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Abstract
In this paper, we introduce a new band selection ap-

proach for the color visualization of spectral images. Un-
like traditional methods, we propose to make a selection
out of a comparison of the saliency maps of the individual
spectral channels. This allows to assess how different they
are in terms of prominent features. A comparison metric
based on Shannon’s information theory at the second and
third order is presented and results are subjectively and ob-
jectively compared to other dimensionality reduction tech-
niques on three datasets, demonstrating the efficiency of
the proposed approach.

Introduction
Spectral imagery consists of acquiring a scene at more

than three different ranges of wavelengths, usually dozens.
Since spectral display devices are yet rare, most of today’s
popular display hardware is based on the tri-stimulus paradigm
[1]. Thus, in order to visualize spectral images, a dimen-
sionality reduction step is required so that only three chan-
nels (Red, Green and Blue for example) can contain most
of the visual information while easing interpretation by
preserving natural colors and contrasts [2].

Tri-stimulus representation of multi/hyperspectral im-
ages for visualization is an active field of research that has
been thoroughly investigated over the past decades. One
of the most common approaches is probably the one re-
ferred to as ”true color”. It can basically be achieved in
two different ways: one consists of selecting the bands at
700nm, 546.1nm and 435.8nm (or the closest) and map-
ping them to the three primaries: R,G and B, respectively.
The other one uses the CMF-based band transformation
[3] (each primary R,G and B is the result of a specific lin-
ear combination of spectral channels in the visible range
of wavelengths). Even though it generally yields a natu-
ral visual rendering, this approach does not take the data
itself into account at all, and thus noise, redundancy, etc.
are not accurately handled.

Another very common approach for dimensionality
reduction is Principal Components Analysis (PCA), which
has been extensively used for visualization purposes. Tyo
et al. [4], investigated PCA for N-to-3 dimensionality re-
duction into the HSV color space. An automatic method
to find the origin of the HSV cone is also proposed in order
to enhance the final color representation. Later, Tsagaris
et al. [5] suggested to use the fact that the red, green
and blue channels, as they are interpreted by the human
eye, contain some correlation, which is in contradiction to
the underlying decorrelation engendered by PCA. For that
reason, the authors proposed a constrained PCA-based
technique in which the eigendecomposition of the corre-

lation matrix is forced with non-zero elements in its non-
diagonal elements. Several other PCA-based visualization
techniques can be found in the literature [6, 7, 8].

In order to alleviate the computational burden of the
traditional PCA, Jia et al. [9] proposed a correlation-
based spectrum segmentation technique so that princi-
pal components are extracted from different segments and
then used for visualization. Other segmented PCA ap-
proaches are investigated in [10] including equal subgroups,
maximum energy and spectral-signature-based partition-
ing.

In [11], Du et al. compared seven feature extraction
techniques in terms of class separability, including PCA,
Independent Components Analysis (ICA) and Linear Dis-
criminant Analysis (LDA). ICA has also been studied by
Zhu et al. [12] for spectral image visualization. They used
several spectrum segmentation techniques (equal subgroups,
correlation coefficients and RGB-based) to extract the first
IC in each segment. The use of different color spaces for
mapping of the PCs or ICs has been investigated by Zhang
et al. [13].

In [2, 14], Jacobson et al. presented a band transfor-
mation method allowing the CMF to be extended to the
whole image spectrum, and not only to the visible part.
They proposed a series of criteria to assess the quality
of a spectral image visualization. Later, Cui et al. [15]
proposed to derive the dimensionality reduction problem
into a simple convex optimization problem. In their pa-
per, class separability is considered and manipulations on
the HSV cone allow for color adjustments on the visual-
ization. More recently, we have proposed a method based
on class-separability in the CIELAB space for improved
spectral image visualization [16].

All the previously presented approaches are band trans-
formation techniques inasmuch as they produce combina-
tions of the original spectral channels to create an en-
hanced representative triplet. As stated earlier, the often
mentioned drawback of this kind of approach is the loss
of physical meaning attached to a channel. That is, if,
initially, a spectral band is implicitly linked to a range
of wavelengths, what can we tell about a combination of
them ? A particular case of band transformation is called
band selection and consists of linearly combining the chan-
nels while constraining the weighting coefficients in the
duet {0, 1}. In other words, the resulting triplet is a sub-
set of the original dataset. By doing this, one preserves
the underlying physical meaning of the spectral channels,
thus allowing for an easier interpretation by the human
end user.

In [17], Bajcsy investigated several supervised and un-
supervised criteria for band selection, including entropy,



spectral derivatives, contrast, etc. Many signal process-
ing techniques have been applied to band selection: Con-
strained Energy Minimization (CEM) and Linear Con-
strained Minimum Variance (LCMV) [18], Orthogonal Sub-
space Projection (OSP) [19, 20] or the One-Bit Transform
(1BT) [21]. Also information measures based on Shan-
non’s theory of communication [22] have been proven to be
very powerful in the identification of redundancy in high-
dimensional datasets. Mutual information was first used
for band selection by Conese et al. [23]. In [24] and [25],
two metrics based on mutual information are introduced
in the context of image fusion evaluation. They measure
how much information is shared by the original and the
reduced datasets. In [26], mutual information is used to
measure the similarity of each band with an estimated
ground truth. Hence, irrelevant bands for classification
purpose are removed. In [27], a normalized mutual in-
formation is used for hierarchical spectrum segmentation.
However, to the best of our knowledge, never has saliency
analysis been used as a means for band-selection-based vi-
sualization. It is nonetheless a very relevant approach to
evaluate the relative informative content of spectral chan-
nels and therefore useful in the context of dimensionality
reduction.

Visual attention modeling is the study of the human
visual interpretation of a given scene. In other words,
which objects/features will first draw attention and why.
This notion is closely linked to the analysis of saliency.
Following early influential work by Treisman et al. [28]
and Koch & Ullman [29], Itti et al. [30] proposed a gen-
eral visual attention model allowing for the computation
of so-called saliency maps, which purpose is to predict
human gaze given a certain scene. This model involves
center-surround comparisons and combinations of three
main feature channels, namely colors, intensity and orien-
tations. More recent work involve for instance the use of
spectral residual analysis [31] or information theory [32].

In this paper, we propose a new strategy for the color
display of spectral images. Our contributions are based
on two main ideas: making use of saliency maps as a
means to compare spectral channels as well as measuring
third-order redundancy by means of a generalization of
Shannon’s mutual information called co-information [33].
Consequently, the following is organized as follows: a first
section tackles the band selection algorithm by defining
a metric called ”Normalized Mutual Saliency” and ex-
plaining the band selection algorithm, while a second part
presents and discusses the results obtained before the con-
clusion.

Saliency maps
From the literature, one can find several ways of com-

puting a saliency map from a color image but one of the
most influential work is the model by Itti et al. [30]. It
is also one of the simplest method and this is why we
have decided to use it in this study. This model is based
on the extraction of so-called conspicuity maps, depicting
the prominence of every single pixel in terms of three dif-
ferent features: color, intensity and orientation (the latter
being analyzed through 4 different angles). In the case
of spectral channels, not only color is not involved, but,
since each channel describes the same scene, the analysis
of orientation conspicuity doesn’t require more than one

channel to be properly achieved. In the end, this step sim-
ply requires the computation of N + 4 conspicuity maps
for the obtention of N saliency maps (N being the num-
ber of spectral channels), each one of them representing
the informative content of an individual spectral channel.
By depicting the locations of strong center-surround dif-
ferences, the thusly obtained saliency maps are a powerful
means to compare spectral channels and are consequently
very suitable for band selection.

Channels comparison
One then has several possibilities to compare saliency

maps, the most simple being a summation of pixelwise eu-
clidean distances. In this study, we have focused on the
use of information measures for they allow for a statis-
tical comparison of random variables (population of pix-
els) while taking into account the relative spatial locations
of pixels. Thus, we introduce a metric simply derived
from Shannon’s mutual information that we will refer to
as ”Normalized Mutual Saliency” (NMS) and which is
defined as follows:

NMS(im1; im2) =
I(s(im1);s(im2))
H(s(im1)+s(im2))

with im1 and im2 any two images of same spatial di-
mensions, s(.) an operator computing the saliency map of
its input andH(.) and I(.; .) being respectively the entropy
and mutual information operators. The normalization is
indeed necessary to allow for the metric to be non-relative,
as it has been suggested for instance in [27].

Since we need three channels to create the final color
composite, we also define the third order NMS, based on
the Co-Information, as defined by Bell [33]:

CI(X;Y ;Z) = H(X) +H(Y ) +H(Z)−H(X;Y )−
H(X;Z)−H(Y ;Z) +H(X;Y ;Z)

then:

NMS(im1; im2; im3) =
|CI(s(im1);s(im2);s(im3))|
H(s(im1)+s(im2)+s(im3))

Other generalizations of mutual information to higher
orders have been proposed in the literature such as Watan-
abe’s total correlation [34] which is defined as the differ-
ence between the sum of marginal entropies and the joint
entropy of the set. However, the main drawback of to-
tal correlation is that it measures both second and third
order, indiscriminately, while giving more weight to the
second order. McGill [35] presented the interaction in-
formation, which is basically the same as co-information,
simply with an opposite sign.

A particularly interesting property of co-information
is that it can take both positive and negative values. In
the ”positive” case, one talks about redundancy, whereas
in the case of negative values, one talks about synergy.
Redundancies are foreseeable from lower orders while syn-
ergies only appear when the set of random variables are
taken together. The synergy case appears when, for in-
stance, I(X;Y |Z) > I(X;Y ) that is, when the knowledge
of Z increases the dependency between X and Y . In order
to explain this particular property, we consider a simple
XOR cell with two binary inputs, X and Y and an output
Z = X ⊕ Y . If we consider the inputs as independent,



the following stands true: I(X;Y ) = 0. If we now intro-
duce the knowledge of Z, we also introduce the underlying
knowledge of the XOR relation linking the three variables.
For instance, if we know that Z = 0, we can deduce that
X = Y , and, by this, we increase the dependency between
the inputs so that I(X;Y |Z) > I(X;Y ). In the case of
spectral images, this principle remains true. The knowl-
edge of one channel can increase the mutual information
between the two others and, in that case, the smaller the
co-information, the higher the shared information. There-
fore, co-information must be as close to zero as possible
in order to minimize the superfluous information.

Band selection
The band selection is performed by first finding the

most dissimilar couple of channels. Instead of an exhaus-
tive an computationally costly search, we propose to use
an algorithm similar to the one used in [20]. A first B1

channel is selected randomly and the one from which it is
the most dissimilar (B2) is sought among the others. The
same procedure is used on B2 to find B3, and so on until
Bi = Bi−2. Algorithm 1 describes the procedure for an
N−bands spectral image.

Algorithm 1 Band selection

i = 0; k = 1; iterations = 0;
randomly choose j ∈ [1..N ];
while (i != k) and (iterations < 20) do

find temp = argmink[NMS(Bj ;Bk)]
i← j; j ← k; k ← temp;
iterations++;

end while

find k = argmin |NSM(Bi;Bj ;Bk)|
{R,G,B} ← sort({Bi, Bj , Bk}) by desc. wavelength

The maximum number of iteration should be set ac-
cordingly to N . For instance, for a 31-bands image, we
have assumed that the algorithm can converge within 20
iterations.

Experiments
Datasets

For our experiments, we used three calibrated multi-
spectral datasets, ranging in the visible spectrum (400-700
nm):

• ”MacBeth” is the well-known MacBeth CC color
calibration target. It contains 31 channels

• ”Sarcophagus” is a 35 bands (400-740nm) multi-
spectral image representing a portion of a 3rd cen-
tury sarcophagus from the St Matthias abbey in
Trier, Germany [36]. It was acquired by means of a 8
channels filter wheel camera ranging only in the vis-
ible spectrum (400-740nm). Reflectance was recon-
structed by means of a supervised neural-network-
based algorithm.

• ”Mural” is a 35 bands (400-740nm) multispectral
image of a 16th century mural painting from the
Brömser Hof in Rudesheim, Germany, acquired with
a rotating-wheel-based multispectral camera.

As a pre-processing step, bands with average reflectance
value below 2% and those with low correlation (below 0.8)

with their neighboring bands have been removed, as sug-
gested in [37].

The main reason why we have chosen these scenes
is because they all include a MacBeth CC target which
facilitates the evaluation of color rendering.

Benchmarking methods
In order to evaluate the performances of our method,

we have selected two other dimensionality reduction tech-
niques for comparison.

• PCAhsv is the traditional Principal Components
Analysis of which components are mapped to the
HSV color space (PC1→ V ;PC2→ S;PC3→ H).

• LP -based band selection has been proposed by Du
et al. [20] and consists of progressively selecting
bands by maximizing their respective orthogonal-
ity. Due to the high memory requirements of this
method, a spatial subsampling of the data is neces-
sary. According to Du et al., the subsampling rate
can be chosen as high as 1:100 (only 1% of the pix-
els are kept) without affecting the results. This rate
has been applied in this study.

Results
Figure 1 depicts the resulting color visualization of

all the images and for the three dimensionality reduction
approaches: PCA, LP and NMS.

It can be seen that the PCA-based method gives the
least appealing results, while LP and NMS give quite sim-
ilar and ”eye-satisfying” images. On the first dataset, one
can notice that the white patch (bottom left) if whiter
in the LP result, but still very discriminable from all the
others in the NMS-based band selection. However, if we
now look at the orange-yellow patch (second row, last one
on the right), it is much more discriminable from the yel-
low one in the result by our method. Similar trends on
the blue/violet patches allows us to assess that our dimen-
sionality reduction method is the one conveying the more
discriminative information (in a perceptual manner).

Furthermore, and in order to objectively compare the
results, we chose to use the MacBeth CC target, present
in each scene and to compare the L*a*b* values of a
set of 480 manually selected pixels (20 by patch) with
the ”ground truth” ones, provided by Gretag, by means
of the CIE76 ∆Eab∗ color difference metric. Dynamics
of the colorspace components have been set as follows:
L∗ ∈ [0..100], a∗ ∈ [−100..100] and b∗ ∈ [−100..100].
With this framework, we aim at an assessment of how ac-
curately the dimensionality reduction method can convey
the high variety of colors from a high dimensional space
to three dimensions. Table 1 gives the minimal, maximal
and average perceptual distances in L*a*b* between the
results and the ”ground truth”. It can be seen that, even
though the LP -based band selection gives slightly better
minimal and maximal errors in two cases, the proposed
approach outperforms it on each dataset, in terms of av-
erage ∆E, and especially on the two last images.

Conclusion
We proposed a new band selection method based on

saliency maps for the dimensionality reduction of spec-
tral image. A simple metric based on information theory
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Figure 1. Different representations for each dataset (first column: PCA, second: LP and third: NMS)

PCAhsv LP NMS

∆Emin
”MacBeth” 8.55 3.36 3.80

”Sarcophagus” 8.56 3.43 0.50

”Mural” 8.38 5.95 2.30

∆Emax
”MacBeth” 86.47 48.39 45.74

”Sarcophagus” 80.42 38.16 38.60
”Mural” 85.63 45.65 35.12

∆E
”MacBeth” 32.30 29.17 28.95

”Sarcophagus” 35.10 17.31 13.86

”Mural” 46.76 19.93 15.42

Colorimetric errors

and called Normalized Mutual Saliency has been intro-
duced and used as a means to compare spectral channels.
Both second and third order versions of this metric have
been considered. Results on three different images have
been subjectively and objectively assessed, proving the ef-
ficiency of the proposed method.
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France in 1999 with a dissertation on colour image acqui-
sition and reproduction, using both colorimetric and mul-
tispectral approaches. He has more than 10 years experi-
ence with industrial and academic colour imaging research
and development, and has co-authored over 100 research
papers within the field. His research interests include var-
ious topics of colour imaging science and technology, such
as device characterisation, gamut visualization and map-
ping, image quality, and multispectral image acquisition
and reproduction. He is a member of IS&T, SPIE, and
the Norwegian representative to CIE Division 8. He has
been with Gjøvik University College since 2001 and is cur-
rently head of the Norwegian Color Research Laboratory.

Yvon Voisin is a full professor of signal and image
processing at the University of Burgundy and is a member
of the Image Processing Group at the Le2i. His research
interests are 3D reconstruction and motion analysis. He’s
also working on the application of artificial vision, espe-
cially in biology. Voisin has a PhD in electronic and signal
processing from the University of Franche-Comté, France.
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