure 13: Representation of the space of circles on a sphere in Λ4.

We can suppose that the two arcs γ1 : [a1, b1] → Λ4 and γ2 : [a2, b2] → Λ4 are parameterized by

arc-length. The unit vectors
.
γ1(b1) and

.
γ2(a2) are tangent at σ = γ1(b1) = γ2(a2) respectively to γ1 and

γ2 (see Figure 14). Let Γ1 and Γ2 be the corresponding canal surfaces. The “last” characteristic circle C1

of Γ1 and the “first” characteristic circle C2 of Γ2 belong to the same sphere Σ which corresponds to the

common point σ of γ1 and γ2.

The vector
.
γ1(b1) can be seen as a point of Λ4. In fact, it belongs to Λ3(σ). It corresponds to

the sphere orthogonal to Σ along C1. This amounts to say that we also consider the points of Λ3(σ)

as circles of Σ. The points of the two curves
.
γ1(t) and

.
γ2(t) correspond to the derivated spheres

.
Σi(t)

which are orthogonal to the spheres corresponding to the points γi(t); the intersection
.
Σi(t) ∩ Σi(t) is

the characteristic circle of Γi contained in Σi. The two circles are disjoint if the point
.
γ2(a2) is in the

13



“interior” of one of the cones C.
γ 1(b1)

or C−.γ 1(b1)
. Then, we have to determine the “good” part of these

cones, that is to say the side where the points correspond to oriented circles C1 and C2, boundaries of

two discs D1 and D2, D1 ⊂ D2 (that is to say D1 ∩ D2 = D1).

To do that, we will use the geodesic curvature vectors of each of the curves γ1 and γ2 noted
−→
kg1

and
−→
kg2

.

The position of the two pieces of canal surfaces with respect to the sphere Σ associated to σ =

γ1(b1) = γ2(a2) is “good” if the “last” characteristic circles of the end of Γ1 and the “first” characteristic

circles of the beginning of Γ2 project on circles of Σ disjoint from the annulus of Σ bounded by C1 ∪C2.

The projections of the characteristic circles will be the intersection with Σ of the spheres corresponding

to the points of
.
γ1(t) and of

.
γ2(t). The two curves

.
γi(t) are on Λ4 and not in Λ3(σ). As we want to

work in Λ3(σ), we will consider a projection of these curves on Λ3(σ), pro j(
.
γi(t)) = αi(t). Then, the

intersection with Σ of the sphere corresponding to αi(t)) is the circle Σ ∩
.
Σi(t); along this circle, the two

spheres intersect orthogonally.

Consider the point σ and the point
.
γi(t). They corresponds to two spheres which are in a pencil

of spheres with base circle
.
Σi ∩ Σ. In Λ4, the points σ and

.
γi(t) are in a geodesic circle which cuts

orthogonally Λ3(σ) at the point αi(t). This defines the projection wee need 3. Let the curves αi be the

images of the curves γi through this projection. These curves are time-like curves in Λ3(σ). At the

extremities α1(b1) and α2(a2) of these curves, the tangent vectors to α1 and α2 are the geodesic curvature

vectors
−→
kg1

and
−→
kg2

(the geodesic curvature vectors
−→
kgi

are the projections of the vector
..
γ i on TσΛ

4).

First, the oriented circles associated to α1(b1) and α2(a2) where the canal join the sphere Σ are “good”,

if they belong to a pencil of spheres with limit points (time like geodesic curve in Λ4), that is if they are

disjoint. Then we need to be able to join the points α1(b1) and α2(a2) by a time-like curve in Λ3. For

that, the vector
−−−−−−−−−−−→
α1(b1)α2(a2) has to be a time-like vector. Moreover we want to join α1(b1), the end of

the curve α1 to the beginning α2(a2) of the curve α2 by a time-like curve to obtain a curve where the

time-variable x0 is monotonous. Therefore the three vectors
−→
kg1

,
−→
kg2

and
−−−−−−−−−−−→
α1(b1)α2(a2) must be on the

same side of the cone C.
γ 1(b1)

.

Of course if at the extremity of γ1 and at the initial point of γ2 the tangent vectors are the same, the

two canal surfaces are joined (G1) along a characteristic circle.

In particular, suppose that we want to blend a canal surface with a piece of Dupin cyclide along a

characteristic circle. We just have to consider the sphere S 0 of the canal surface containing the blending

circle C0. A point σ ∈ Λ4 and a space-like vector
.
σ tangent at σ to Λ4 determine a circle on the sphere

Σ associated to the point σ. The affine planes containing σ and
.
σ which intersect Λ4 in a space-like

curve determine a Dupin cyclide. To the 3-parameter family of such planes H corresponds a 3-parameter

family of such cyclides. We do not accept the vectorial plane containing σ and
.
σ, as it defines only the

characteristic circle contained in Σ.

Therefore, we get a 3-parameter family of cyclides that can be blended with a canal surface along a

characteristic circle. The figures 15 and 16 show two Dupin cyclides tangent along a characteristic circle.

The family of spheres tangent to a Dupin cyclide along a family of characteristic circles defined by

θ = cte contains two planes. The other family of spheres tangent along the other family of characteristic

circles does not contain any plane. The planes can be seen in Λ4 as the intersection of Λ4 with the hyper-

plane x0 = x4 (see [D-G-L-M-B]). Therefore, we can distinguish the two brother circles (parameterized

3The circles A f f (σ, τ) ∩ Λ4, where τ describes Λ3(σ), form a foliation of the region ({|L(., σ| ≤ 1} ∩ Λ4) \ {σ ∪ (−σ)} the

leaves of which arrive orthogonally on Λ3(σ). The arcs cut on these circles by σ and −σ define a projection of ({|L(., σ| ≤
1} ∩ Λ4) \ {σ ∪ (−σ)} on Λ3(σ)
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Figure 14: Representation of the problem in Λ4; the dotted lines αi(t) are the projections of the curves.
γi(t) on Λ3(σ).

respectively by θ and ψ) using this hyperplane: if the intersection of the hyperplane and the 2-plane con-

taining a brother circle of a cyclide is not empty, it corresponds to the family of spheres tangent to the

cyclide along characteristic circles defined by θ = cte.
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Figure 15: Two parts of Dupin cyclides tangent along a characteristic circle, on each cyclide the charac-

teristic circle is obtained by a constant value of θ in the parametric equation.

Figure 16: Two parts of Dupin cyclides tangent along a characteristic circle, on one cyclide the circle is

obtained by a constant value of θ whereas, on the other cyclide, it is obtained by a constant value of ψ.
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Choosing one more sphere τ ∈ Λ4, the triple σ,
.
σ, τ determines an affine plane H (the point τ cannot

be of the form σ + λ
.
σ as

.
σ is space-like). If the intersection H ∩ Λ is space-like it provides a cyclide

tangent to σ along the circle σ⊥ ∩ .σ⊥ and tangent to τ along a circle. This cyclide may have a singular

point (see Figure 17).

Figure 17: Examples of blend between a canal surface and a plane using a part of Dupin cyclide.

As two pairs (σ,
.
σ) and (τ,

.
τ) are not, in general, contained in an affine plane, one cannot, in general,

join two pieces of canal surfaces by one piece of Dupin cyclide. Using two pieces, the join is possible

(see Figure 18; Boehm [Bo] studies a similar problem directly in R3).

Figure 18: Example of blend between two canal surfaces using two parts of Dupin cyclides.
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5 Contact condition

A contact condition in R3 is a pair, a point m and a plane h contained in the 3-dimension tangent space to

the ambient space, (m, h ⊂ TmR
3). It defines a pencil of spheres: the spheres tangent to h at m. We have

seen that such a pencil is represented by two parallel light-rays, and if we specify the orientation of the

spheres, one light-ray only (see Figure 19).

Two rays, the two orientations One ray, one orientation is chosen

Λ4Λ4

Figure 19: Tangent spheres at a point m

Given a surface M of class C2, the spheres tangent to M at a point m form a light-ray.

The points of Λ4 representing spheres tangent to a surface M is a 3-dimensional set W(M). It is

singular at the osculating spheres which form in general a 2-dimensional set. Let C be a curve drawn

on M, then the points corresponding spheres tangent to M along C form a two-dimensional object W(C)

that we will meet again.

When the surface M is a canal surface (see Subsection3.3), one of the components of the points

representing osculating spheres is the curve γ generating the canal.

Recall that when the surface is a Dupin cyclide, it is in two different ways the envelope of a one

parameter family of spheres. The osculating spheres to the Dupin cyclide are now the two corresponding

curves CP and CP∗ = P∗ ∩ Λ4.

The unit tangent vector
.
σ at a point σ ∈ CP corresponds to a sphere which intersects the sphere Σ

corresponding to σ along a characteristic circle of the cyclide (see Figure 7).

The points corresponding to spheres tangent to the Dupin cyclide C is the union of the lines, which

are light-rays, joining a point of CP to a point of CP∗ . It is a 3-dimensional subset W(C) of Λ4.

Remark:

Given a Villarceau circle Γ ⊂ C we get a map from Γ to the pencil PΓ of spheres of axis Γ, which

maps a point m ∈ Γ to the sphere Σm of the pencil which is tangent to C at the point.

We get a plane hm = TmC = TmΣm ⊂ TmE
3 ⊂ TmLight at each point m ∈ Γ, and therefore a

light-ray ℓm composed of the spheres tangent at m to the cyclide C. The union of these light-rays form a
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surface S contained in Λ4. One can prove that parallel affine hyperplanes orthogonal to δ intersect S in

circles which correspond to a one parameter family of cyclides tangent to C along γ. This result we be a

consequence of our general result Theorem 8.0.2. It can also be proved using complex geometry.

5.1 Three contact conditions

Let us consider three contact data (m1, h1); (m2, h2); (m3, h3), where the three oriented planes h1, h2, h3

are in Tm1
R

3, Tm2
R

3, Tm3
R

3. We will use the three light-rays ℓ1, ℓ2 et ℓ3 in the de Sitter space Λ4 formed

by spheres through m1 and tangent to h1, through m2 tangent to h2, and through m3 tangent to h3 (the

spheres inherit their orientations from the planes h1, h2 or h3).

Remark: Let us consider three points m1,m2,m3 of a Dupin cyclide C. An orientation of the Dupin

cyclide determines the three light-rays ℓ1, ℓ2, ℓ3. Let us replace ℓ1 by −ℓ1. Then C does not satisfying

the new set of three contact conditions. We will later give examples where a cyclide, different from C
satisfies the three contact conditions (see Figure 31).

The dimension of the set of three points on a Dupin cyclide is 15 = 9 + 2 + 2 + 2 (9 is the dimension

of the affine Grassmann manifold of planes in R5
1
, therefore the dimension of the set of cyclides). The

dimension of the set of triple contact conditions in R3 is 15 = 3(3 + 2), as (3 + 2) is the dimension of

the set of pairs (m, a plane direction at m). We may expect that three contacts problems admits a finite

number of solution (or none). The situation is quite different.

We can chose one sphere σi in each light-ray ℓi. This defines an affine plane P. The intersection

P ∩ Λ4 is a curve CP . If this curve CP is space-like, the corresponding envelope is a Dupin cyclide.

In general it does not satisfy the given contact condition, as the characteristic circle Γi contained in the

sphere Σi needs not to contain the point mi corresponding to the light-ray ℓi. If the point mi belongs to

the characteristic circle Γi ⊂ Σi, the cyclide satisfies contact condition at mi and the light-ray ℓi intersects

the brother affine plane P∗.

ℓi

σ1

σ2

σ3

π(O)

π(ℓi)

CP

CP∗

P

Figure 20: The projections of a light-ray ℓi contained in Λ4 when the cyclide satisfies the three contact

conditions

Recall that p denotes the vector space parallel to P, p∗ the vector space parallel to P∗ and δ the line

(p ⊕ p∗)⊥. Let π be the orthogonal projection on P (the kernel is the space p∗ ⊕ δ). For an arbitrary
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choice of σi ∈ ℓi, the light-rays ℓi do not cross P∗. Therefore the projection of a light-ray ℓi in general

does not contain the point π(O) of P, orthogonal projection on P along p∗ ⊕ δ of the origin O of R5
1
, that

we will take as origin of P. If the “‘circle” CP = P ∩ Λ4 defines a cyclide tangent to the three contact

conditions, it does contain the origin, as in this case each of the light-ray crosses C∗
P
= P∗ ∩Λ4 at a point

which projects on the origin π(O). It is not a priori clear that such an affine plane P exists. We will prove

that, to guarantee the existence of an affine plane P = A f f (σ1, σ2, σ3);σi ∈ ℓi the contact conditions

should satisfy a condition. A necessary condition is that the light-rays ℓi should project orthogonally on

P (parallel to p∗ ⊕ δ) into lines containing the origin π(O) of P (see figure 20). More work would be

necessary to prove that the conditions obtained are also sufficient to guarantee the existence of a Dupin

cyclide satisfying the three contact conditions.

We will not perform the computations involved as another, more dynamical, viewpoint will provide

more easily a necessary and sufficient condition which guarantees the existence of a cyclide satisfying

the three contact conditions.

6 Find a Dupin cyclide satisfying three contact conditions

6.1 The homographies pang, pong and ping

In the previous sections, we were dealing with Möbius geometry an the space of oriented spheres. Now

we will need another tool: projective geometry.

An homography Φ : R 7→ R is defined by the formula x2 =
ax1+b
cx1+d

, where a, b, c, d are real numbers

such that det

(

a b

c d

)

, 0. Let us consider the line R as the affine line y = 1 of R2. The invertible linear

map of matrix

(

a b

c d

)

maps the line (O, x1) to the line (O, x2) whenever the fraction x2 =
ax1+b
cx1+d

has a

finite value. It is convenient to write x2 = ∞ when x2 =
ax1+b
cx1+d

is not defined. The image of the point

∞ is the point x2 =
a
b
. In this way we are extending the homographies to continuous bijection of the

projective line P1 = R∪∞ onto itself. The homographies are also characterized by the fact they preserve

cross-ratios.

Notice that, if the invertible linear map of matrix

(

a b

c d

)

exchanges two lines, its matrix in a basis

formed of vectors of these two lines becomes of the form

(

0 b′

c′ 0

)

. Observe that the latter matrix is of

trace zero. Then trace

(

a b

c d

)

was already null. The square of the matrix

(

0 b′

c′ 0

)

is

(

b′c′ 0

0 b′c′

)

.

The corresponding homography is therefore the identity.

Reciprocally, an invertible linear map of zero trace which has no fixed line has eigenvalues of the

form ±ρi, ρ ∈ R+. In the plane endowed with the Euclidean metric such that the basis is orthonormal, it

is the composition of a rotation of angle π/2 or −π/2 and a homothety. The corresponding homography

is therefore an involution exchanging pairs of lines.

Homographies between two affine lines ℓ1 and ℓ2 contained in some vector space R2 are obtained

considering the intersection of these two lines with a pencil of affine hyperplanes P of Rn such that all

the hyperplanes of the pencil are transverse to the two lines; that way we get a map ℓ1 → ℓ2 defined

whenever the hyperplane P ∈ P of the pencil intersects transversally ℓ1 and ℓ2.
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Quadratic hyperboloids of R3 contain two families of lines. Given two lines ℓ1 and ℓ2 of one family,

the lines of the other family provide a homography ϕ : ℓ1 → ℓ2. The proof of the latter fact relies on

classical geometry of quadrics ([Cha]).

It is not surprising that the quadric Λ4 ⊂ R5
1

also provides homographies between disjoint affine

light-rays.

Here we obtain a homography using a contained in Λ4 construction slightly different from the two

mentioned above. The lines ℓ1 and ℓ2 are disjoint affine light-rays contained in Λ4.At each point σ ∈ ℓi,

we consider the affine tangent hyperplane TσΛ
4 to Λ4 at σ. We suppose that the light-ray ℓ2 is not

contained in any of the hyperplanes TσΛ
4. Let us first define the map pang at the points σ1 ∈ ℓ1 such

that Tσ1
Λ4 ∩ ℓ2 , ∅

pang : ℓ1 → ℓ2; pang(σ1) = Tσ1
Λ4 ∩ ℓ2 (3)

Let us call ℓ̂1 = ℓ1 ∪∞ the projective completion of ℓ1 and ℓ̂2 = ℓ2 ∪∞ the projective completion of ℓ2.

We can extend the previous pang map to the projective completions of ℓ1 and ℓ2, and still call it pang,

by

pang : ℓ̂1 → ℓ̂2; pang(σ1) = Tσ1
Λ4 ∩ ℓ2 if Tσ1

Λ4 ∩ ℓ2 , ∅
pang(σ1) = ∞ if Tσ1

Λ4 ∩ ℓ2 = ∅, pang(∞) = limσ→∞Tσ1
Λ4 ∩ ℓ2.

(4)

Proposition 6.1.1. The map pang is a homography.

Proof: Two disjoint light-rays ℓ1 ⊂ Λ4 and ℓ2 ⊂ Λ4 span a 3-dimensional affine space Q which, because

it contains two independent light directions, is time-like. The intersection Q ∩ Λ4 is a 2-dimensional

quadratic hyperboloid Q̃2. The tangent hyperplane at σ1 ∈ ℓ1 to Λ4 intersects Q in the tangent plane at

σ1 to Q̃2; this tangent plane intersects Q̃2 in two lines, ℓ1 and another line ℓ12(σ1). Completing the five-

dimensional space R5
1

in a projective space RP5, Q is contained in the 3-dimensional projective space

Q̂ ≃ RP3, projective completion of Q, and the light-rays ℓi and ℓ12(σ1) are completed into projective

lines ℓ̂i and ℓ̂12(σ1). Consider now a point σ1 ∈ ℓ̂1. In this projective context, let us denote by PT the

projective subspace tangent to a surface contained in a projective space. The intersection ˆ̃Q2 ∩ PTσ1

ˆ̃Q2

contains the two projective lines: ℓ̂1 and ℓ̂12(σ1). The projective line ℓ̂12(σ1) intersects ℓ̂2 at a point

pang(σ1). As the family of lines ℓ̂12(σ1) is the second family of projective lines ruling ˆ̃Q2, using Chasles

work, we see that the map pang is a homography. �

Let us define now two other maps

pong : ℓ2 → ℓ3; pong(σ2) = Tσ2
Λ4 ∩ ℓ3

ping : ℓ3 → ℓ1; ping(σ3) = Tσ3
Λ4 ∩ ℓ1

(5)

As we did for the map pang (see Formula 3 and 4), we can extend the maps pong and ping to the

projective completions ℓ̂2 of ℓ2, and ℓ̂3 of ℓ3 respectively.

6.2 Objects naturally associated to three contact conditions

A circle and six spheres are naturally associated to the situation. Through the three points m1,m2,m3

passes a circle-or-line Γ123 ⊂ R3. Among the oriented spheres tangent to the given oriented plane

h1 ⊂ Tm1
R

3, one, σ11,2 passes through m2 and one σ11,3 passes through m3. Similarly, we can define two

oriented spheres σ221 and σ223 tangent to h2 at m2 and two oriented spheres σ331 and σ332 tangent to h3

at m3.
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m1

m2

m3

Σ112

Γ123

h1

Figure 21: The circle Γ123, the three points m1, m2, m3 and the sphere Σ112 tangent at m1 to the plane h1

6.3 The ping ◦ pong ◦ pang map

In order to turn computations easier, we will chose

- on the light-ray ℓ1, the origin σ112, the point corresponding to the sphere which also contains m2,

- on the light-ray ℓ2, the origin σ223, the point corresponding to the sphere which also contains m3,

- on the light-ray ℓ3, the origin σ331, the point corresponding to the sphere which also contains m1.

We will also chose the light-like vectors mi such that

L(mi,m j) = −1. (6)

Then, in a modelH∩Light of the Euclidean space containing the three points mi, they form an equilateral

triangle inscribed in Γ123 the sides of which are of length 2. We will use the same notation for the points

mi ⊂ R3, and for the light vectors contained in the modelH∩Light (recall thatH is an affine hyperplane

of R5
1
; to chose it is equivalent to the choice of the metric on R3 (see Figure 3)).

Points on ℓ1 are of the form σ1 = σ112 + k1m1, points on ℓ2 are of the form σ2 = σ223 + k2m2 and

points on ℓ3 are of the form σ3 = σ331 + k3m3.

The point pang(σ1), as it belongs to the affine hyperplane Tσ1
Λ4 of equation L(σ1, σ) = 1, has

coordinate k2 solution of the equation

L(σ112 + k1m1, σ223 + k2m2) = 1

Therefore

k2 =
−1 +L(σ223, σ112) + k1L(σ223,m1)

k1

. (7)

In the same way we compute the coordinate k3 of pong(σ2) and k1 of ping(σ3)

k3 =
−1 +L(σ331, σ223) + k2L(σ331,m2)

k2

k1 =
−1 +L(σ112, σ331) + k3L(σ112,m3)

k3

.

(8)
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α1 = L(σ112,m3)

α2 = L(σ223,m1)

α3 = L(σ331,m2)

β1 = −1 +L(σ223, σ112)

β2 = −1 +L(σ331, σ223)

β3 = −1 +L(σ112, σ331)

(9)

Notice also that the four terms αi and βi are conformal invariant of the picture determined by the

three oriented contact conditions.

We have seen that the three oriented contact conditions determine one circle Γ123 and six spheres.

Here we have selected three of the six oriented spheres as origin on the light-rays ℓi. As any pair taken

among the six spheres intersect, the terms βi are of the form −1 + cosθ, where θ is the angle between the

two spheres involved. The term αi is a function of the angle of the circle Γ123 and one of the spheres.

We can now write matrices corresponding to the homographies pang : ℓ̂1 → ℓ̂2, pong : ℓ̂2 → ℓ̂3 and

ping : ℓ̂3 → ℓ̂1

pang =

(

α2 β1

1 0

)

pong =

(

α3 β2

1 0

)

ping =

(

α1 β3

1 0

)

(10)

On Figure 22, σ′
2
= pang(σ1), σ3 = pong(σ′

2
), σ′

1
= ping(σ3), σ2 = pang(σ′

1
), σ′

3
= pong(σ2) and

finally ping(σ′
3
) = σ1.

σ1
σ2

σ3

σ′
1 σ′

2

σ′
3

ℓ1
ℓ2

ℓ3ping pong

pang

Figure 22: ping ◦ pong ◦ pang map

If the oriented contacts are tangent to a cyclide, then the composition ping ◦ pong ◦ pang need to

exchange the two points of intersection of ℓ1 with the brother circles (see Figure 22). A homography

which exchanges two points have to be an involution different from the identity.

The corresponding linear map is, up to a factor c · Id, an involution ofR2. We have seen in Subsection

6.1 that an invertible linear map of R2 induces an involution different from the identity if and only if it

has trace zero.
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The trace of the product ping ◦ pong ◦ pang is

A = α1α2α3 + β3α2 + β2α1 + β1α3 (11)

So we get the necessary condition for the contact conditions to be tangent to a cyclide

A = α1α2α3 + β3α2 + β2α1 + β1α3 = 0 (12)

Remark: It is now natural to replace the whole Lorentz space R5
1

by its projective completion RP5. This

projective space is the space of lines of R6. The 6-dimensional space is now endowed with a definite

quadratic form of signature 2. The intersection of the light-cone of the latter quadratic form an the affine

chart R5
1

is the quadric Λ4. The geometry induced on RP6 by linear isomorphisms of R6 preserving the

light cone is called Lie sphere geometry. A detailed reference is [Ce]. The quadric Λ4 is completed in

a smooth quadric. The lines, hyperplanes and planes are completed into projective lines, hyperplanes

and planes. Therefore the maps pang, pong, ping and their inverses admit projective completions. The

quadric Λ4 is contained in a smooth projective quadric. Therefore the tangent hyperplanes TσΛ
4 to Λ4

when σ goes to infinity on a light-ray have a limit in Λ̂4 ⊂ RP5. The fact the ping◦pong◦pang map is an

involution implies that for any σ1 ∈ ℓ1, such that all the maps pang, pong, ping, pang−1, pong−1, ping−1

and the maps obtained composing up to 6 of the previous maps do not send σ1 “to infinity”, the affine

planes A f f (σ1, pong ◦ pang(σ1), pang ◦ pong ◦ ping ◦ pang(σ1)) and A f f (pang(σ1), ping ◦ pong ◦
pang(σ1), pong ◦ pang ◦ ping ◦ pong ◦ pang(σ1)) are brothers.

For example, let us prove that the ping ◦ pong ◦ pang(σ1) belongs to the intersection Tσ1
Λ4 ∩

Tpong◦pang(σ1)Λ
4 ∩ Tpang◦ping◦pong◦pang(σ1)Λ

4.

- As ping ◦ pong ◦ pang(σ) belongs to ℓ1 it belongs to Tσ1
Λ4.

- As ping ◦ pong ◦ pang(σ1) = ping(pong ◦ pang(σ1)), it belongs to Tpong◦pang(σ)Λ
4.

- As ping◦pong◦pang(σ1) = pang−1(pang◦ping◦pong◦pang(σ)), it belongs to Tpang◦ping◦pong◦pang(σ)Λ
4.

Remark: The cases where one product of less that 6 of the maps ping, pong, pang, ping−1, pong−1, pang−1

send σ “to infinity” can be dealt with using an argument of continuity, extending the maps to ℓ̂1, ℓ̂2 and

ℓ̂3, and using the fact that the tangent hyperplanes TσΛ
4 have a limit when σ goes “to infinity” on a

light-ray, is left to the reader.

It is proved in [L-W] that the brother P∗ of the plane P it enough to is enough to take the intersection

of the tangent hyperplanes toΛ4 at three different points of P∩Λ4 and that the brother P of P∗ is obtained

taking the intersection of the tangent hyperplanes to Λ4 at three different points of P∗ ∩ Λ4. Therefore a

pair σ1 ∈ ℓ1, pang ◦ pong ◦ ping(σ1) ∈ ℓ̂1 determines, when the map ping ◦ pong ◦ pang is an involution

without fixed points, a pair of brother planes.

This give a one-parameter family of cyclides, as the initial point σ1 ∈ ℓ̂1 is arbitrary.

We have proven the following

Theorem 6.3.1. Three contact conditions corresponding to three disjoint light-rays define a one param-

eter family of Dupin cyclides tangent to the three contact conditions if and only if the ping ◦ pong ◦ pang

map constructed from the light-rays is and involution, that is if and only ifA(ℓ1, ℓ2, ℓ3) = 0

7 A geometric interpretation of the admissibility condition

The singular Dupin cyclide generated by the spheres Σ′
113

, Σ′
223

and the point m3 (which is a singular

point of the cyclide) is tangent to the two spheres Σ113 and Σ223. As the brother family of spheres to the

one containing the spheres Σ′
113

, Σ′
223

and the point m3 contains already two spheres containing m3 and
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Σ113

Σ223

Σ′
223

Σ′
113

Σ113

Σ223

m1
m2

m3

Figure 23: The two spheres which define a solution singular at m3

tangent to Σ′
113

, Σ′
223

at m1 and m2, the three points m1,m2,m3 are on the cyclide. Therefore it satisfies

the requirement. The contact condition through m3 tangent to the cone are satisfied. The equationA = 0

guarantees that the admissible conditions containing the first two and the point m3 form a circle, a point

or is empty in P∗(Tm3
R

3), the set of planes of Tm3
R

3. It is therefore the circle of tangent plane to the cone

tangent at m3 to the singular cyclide we found above.

8 The common tangent curve

A particular case of Dupin cyclide which are tangent along a curve which is not a characteristic circle is

provided by complex geometry.

Let Ta,b ⊂ S3 ⊂ C2 be the torus of equations |z1−2 = a2, |z2|2 = b2, z1 ∈ C, z2 ∈ C, a ∈ R, b ∈
R, a2 + b2 = 1. The action of the unit circleU = {eiθ} ⊂ C on C×C globally preserves the sphere S3 and

the torus Ta,b. Its orbit are circles, in particular its orbits contained in Ta,b form one of the families of

Villarceau circles. Consider a sphere Σ tangent to Ta,b at a point m. The orbit of the sphere Σ envelopes

a torus which is tangent to Ta,b along the whole Villarceau circle orbit of the point minTa,b. Using a

stereographic projection on R3, we obtain cyclides tangent along a Villarceau circle (see Figure 24).

Let us show that Dupin cyclides maybe tangent along a more general family of curves.

Theorem 8.0.2. Three contact conditions on a Dupin cyclide determine a homography Φ between the

two conics CP and CP∗. The graph of this homography determines a curve Γ in the cyclide which is

where all the cyclide solutions of the three contacts problem are tangent.

Remark:We accept a contact at a singular point if the plane is tangent to the cone tangent to the cyclide

at the singular point.

The light-rays joining one point of P and one point of P∗ correspond to all contacts conditions

obtained from a point of the cyclideC envelope of the spheres corresponding to the points of CP = P∩Λ4.

Therefore the homography Φ which defines a one-parameter family of light-rays, defines a curve on C.

This curve is of homology class (1,±1) ∈ H1(C) if the cyclide is regular and the generators of the

homology of the cyclide are one characteristic circle in each family.
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Figure 24: Cyclides tangent along a Villarceau circle

Figure 25: A torus and a tritangent cyclide
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Remark: Let us rephrase our results using Lie sphere geometry (see Remark 6.3). The 6-dimensional

space underlying the projective completion of the Lorentz space R5
1

can be endowed with a structure of

Minkowski space of signature (4, 2). Let us consider the coordinates x−1, x0, x1 · · · x4 on R6
2

endowed

with the Minkowski form L̄(x−1, x0, x1 · · · x4) = −x2
−1 − x2

0 + x2
1 + · · · + x2

4; R5
1

is identified with the

hyperplane of equation x−1 = 1 of R6
2
.

We see that the quadric Λ4 ⊂ R5
1
≃ {x−1 = 1} is now contained is the light-cone L̄ight of equation

−x2
−1
− x2

0
+ x2

1
+ · · · + x2

4
= 0. For this pseudo-metric, the 3-dimensional spaces P̄ = span(P) and

P̄∗ = span(P∗) are orthogonal.

The homography Φ is obtained from a linear map F : P̄→ P̄∗ (defined up to a constant factor).

Let now start with a pointσλ ∈ ℓ1 which is a barycentric combination of σ = P∩ℓ1 and σ∗ = P∗∩ℓ1,

σλ = λσ + (1 − λ)σ∗.
We need to prove that all the cyclides of the one parameter family defined changing the initial point

σλ ∈ ℓ1 are tangent to the contact data defined by a light-ray ℓτ joining a point τ ∈ Λ4 ∩ Pσ to the point

Φ(τ) ∈ P∗σ.

For that, let us first remark that the affine planes

Pλ = A f f (σλ, pong ◦ pang(σλ), ping ◦ pong ◦ pang ◦ ping(σλ))

are the intersection of 3-dimensional vector spaces P̄λ of the form P̄λ = {λX + (1 − λ)F(X)}, X ∈ P̄ with

the hyperplane of equation x−1 = 1.

This implies that, if Xτ belongs to the line in R6
2

joining the origin and τ ∈ CP ⊂ {x−1 = 1}, the

intersection of the line joining the origin and the point λXτ + (1 − λ)F(Xτ) with {x−1 = 1} is contained in

the light-ray ℓτ ⊂ {x−1 = 1}. Let us insist: for an arbitrary map Ψ : CP → CP∗ , the points λτ+ (1−λ)Ψ(τ)

would have no reason to be contained in the plane Pλ.

Let
.
τ be a vector tangent at τ to the curve CP ,

.
Φ(τ) a vector tangent at Φ(τ) to the curve CP∗ and

.
τλ a

vector tangent at τλ = f1(λ, τ)τ + f2(λ, τ)Φ(τ) to the curve
.

CPλ . The curve CPλ can be parameterized by

f1(λ, τ)τ+ f2(λ, τ)Φ(τ), τ ∈ CP , therefore
.
τλ is a linear combination of

.
τ,

.
Φ(τ), τ and Φ(τ). This implies

that the light-ray ℓτ is orthogonal to CPλ as
.
τ and

.
Φ(τ), τ and Φ(τ) are all orthogonal to ℓτ (recall that the

light-rays joining the two brother “circles” CP and CP∗ are orthogonal to the tangents to the two brother

“circles” at the points where they intersect them, see Proposition 3.4.2).
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Figure 26: Orthogonal spaces P̄, P̄∗ in R6
2

and a subspace P̄λ ⊂ R6
2

28



9 Algorithms

9.1 Determination of a family of Dupin cyclides

With what precedes, it is very easy to understand how to compute the value of the parameters on the

light-rays, Formula (7), and Formula (8). Notice that the choice of origin on the light-rays which was

convenient for the proofs is not necessary for the algorithm. We can also see that it is not necessary to

impose the conditionL
(

mi,m j

)

= −1, Formula (6).

Remark: With i equals to 1 or 2, let li : t 7→ σi + t mi be a light-ray belonging to Λ4. We suppose that

these lines are disjoint. From the relation L (σ1 + a1 m1, σ2 + b2 m2) = 1, we deduce that,

The point l2 (b2) belongs to the tangent hyperplane Tl1(a1)Λ
4 if we have b2 = f (σ1,m1, σ2,m2, a1)

where f is given by

f : Λ4 × E3 × Λ4 × E3 × R −→ R

(σ1,m1, σ2,m2, a1) 7−→ 1 − L (σ1, σ2) − a1L (m1, σ2)

L (σ1,m2) + a1L (m1,m2)

. (13)

The same function is called to compute the parameters during the ping, pang and pong steps.

In the algorithm 1, we give a method, when the problem has a one-parameter of solutions, to compute

one Dupin cyclide which is tangent to three couples points-planes.

One can note that the condition a0 == a1 is equivalent to the previous conditions : A = 0 or the

composition of the six homographies is the identity.

In the algorithm 1, if we delete the step 3, we obtain a one-parameter family of Dupin cyclides. So,

we can compute the centres Ωa and Ωb of the two circles passing through the two couples of three points
(

σa
i

)

[[1,3]]
and

(

σb
i

)

[[1,3]]
. Each center depends on the parameter a1 and then, using the sign of L (Ωa,Ωa)

or L (Ωb,Ωb), we can determine the type of the Dupin cyclides :

• if L (Ωa,Ωa) = 0 or L (Ωb,Ωb) = 0 then the Dupin cyclide has one singular point ;

• if L (Ωa,Ωa) > 0 then the Dupin cyclide has two singular points ;

• if L (Ωa,Ωa) < 0 then the Dupin cyclide has no singular point ;

The figure 27 shows a favorable case : we take three contact conditions on a Dupin cyclide (each

tangent plane is oriented by the vector normal to the Dupin cyclide), so we are sure to have a one-

parameter family of solutions.

Index Point Mi Oriented normal vector −→ni

i = 1 (7.488, 6.928, 2.044) (−0.2, 0,−0.980)

i = 2 (−9.551, 6.041, 5.028) (0.171,−0.218,−0.961)

i = 3 (0.700,−12, 223, 2.425) (−0.2; 0.693,−0.693)

Table 1: Values of the three (Mi;Pi)i∈[[1;3]] couples of oriented contact conditions, figure 27. Each plane

Pi is defined by the point Mi and the vector −→ni .
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Figure 27: Initialization of the problem with three points belonging to a Dupin cyclide and three planes

tangent to the Dupin cyclide at the previous points, table 1.

Figure 28 (resp. Figure 29) shows two examples with ring (resp. horned) Dupin cyclides.

The table 2 shows the parameters of the Dupin cyclides and the affine transformations to put the

computed Dupin cyclide in the initial Dupin cyclide orthonormal basis.

Figure 30 shows the common curve : all the Dupin cyclides of a one-parameter family are tangent

along this curve.

9.2 Determination of two families of Dupin cyclides

An oriented contact condition can be given by a point and an oriented plane through it, or by a point

and an oriented sphere containing the point. Here, as we start with a cyclide C, it is easier to define a

contact condition (m, TmC) by (m,Σm) where Σm is a sphere tangent at m to C, for example the sphere of

one of the two families defining C containing m. In general, if we change the orientation of one of the

three spheres, the previous conditions is not satisfied. So, we propose an algorithm which permits the

construction of another one-parameter family of Dupin cyclides, algorithm 2.

Figure 31 shows two Dupin cyclides which are tangent only at three points. The green Dupin cyclide

is same as in Figure 27. Its parameters are a = 10, c = 2 and µ = 3.5. We consider he family of the

spheres which are centered on the ellipse. The coordinates of points, centers and the value of the radius

of the spheres are given by Table 3.
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(a) (b)

Figure 28: Two examples with ring Dupin cyclides (the parameters are given in the table 2). (a) : the

texture of the initial Dupin cyclide is glass. (b) : the texture of the initial Dupin cyclide is wood.

The parameters of the other Dupin cyclide are

(a, c, µ) ≃ (12.162, 1.300, 1.605)

the matrix of transformation is




















−0.723 −0.688 0.065

0.690 −0.724 0.010

0.040 0.052 0.998





















whereas the translation vector is

(−0.330,−1.998, 4.214)
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(a) (b)

Figure 29: Two examples with horned Dupin cyclides, the texture of the original (ring) Dupin cyclide is

glass. (the parameters are given in the table 2)

Figure (a, c, µ) Matrix of the transformation Translation

28(a) (10.817, 0.401, 1.316)





















−0.254 −0.949 0.188

0.962 −0.269 −0.055

0.103 0.167 0.981





















(−0.697,−0.303, 2.048)

28(b) (9.658, 4.125, 5.735)





















0.965 −0.160 0.208

0.142 −0.985 −0.098

0.221 0.065 −0.973





















(0.714, 0.310,−2.096)

29(a) (11.365, 1.279, 0.230)





















−0.876 −0.400 0.269

0.396 −0.915 −0.073

0.275 0.043 0.960





















(−1.044,−0.453, 3.066)

29(b) (12.1812, 2.623, 1.1661)





















0.901 −0.245 −0.360

−0.229 −0.960 0.087

−0.370 0.003 −0.929





















(−1.490,−0.646, 4.374)

Table 2: Computation of the Dupin cyclides in the orthonormal basis associated to the initial cyclide.
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Algorithm 1 Computation of tri-tangent Dupin cyclides.

Input: Three (Mi;Pi)i∈[[1;3]] couples of oriented contact conditions where each plane is oriented by a

normal vector.

1. For i from 1 to 3 do computation of mi, representation of the point Mi in the paraboloid E3
od.

2. For i from 1 to 3 do computation of σi, representation of the oriented plane Pi in Λ4
od.

3. Choice of a real number a1.

4. Computation of b2 = f (σ1,m1, σ2,m2, a1), (see Formula (13)).

5. Computation of a3 = f (σ2,m2, σ3,m3, b2).

6. Computation of b1 = f (σ3,m3, σ1,m1, a3).

7. Computation of a2 = f (σ1,m1, σ2,m2, b1).

8. Computation of b3 = f (σ2,m2, σ3,m3, a2).

9. Computation of a0 = f (σ3,m3, σ1,m1, b3).

10. if a0 == a1

then for i from 1 to 3 do

Computation of σa
i
= σi + ai mi.

Computation of σb
i
= σi + bi mi.

return two couples of three points
(

σa
i

)

[[1,3]]
and

(

σb
i

)

[[1,3]]
belonging to each brother

circle.

od

else there is no solution.

fi

Output: emptyset or a Dupin cyclide.
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Figure 30: All Dupin cyclides of the family are tangent along a curve.

Index Point Dupin cyclide map Center Radius

i = 1

















7 + 48
√

2

10
; 4
√

3;

√
3
(

7
√

2 − 4
)

5

















Γ

(

π

4
,−π

2

)

(

5
√

2, 4
√

3, 0
) 7

2
−
√

2

i = 2

















7

10
;
−
√

3
(

7 + 20
√

2
)

5
;

7
√

3

5

















Γ

(

−π
2
,−3π

4

)

(

0,−4
√

6, 0
) 7

2

i = 3 (−9.551, 6.041, 5.027) Γ

(

5π

6
, 4.286

)

(

−5
√

3, 2
√

6, 0
)

±7 +
√

3

2

Table 3: Values of the three points and three spheres (i.e. oriented contact conditions) from the Dupin

cyclide map, figure 31.
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Algorithm 2 Computation of tri-tangent Dupin cyclides.

Input: A Dupin cyclide C0 defined by a family of spheres Σ (t) with t in [0, 2π].

1. Choice of three distinct numbers t1, t2 and t3 in [0, 2π].

2. Choice of two points M1 and M2 belonging to a characteristic circle on the sphere Σ (t1) and Σ (t2)

respectively.

3. Computation of a point M (ψ) belonging to a characteristic circle on the sphere Σ (t3) (the value of

ψ is not known).

4. For i from 1 to 2 do computation of mi, representation of the point Mi in the paraboloid R3
od.

5. Computation of m (ψ), representation of the point M (ψ) in the paraboloid R3.

6. For i from 1 to 3 do computation of σi, representation of the oriented plane Σi in Λ4
od.

7. Choice of a real number a1.

8. Computation of b2 = f (σ1,m1, σ2,m2, a1).

9. Computation of a3 (ψ) = f (σ2,m2, σ3,m3 (ψ) , b2).

10. Computation of b1 (ψ) = f (σ3,m3 (ψ) , σ1,m1, a3 (ψ)).

11. Computation of a2 (ψ) = f (σ1,m1, σ2,m2, b1 (ψ)).

12. Computation of b3 (ψ) = f (σ2,m2, σ3,m3 (ψ) , a2 (ψ)).

13. Computation of a0 (ψ) = f (σ3,m3 (ψ) , σ1,m1, b3 (ψ)).

14. Es = {ψ ∈ [0, 2π[ | a0 (ψ) = a1}.
15. if Es , ∅ then Choice of a number ψ3 in Es.

Computation of m3 = m (ψ3).

for i from 1 to 3 do

Computation of σa
i
= σi + ai mi.

Computation of σb
i
= σi + bi mi.

return two couples of three points
(

σa
i

)

[[1,3]]
and

(

σb
i

)

[[1,3]]
belonging to

each brother circle.

od

else there is no solution.

fi

Output: emptyset or a Dupin cyclide tri-tangent to C0 only at three points.
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Figure 31: The two Dupin cyclides are tangent only at three points.
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10 Conclusion and perspectives

In this paper, when it is possible, we have proposed a method to construct, in the usual 3D Euclidean

space, a one-parameter family of Dupin cyclides which are tangent to three given oriented planes (or

spheres) at three given points. Sometimes, we can obtain another one-parameter family of Dupin cyclides

by changing the orientation of one of the three planes.

To solve the three contacts problem, we have represented the Dupin cyclide in the space of (oriented)

spheres, the quadric Λ4 ⊂ R5
1
. In this space, a Dupin cyclide is defined by two brother circles for the

Lorentz form. Our problem is translated into a dynamical problem involving light-rays of Λ4. The maps

between light-rays are homographies. This indicates that projective geometry may also be involved. That

is why we construct a 6-dimensional space R6
2
, endowed with a quadratic form of signature two. The

Lorentz space R5
1

is the affine subspaceHL of R6
2

of equation x−1 = 1. The light-cone of R6
2

is the cone

on Λ4 ⊂ HL.

The linear maps of R6
2

preserving the cone onΛ4 plays already an important role in our present work.

A deeper understanding will include our work in the frame of Laguerre geometry.

Staying inΛ4, one can notice that both Dupin Cyclides and quadrics are envelopes of spheres forming

a doubly ruled surface, that is a surface filled by two families of geodesics, like the two dimensional

hyperboloid of revolution filled by two families of lines. It would by interesting to know if there are

envelopes of spheres belonging to a doubly ruled surface other than Dupin cyclides, quadrics and their

images by the Möbius group.

We also would like to construct surfaces using 3D triangles made of pieces of cyclides. We hope that

these patches will replace the meshes using planar triangles: the computations should be faster because

we will need fewer triangles, fewer topological informations to connect the triangles. We can remark

that these triangles have a parametric equation and a quartic implicit equation.

Moreover, some particular 3D triangles can have circular edges: the patch is then bounded by two

arcs of characteristic circles and one arc of Villarceau circle. We will study the conditions that contact

conditions picked on a smooth surface should satisfy in order to obtain such a triangular patch of cyclide.

Another possibility is the computation of subdivisions surfaces which have not the same shape: along

a circle arc, it will be possible to join a 3D triangle with a 3D quadrilateral which will be modelized by

a rational quadratic Bézier patch representing a Dupin cyclide patch.

Likely to be more difficult is the construction of such a surface made of patches of cyclide from a

point cloud. A distance functional from the point cloud to the surface should then be constructed4.

Finally Dupin cyclides and the ping ◦ pong ◦ pang map we constructed in this article may become a

useful tool to study the local conformal geometry of surfaces in R3.

References

[Bo] W. Boehm. On cyclides in geometric modeling, Computer Aided Geometric Design 7 (1995),

pp. 1–4 pp. 243–255.
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