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Savoir estimer ses incertitudes est primordial pour toute entreprise. A ce jour, il n'existe qu'une seule méthode mais deux techniques de calcul sont à notre disposition, à savoir celle du Guide pour l'expression de l'incertitude de mesure (GUM) qui consiste à propager les variances et celle de son Supplément 1 basé sur la simulation de Monte Carlo, c'est-à-dire la propagation des distributions. L'objet de cet article est de faire le point sur ces deux méthodes complémentaires en montrant l'intérêt de la méthode numérique grâce à quelques exemples.

Introduction

Le supplément 1 [JCGM 101:2008] du guide pour l'expression des incertitudes de mesure de 2008 complète le GUM (Guide to the expression of uncertainty in measurement) [JCGM 100:2008] en proposant une nouvelle approche pour l'estimation des incertitudes de mesure. Il concerne la propagation des distributions des variables (paramètres) d'entrée à travers un modèle mathématique du processus de mesure. C'est une alternative pratique du GUM lorsque celui-ci n'est pas facilement applicable, par exemple, si la propagation sur la base du développement de Taylor au premier ordre n'est pas satisfaisante (linéarisation du modèle inadéquate) ou si la fonction de densité de probabilité pour la grandeur de sortie s'écarte sensiblement d'une distribution gaussienne (conduisant à des intervalles de confiance irréalistes). Il fournit donc une approche générale numérique qui est compatible avec l'ensemble des principes généraux du GUM. L'approche s'applique aux modèles ayant une grandeur de sortie unique. Le supplément 2 de 2011 [JCGM 102:2011], non traité ici, est une extension à un nombre quelconque de grandeurs de sortie. Après avoir rappelé le principe de l'estimation des incertitudes par la méthode analytique et les inconvénients de celle-ci, l'article expose le principe de la méthode de Monte Carlo en comparaison avec la méthode analytique. Les contraintes et les inconvénients de cette méthode numérique sont également exposés. Le document est basé sur un maximum d'exemples pour donner accès à cette technique au plus grand nombre de personnes.

Rappels sur le calcul d'incertitudes par la méthode analytique 1.Vers l'estimation des incertitudes par la méthode analytique

Les prémisses du calcul moderne d'incertitudes datent de 1976, il s'agit d'une présentation de Jörg W. Müller dans un séminaire du PTB (le Laboratoire National de Métrologie Allemand). De manière plus formelle, on trouve un article de 1979 cité en bibliographie [START_REF] Muller | Some second thoughts on error statements[END_REF]. Il est clair que l'idée de Müller consiste en particulier à traiter les erreurs systématiques selon la même logique que les erreurs aléatoires. On verra plus loin que l'évolution des idées conduit aujourd'hui à aller vers la suppression pure et simple de Avant la méthode actuelle, on utilisait la méthode dite des « delta » et malheureusement, certains cours récents y font encore référence. L'idée de base est la suivante : Imaginons que l'on mesure 2 grandeurs x et y et que le résultat du processus de mesure s'écrive alors . Cela signifie que lorsque l'erreur sur x est la plus importante, simultanément l'erreur sur y est la plus importante et que cela génère l'erreur sur z la plus importante. Cette vision pessimiste ne s'appuie ici sur aucune justification, c'est juste de la majoration. On peut évidemment manipuler des expressions plus complexes qu'une simple somme. Dans la méthode moderne, on va passer à une approche statistique qui sera plus proche de la réalité. S'il existe une corrélation entre x et y qui justifie la formule des « delta », la méthode statistique peut en rendre compte sans souci en introduisant la covariance adéquate. En même temps que cette approche « au pire », la méthode des « delta » était essentiellement liée à l'instrument en oubliant largement que l'instrument seul n'a jamais produit de résultat. Le résultat est produit par un processus incluant certes l'instrument mais également l'opérateur, l'élément mesuré, la méthode de travail et subissant l'influence de l'environnement dans lequel tout cela est plongé. On peut donc définir la méthode moderne d'évaluation des incertitudes en disant qu'il s'agit d'une théorie scientifique cohérente destinée à traiter de manière similaire les incertitudes liées à la fidélité et celles due à la justesse (notion de raccordement), en s'appuyant sur les outils mathématiques de la statistique et en incluant la totalité du processus de mesure et pas seulement l'instrument.

Présentation de la méthode

Le document de référence est appelé communément GUM pour « Guide to the expression of uncertainty in measurement » en anglais ou « Guide pour l'expression de l'incertitude de mesure » en français. Le GUM peut être téléchargé gratuitement en français ou en anglais sur le site internet, www.bipm.org, du Bureau International des Poids et Mesures (BIPM) [JCGM 100:2008]. La version à jour au moment de l'écriture de cet article est celle de Septembre 2008. Le document JCGM 104 :2009 est une introduction au GUM et aux documents le concernant. La troisième édition du Vocabulaire International de la Métrologie (VIM Ed3), également téléchargeable sur le site internet du BIPM [JCGM 200 :2012], précise au paragraphe 2.26 la définition de l'expression « incertitude de mesure » ; « incertitude : paramètre non négatif qui caractérise la dispersion des valeurs attribuées à un mesurande, à partir des informations utilisées » [r115]. L'idée est moins de définir un intervalle centré sur la valeur mesurée que de définir le résultat de mesure comme une variable aléatoire et le processus de mesure comme un prélèvement. L'incertitude devra être évaluée à partir d'éléments observables, factuels et en tout cas tangibles. Nous préférons le terme « évaluer » ou « estimer » les incertitudes au terme « calculer » les incertitudes car si au coeur du travail, il y a quelques calculs, le fond du problème reste l'idée que l'on va chiffrer un doute. D'ailleurs, la méthode GUM est maintenant largement utilisée dans le domaine de l'évaluation des risques ce qui correspond bien à cette notion de doute. Pour évaluer les incertitudes, dans son paragraphe 8 page 28, le GUM propose une approche en 8 étapes, dans la suite, nous numéroterons ces étapes de GUM1 à GUM8. Ces étapes constituent la partie purement technique voire calculatoire. Il faut néanmoins ajouter deux étapes préliminaires fondamentales, à savoir : la définition du mesurande et l'analyse du processus de mesure. Ces deux étapes sont bien décrites dans tous les supports édités par le LNE (Laboratoire National de Métrologie et d'Essais) en particulier.

Etape préliminaire n°1 : Définition du mesurande

Le paragraphe 2.3 du VIM Ed3 donne pour définition du mesurande : « grandeur que l'on veut mesurer ». L'écriture de ce qui est « votre mesurande » est une étape clé du processus. Elle doit faire l'objet du plus grand soin, elle ne saurait être implicite. Vous devez décrire finement la grandeur à mesurer. Cela inclut presque certainement le fait de préciser les conditions de travail et des grandeurs d'influence telles que la température ou l'hygrométrie. D'ailleurs, le VIM 2008 introduit une nouvelle définition au paragraphe 2.27 celle d'« incertitude définitionnelle : composante de l'incertitude de mesure qui résulte de la quantité finie de détails dans la définition d'un mesurande ». On pourrait donc écrire a contrario que pour éviter l'introduction d'une incertitude définitionnelle, il faut une infinité de détails pour définir le mesurande. Sans aller jusque-là, en mécanique, il est significatif que la norme ISO1 (2002) précise que « la température normale de référence pour la spécification géométrique des produits et vérification est fixée à 20°C ». Il s'agit donc de fixer une grandeur d'influence essentielle, la température. Rappelons qu'une barre d'acier ordinaire d'un mètre de longueur qui passe de 20°C à 21°C s'allonge d'environ 11,5 micromètres, ce qui est évidemment très important. On n'insistera jamais assez sur cette nécessité : il faut définir le mesurande avec d'autant plus de soin et de détails que l'on vise une incertitude faible. 

Calcul des dérivées partielles et linéarité

Dans l'annexe E du GUM, au paragraphe 3.1, on montre comment on passe du développement en série de Taylor au premier ordre à la formule dite de propagation des incertitudes avec covariances ou non. Par définition, cette formule implique d'une part de calculer les dérivées partielles et fait l'hypothèse d'une bonne linéarité locale d'autre part.

Calcul des dérivées partielles à partir d'une fonction

Le calcul des dérivées est a priori toujours possible lorsqu'on a une formulation explicite de la fonction et lorsque cette fonction est différentiable au point considéré, ce qui est le cas la plupart du temps. A contrario, on propose de construire un exemple où cela n'est pas le cas. On considère une poutre parfaite de section constante posée sur deux appuis, on s'intéresse à la flèche maximale sous poids propre. En métrologie dimensionnelle, il s'agit d'un problème classique pour la mesure des rectitudes dans la direction verticale car, dans ce cas, la déformée sous l'effet du poids est une source importante d'incertitudes qu'il convient de minimiser. Dans ce contexte, on remplacera le mot « poutre » par le mot « règle ». La situation est supposée symétrique, c'est-à-dire qu'il existe une égale distance de part et d'autre entre l'extrémité de la règle et le point d'appui le plus proche. Cette règle est uniquement soumise à son poids propre. Le mesurande correspond à la flèche maximale. La position des appuis (supposée symétrique) est l'unique source d'incertitude considérée. Un simple calcul de résistance des matériaux montre que si la règle a une longueur L, la position optimale des appuis (intersection des 2 courbes sur la Figure 3) est de l'ordre de que l'on arrondit à . L'idée du calcul est de calculer la flèche aux extrémités et la flèche au centre. La position optimale des points d'appuis correspond à l'égalité de ces deux flèches. 

Impossibilité de calculer des dérivées partielles

Lorsqu'on on a un processus dans lequel le modèle contient des calculs numériques complexes par exemple une méthode par éléments finis en mécanique, l'expression des dérivées est impossible de manière analytique.

Non-linéarité

Pour faire simple, si on considère une courbe plane décrite par ( ), la dérivée ( ) correspond géométriquement à la pente et l'expression c'està-dire l'espérance mathématique du produit moins le produit des espérances. Analytiquement, la covariance n'est pas toujours aisée à calculer en pratique.

Calcul numérique

Expérimentalement, le nombre d'essais nécessaire pour avoir un résultat correct est prohibitif. On propose le test simple suivant selon une approche type Monte-Carlo. On réalise un tirage dans une population gaussienne de moyenne nulle et d'écarttype égal à 1 de N termes et un second tirage indépendant du premier avec le même nombre de termes. On fait un calcul de la covariance et on répète cette opération 10000 fois. Avec N=10000 termes, la covariance est trouvée nulle (ce qui est théoriquement le cas si le générateur numérique fonctionne correctement) à environ ±2% près. Avec N=30 termes, ce qui est plus proche de ce dont l'on dispose expérimentalement, on trouve la covariance nulle à ±0.4 près ce qui est très significatif. On ne peut guère espérer évaluer les covariances à partir d'un calcul numérique basé sur des résultats expérimentaux. En conséquence, les covariances sont rarement prises en compte dans les calculs.

Exemple

Cet exemple simple à caractère pédagogique est issu d'une formation donnée par le LNE. Il consiste à supposer que l'on dispose d'une cale étalon de 100mm, d'une autre de 30mm et d'une cale de 10mm et des certificats d'étalonnage. On souhaite réaliser un empilage de 110mm (noté C1) et un empilage de 130mm (noté C2) grâce respectivement à la cale de 100mm et à la cale de 10mm ou à la cale de 100mm et à la cale de 30mm. On suppose que l'opération d'empilage n'introduit pas d'incertitude supplémentaire. On s'intéresse à l'incertitude sur les longueurs des empilages. Il est évident que si la même cale de 100mm sert deux fois, ces incertitudes ne sont pas indépendantes. Ensuite, on s'intéresse à l'incertitude sur la différence qui fait 20mm. C'est un peu artificiel mais simple à manipuler. L'idée est de comparer ce qui se passe si on obtient cette longueur de 20mm en faisant une différence entre la longueur de 30mm et celle de 10mm, ces deux longueurs étant indépendantes ou en faisant une différence entre l'empilage de 130mm et celui de 110mm. On dispose donc de trois cales étalon E1, E2, et E3 dont on connait la longueur et l'incertitude-type u, à savoir :

-E1 a une longueur e1 = 10 mm avec une incertitude-type ( )=0,04 µm -E2 a une longueur e2 = 30 mm avec une incertitude-type ( )=0,06 µm -E3 a une longueur e3 = 100 mm avec une incertitude-type ( )=0,1 µm Il est donc possible de déterminer les incertitudes-types cumulées u c (C1) et u c (C2) pour les empilages C1 et C2 [Tableau 1], à savoir : Si maintenant, on refait le calcul de l'incertitude sur D en tenant compte de la corrélation [Tableau 2], on obtient :

- ( )=√ ( ) 2 ( ) 2 = √ 0,0 2 0,1 2 0,1 µm - ( )=√ ( ) 2 ( ) 2 √ 0,06 2 0,1
( )=√ ( ) 2 ( ) 2 ( )= √ 0,1 2 0,1 2 0, µm
Plus simplement, pourrait calculer l'incertitude sur D en repartant directement du certificat d'étalonnage des étalons de 30mm et 10mm, c'est-à-dire : ( )=√u C ( ) 2 u C ( ) 2 0,072 µm.

Calcul de l'incertitude élargie

Le calcul de l'incertitude élargie est essentiel. Elle permet, par exemple, industriellement d'exprimer la capabilité comme le rapport entre l'intervalle de tolérance et l'intervalle d'incertitude. La capabilité constitue un point de repère couramment utilisé pour valider les processus dans l'industrie. L'incertitude élargie constitue l'outil de base dans le cadre de la déclaration de conformité (ISO14253-1). On a déjà dit que dans l'hypothèse de la validation des hypothèses du théorème central limite, le calcul de l'incertitude élargie ne pose pas de problème particulier. On écrit ( ) , ( ) étant l'incertitude-type composée et U étant l'incertitude élargie. Le coefficient d'élargissement k étant choisi égal à 2 ou 3 selon la confiance que l'on pense pouvoir accorder au résultat et à l'usage que l'on en fait. Si les hypothèses du théorème central limite ne sont pas validées, la méthode analytique qui est une méthode de propagation de variances ne nous fournit aucun résultat sur la densité de probabilité du résultat. On est donc complètement démuni.

Les limites de la critique

Les paragraphes ci-dessus ne doivent pas laisser penser que la méthode analytique est une pâle approximation. Dans la pratique voire dans la plupart des cas, la méthode analytique avec la formule au premier ordre donne d'excellents résultats en particulier parce que les incertitudes sont souvent faibles dans le cadre technologique moderne et que les covariances ne sont pas souvent prépondérantes. On peut même aller plus loin. Le théorème central limite dit que lorsqu'on somme des variables aléatoires du même ordre de grandeur, indépendantes ou presque et même de loi de densité de probabilité différentes alors on tend asymptotiquement vers une loi normale. « Asymptotiquement » signifie lorsque le nombre de variables tend vers l'infini, dans la pratique, avec [START_REF] Thierry | Accreditation process in gear metrology to standardized measurands on Coordinate Measuring Machine[END_REF] Elle présente entre autre l'avantage de ne pas faire d'hypothèses sur le modèle de la mesure et elle a vu le jour afin de compléter le GUM lorsque celui-ci n'est pas applicable, contestable ou lorsque l'on ne peut pas calculer les dérivées partielles. Elle permet, par exemple, de contourner les problèmes de non-linéarité (dans ce cas le GUM analytique n'est pas applicable) et permet d'attribuer un niveau de confiance au résultat de l'estimation des incertitudes puisqu'elle permet d'obtenir directement la distribution des valeurs du mesurande caractérisé (grandeur de sortie) à partir des distributions des grandeurs d'entrée (sources d'incertitudes). On peut donc dire que la méthode de Monte Carlo permet de fournir une approximation numérique de la distribution du mesurande et il est alors aisé de déterminer une moyenne et un écarttype.

Quelques exemples permettant de bien comprendre la méthode sont développés dans les paragraphes suivants.

3.1.1 Exemple n°1 : Détermination simple de la valeur de  Considérons un certain nombre de points N total ayant pour coordonnées (x, y) dans un repère cartésien orthonormé direct tel que x et respectivement y sont déterminées par tirage aléatoire dans une loi de densité de probabilité uniforme compris entre 0 et 1. Il est clair que si √ alors le point est à l'intérieur du quart de cercle de rayon 1. En associant à chaque point une surface élementaire et sachant que les points sont équi-répartis, on peut écrire que le rapport du nombre de points à l'intérieur du cercle sur le nombre de points total est dans le rapport des surfaces soit :

( √ )
. En multipliant le résultat par 4 on obtient donc une estimation du nombre .

En terme de programmation, on peut réaliser ceci : On trouve ainsi facilement que la moyenne converge vers 0.83 et que l'écart-type converge vers 0.63



Conclusion sur les exemples

La méthode de Monte Carlo consiste donc à faire des expériences sur ordinateur. On pourrait imaginer qu'au lieu de lancer un dé 1000 fois, on fasse un programme informatique qui simule le tirage d'un entier de 1 à 6 et qu'on le fasse « tourner » 1000 fois. Cette méthode va être adaptée pour le calcul d'incertitudes dans les paragraphes suivants. La méthode de Monte Carlo permet de répondre aux insuffisances de la méthode classique mais elle nécessite une programmation informatique spécifique et des temps de calculs qui peuvent être longs. De la même manière que l'on a été amené à faire une critique de la méthode analytique, on fera une critique de la méthode de Monte-Carlo.

L'estimation des incertitudes selon le supplément 1 du GUM

L'estimation des incertitudes de mesure selon la méthode de Monte Carlo peut se décomposer, comme pour la méthode analytique, en 4 phases, à savoir :

Phase 1 : Description du processus et calcul du mesurande

On a vu que la phase 1 est composée de 5 étapes que l'on peut reprendre intégralement à une différence près, le modèle n'est pas « matérialisé » par une fonction mais par un programme informatique. Lorsqu'on vérifie un calcul analytique, le programme informatique peut résumer à écrire la fonction dans le programme mais dans des cas plus complexe la fonction peut être remplacée par tout un module de calcul voire par un programme incluant des codes lourds comme des calculs par éléments finis.

Phase 2 : Phase « métrologique » -contribution des données d'entrée

La phase 2 correspond à la phase métrologique, elle est très proche de la physique.

Il n'y a pas de différence réelle entre les méthodes sur ce point.

Phase 3 : coefficient de sensibilité et propagation des incertitudes

Le calcul des coefficients de sensibilités n'a pas de sens à ce niveau pour la méthode de Monte-Carlo. Cette étape est remplacée par le fait de faire « tourner » le programme N fois et de stocker les résultats. On fera ensuite une étude statistique des données stockées. Cette étude commence par une phase de visualisation sous la forme d'un chronogramme et d'un histogramme, de la moyenne et de la variance qui sera identifiée au carré de l'incertitude-type composée. On pourra ensuite aller plus loin et particulier en testant des hypothèses sur la nature de la loi de densité de probabilité que l'on vient d'approcher « expérimentalement » (au sens numérique du terme). Typiquement, si on est loin d'une loi gaussienne, on peut se demander s'il y a une erreur (un bug) ou pas. Dans certains cas, c'est parfaitement normal (voir exemple sur la poutre) mais cela mérite de s'interroger).

Phase 4 : incertitude élargie et mise en forme du résultat

Cette phase n'est pas très différente de sa version classique à ceci près que l'on possède un ensemble de valeurs simulées pour le mesurande et que l'évaluation de l'applicabilité du théorème central limite peut être mieux documentée.

Phase 5 : Post-analyse

Cette nouvelle phase n'est pas forcément obligatoire mais permet de savoir quelles sont les sources prépondérantes d'incertitude. Pour ce faire, la méthode la plus simple est de réaliser différentes simulations en ne faisant intervenir à chaque fois qu'une seule source d'incertitude. Une fois ce travail réalisé, il faut dépouiller les résultats et de comparer les résultats de chacune des simulations avec la simulation complète pour voir la part de chacune des sources dans le résultat final en calculant une importance relative. Ces calculs correspondent à celui des importances relatives. Cette façon de faire est très simple mais couteuse en temps de calcul. D'autres méthodes existent pour évaluer les sensibilités en particulier à partir du théorème de Sobol. La Figure 7 est une schématisation simple du principe de la méthode de Monte Carlo pour l'estimation des incertitudes de mesure.

Figure 7 : Schématisation de la méthode pour le calcul des incertitudes

Comparaison de la structure du calcul d'incertitudes selon les deux approches, une approche métrologique unique

La méthode de Monte Carlo présente l'avantage notable de fournir l'histogramme de la grandeur de sortie. Néanmoins, cette méthode contraint le métrologue à valider son programme, à 2 niveaux, tout d'abord au niveau des générateurs de nombres pseudo-aléatoires et des différentes distributions générés mais aussi au niveau de la validation de son modèle informatique de propagation des distributions. Les coefficients de sensibilité ne sont pas calculés obligatoirement mais il est recommandé de le faire afin de pouvoir identifier les sources d'incertitude prépondérantes. La contribution de chacune des composantes d'incertitude n'est donc évaluable qu'en fin de simulation de Monte Carlo alors que pour la méthode analytique cette information est connue dès le départ (résultat du calcul des dérivées partielles). La méthode de Monte Carlo présente également l'avantage de ne pas nécessiter de faire l'approximation linéaire du modèle de mesure. La Figure 8 présente un comparatif sous forme graphique. 

Prise en compte des covariances dans la simulation

Dans les calculs de propagation de variances, les covariances permettent de corriger l'effet de la dépendance entre les variables. Si deux variables aléatoires sont indépendantes alors leur covariance est nulle (mais la réciproque est fausse). Les covariances s'interprètent bien lorsque la dépendance est linéaire. Nous avons vu que la détermination des covariances n'est pas toujours facile. On peut envisager une autre approche particulièrement adaptée aux simulations de Monte Carlo. Cette approche consiste à intégrer les covariances dans le modèle ou plutôt dans le programme informatique décrivant l'expérience. L'idée est donc que celui-ci colle à la physique au plus proche pour prendre en compte directement les covariances.

Reprenons l'exemple des cales étalons du §2. L'exemple de programme ci-dessous n'est pas optimisé en terme de place mémoire informatique.

( 

Calcul des coefficients de sensibilité

Dans le GUM analytique, les coefficients de sensibilité doivent être calculés par dérivation partielle et servent à pondérer chaque source d'incertitudes. Dans la simulation de Monte Carlo, ces coefficients ne sont pas à calculer. Il est par contre intéressant de connaître les paramètres les plus influents dans l'estimation des incertitudes de mesure. Ces coefficients peuvent donc calculés à postériori. Pour ce faire, il suffit d'annuler l'ensemble des sources d'incertitudes sauf une et de refaire le calcul. Ainsi, on peut estimer la part du paramètre considéré sur le résultat. Cette opération est alors à réaliser pour tous les paramètres de la simulation. Si la simulation présente un trop grand nombre de paramètres, il est possible de réaliser un plan d'expérience ou regrouper les sources d'incertitudes que l'on connait comme étant négligeables sur le résultat, afin de gagner en temps de calculs.

Exemple : Considérons un processus possédant 3 sources d'incertitudes indépendantes.

On sait que où c 1 , c 2 et c 3 , représentent les coefficients de sensibilité de chacune des 3 sources d'incertitudes et u 1 , u 2 et u 3 les incertitudestype de chacune de ces 3 sources. Si on veut calculer c1 par exemple, il suffit d'annuler les incertitudes-type des autres paramètres et ainsi l'incertitude obtenue ( ) représentera la part de la source 1 sur le bilan des incertitudes du processus considéré.

Les contraintes de la simulation de Monte Carlo

Temps de calcul

Le temps de calcul est plus ou moins long en fonction de la complexité du processus. De plus, à ce temps, il faut rajouter le temps de programmation, de mise au point mais aussi de validation.

Preuve logicielle

Dans la mesure où la Méthode de Monte Carlo présente un grand nombre d'avantage par rapport à la méthode analytique, on pourrait se poser la question de conserver la méthode standard du GUM. Néanmoins, l'utilisation du Supplément 1 du GUM oblige le métrologue à apporter la preuve logicielle. Il doit savoir prouver que sa simulation est bien représentative de son processus mais aussi que les distributions qu'il a générées sont bien conformes afin d'éviter tout biais de calculs et nécessite souvent un logiciel spécifique comme nous l'avons vu précédemment. La programmation est effectuée en ligne de commandes, ce qui apporte une grande souplesse tout en travaillant avec des échantillons de taille élevée. Néanmoins les risques d'erreurs de programmation sont multiples. La mise en oeuvre de cette méthode est donc beaucoup plus contraignante que la méthode analytique. Dans la mesure où cette méthode est particulièrement recommandée lorsque la méthode analytique n'est pas applicable, il est difficile de réaliser une vérification en réalisant un calcul analytique équivalent. Une solution serait de réaliser une intercomparaison partielle (ISO 5725) afin de valider le programme développé. Sinon, chaque nouveau morceau de programme développé doit être vérifié par des tests. La programmation doit être la plus représentative possible du processus de mesure.

Exemples

Exemple simple de calcul d'incertitudes selon le GUM et selon le Supplément 1

Le texte est largement inspiré la référence [START_REF] Batista | Calibration of micropipettes: Test methods and uncertainty analysis[END_REF] « BATISTA E., PINTO L., FILIPE E. et VAN DER VEEN A.M.H., "Calibration of micropipettes: Test methods and uncertainty analysis", Measurement, 40, 338-342, 2007 » La micropipette ou pipette à piston est destinée à prélever une petite quantité de liquide pour l'intégrer à une autre préparation. La micropipette est utilisée seule ou sous la forme d'un ensemble de plusieurs micropipettes, on parle de micropipette multicanal. Ces instruments sont couramment utilisés en chimie ou en biologie. Il est important de vérifier le volume délivré par la micropipette qui est typiquement de 0,5 µl à 1000 µl (pour donner un ordre de grandeur).

Considérons un volume de 5 µl d'eau. L'eau présente une masse volumique d'environ 1000 kg.m -3 , soit 1 mg.µl -1 . 5 µl d'eau représente donc 5 mg. L'idée de base pour évaluer la micropipette sera d'utiliser une méthode gravimétrique. Nous ne chercherons pas ici à décrire précisément les bonnes pratiques de laboratoires, on pourra consulter la publication citée en référence et les normes ISO4787 et ISO8655.

Les micropipettes sont donc étalonnées par méthode gravimétrique en utilisant l'eau, dont on connait la masse volumique, comme fluide de référence. Cette méthode consiste à déverser le contenu de la pipette à étalonner dans un récipient posé sur une balance et à mesurer la variation de masse. Le volume délivré par la micropipette est déterminé par la relation :

( )( ( ))
dans laquelle :

V 20 est le volume à la température de 20 °C délivré par la pipette (en µl) M est la variation de masse indiquée par la balance (en mg) ρ w est la masse volumique de l'eau (en mg/µl) ρ a est la masse volumique de l'air pendant la mesure (en mg/µl) ρ b est la masse volumique des masses utilisées pour étalonner la balance (en mg/µl) t est la température de l'eau pendant la mesure (en °C) γ est le coefficient de dilatation thermique de la micropipette (en °C-1 ). Celui-ci est généralement donné par le constructeur Cette relation modélise en particulier la correction de poussée d'Archimède tant pour la phase étalonnage de la balance que pour la phase étalonnage de la micropipette.

L'incertitude sur la masse résulte de la combinaison de l'incertitude sur la « calibration » de la balance (δm etal ), la répétabilité de la mesure de masse et de la résolution de la balance (δm res ).

La température est affectée d'une incertitude due à l'étalonnage du thermomètre (δt etal ), cette valeur est fournie par le fabriquant et vaut 0.1°C. On lui affecte une loi de densité de probabilité normale avec k=2.

L'incertitude sur la masse volumique de l'eau ρ w utilisée provient de la norme ISO4787.

L'incertitude sur la masse volumique de l'air ρ A provient de la bibliographie [r1732].

L'incertitude sur la masse volumique des masses ρ B servant à l'étalonnage de la balance provient du dernier chiffre significatif sur la valeur fournie par la norme ASTM E542.

L'incertitude sur le coefficient de dilatation γ provient du fabriquant.

On aboutit au modèle: . Les dérivées partielles sont calculées avec les valeurs des estimations x i . L'application de la formule de propagation sans covariance fournit u c (V 20 )=0,01 µl. Si on prend k=2, on a donc U=0,02 µl.

( ) ( )( ( ))

Méthode analytique

Méthode de Monte-Carlo

En fait, on reprend le tableau mais au lieu de calculer les coefficients de sensibilité et d'utiliser la formule de propagation, on simule les entrées et on calcule V 20 par la formule.

La Figure 9 -Un premier niveau qui permet de simuler les fluctuations possibles de la géométrie de la MMT dans une zone qualifiée métrologiquement. 

Fluctuation des défauts de la machine -Evaluation du premier niveau

Le premier niveau consiste à simuler les évolutions possibles de la machine dans la zone qualifiée métrologiquement. Seuls les défauts dans le plan xy de la machine seront présentés puisque les mesurandes à déterminer sont évalués dans ce plan. Le processus complet d'étalonnage est modélisé et simulé, ce qui permet de relever les évolutions possibles des défauts de justesses, rectitudes, lacet et perpendicularité de la MMT. L'ensemble des paramètres décrivant les causes d'incertitudes est intégré dans une simulation au plus proche du comportement physique de la machine [Tableau 3]. Cette approche permet de tenir compte des covariances issues, par exemple, du comportement de la machine ou de son palpeur mais aussi du fait que la même cale à créneaux permet d'étalonner l'axe X de la MMT et l'axe Y. Les fluctuations obtenues sont majoritairement dues aux phénomènes thermiques.

Les résultats de la Figure 11 correspondent à l'évaluation de la MMT Leitz PMM-C 1000P du CETIM de Senlis (60) au moment de l'accréditation. 
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 22 Etape préliminaire n°2 : Analyse du processus de mesure Les qualiticiens ont développé de nombreuses méthodes pour analyser un processus. En métrologie, la méthode la plus courante est celle dite des « 5M » due à Kaoru Ishikawa. On parle également de diagramme cause-effet. L'idée est de structurer sous une forme visuelle (l'arête de poisson) les différentes sources d'incertitudes en les regroupant sous 5 catégories [Figure1]. Il s'agit de guider la pensée pour ne rien oublier et en même temps de fournir un outil permettant le « remue-méninge ».

Figure 1 :

 1 Figure 1 : Diagramme 5M

Figure 3 :Figure 4 :Figure 5 :

 345 Figure 3 : Courbes d'évolution de la flèche en fonction des points d'appuis et détermination de la distance de posage optimale

  ) car ce sont des variables indépendantes. Par définition, ( ) n'est autre que la variance sur E3.

oFigure 6 : 3 . 1 . 2 1 o 3 . 1 . 3

 63121313 Figure 6 : Graphique correspondant à l'évaluation de la valeur de 

Figure 8 :

 8 Figure 8 : Schéma comparatif de la méthode analytique et de celle de Monte Carlo

  Calcul de l'incertitude composée en appliquant la loi de propagation des incertitudes Evaluation de l'incertitude composée en simulant Monte-Carlo Calcul des coefficients de sensibilité Estimation des covariances Hypothèse concernant l'application du TCL Choix du facteur d'élargissement : k Incertitude élargie U(y) = ±k•u(y) Etude statistique des résultats Choix du facteur d'élargissement : k Incertitude élargie ou intervalle (à 95%, par exemple) Analyse du processus de mesure Diagramme « 5M » Définition du mesurande Modélisation du processus de mesure Analyse du processus de mesure Diagramme « 5M » Définition du mesurande Modélisation « informatique » du processus de mesure Incluant les dépendances Etude a postériori des sensibilités Etude de chaque cause d'incertitude Type d'étude A ou B Type A : étude statistique expérimentale Type B : Choix de la loi de densité de probabilité, estimation de l'incertitude-type Etude de chaque cause d'incertitude Type d'étude A ou B Type A: étude statistique expérimentaleType B: Choix de la loi de densité de probabilité, estimation de l'incertitude-de les utiliser. Cette façon de faire est pénalisante en mémoire pour le calculateur mais permet de ne pas refaire les tirages et de montrer l'influence des covariances de manière simple.

  montre le résultat. L'histogramme « en bâtons » correspond aux valeurs simulées. La ligne continue est une densité de probabilité de moyenne égale à la valeur calculée par la méthode analytique et d'écart-type, l'incertitude-type calculée par la méthode analytique. On voit l'excellente cohérence des deux méthodes et bien que plusieurs entrées soient des lois de densités de probabilité uniforme, le résultat final est bien d'allure gaussienne. C'est une belle illustration du théorème central limite.

Figure 9 : 6 . 2 . 1

 9621 Figure 9 : Comparaison de la simulation de Monte Carlo avec la méthode analytique

Figure 11 :

 11 Figure 11 : Exemple d'évolution de la géométrie de la MMT (Monte Carlo -Niveau 1)

  Figure 12 : Etalons de profils et de division mesurés

Figure

  Figure 13 : Exemple de simulation du fpt des flancs gauches (Monte Carlo, Niveau 2)

  

3 Réflexion sur les étapes préliminaire et les étapes GUM

  L'analyse du processus et la définition du mesurande ne sont pas deux étapes séquentielles et indépendantes. On peut imaginer que l'analyse du processus puisse conduire à une meilleure définition du mesurande. Ainsi, les étapes du GUM peuvent être regroupées en 4 phases, ce qui correspond à une présentation classique très utilisée. On classe les évaluations des incertitudes en deux catégories : le type A et le type B. L'évaluation de Type A de l'incertitude-type est obtenue par l'analyse statistique de séries d'observations. En pratique, le métrologue parle souvent d'étude de répétabilité. Puisqu'on réalise une étude statistique, on obtient au minimum un écarttype et éventuellement, des indications sur la densité de probabilité que l'on peut raisonnablement attribuer aux résultats. L'évaluation de Type B de l'incertitude-type est obtenue par d'autres moyens. On pourra utiliser des éléments issues de la bibliographie, de certificats d'étalonnage, des spécifications du fabriquant voire de ce que l'on nomme pudiquement l'avis de l'expert, ce qui consiste à demander son avis à un pair plus expérimenté. Généralement, on obtient ainsi une dispersion et aucune densité de probabilité. Si on fait l'hypothèse que l'on a affaire à une loi de densité de probabilité uniforme, non parce que cela est physiquement avéré mais parce que cela signe à la fois une grande ignorance et une grande prudence, on pourra alors calculer un écart-type en

	On pourra améliorer la visibilité du graphique en plaçant les causes prépondérantes d'incertitudes proches de l'arête centrale. relatives. On définit ( ) ( ) ( ) , il s'agit donc de la part en variance de la
	variable x i dans l'incertitude-type composée totale. La multiplication par 100 est juste faite pour avoir des pourcentages, ce n'est pas obligatoire. Ce calcul des importances relatives est un outil indispensable pour améliorer le bilan des causes d'incertitudes en identifiant les causes à étudier de manière approfondie en premier ou pour améliorer le processus en identifiant les causes à réduire en priorité. 1.2.4.4 Phase 4 : incertitude élargie et mise en forme du résultat -GUM 7 : « S'il est nécessaire de donner une incertitude élargie U, avec pour 1.2.1.2.4 Les phases incluant les étapes du GUM objectif de fournir un intervalle de y -U à y + U dont on peut s'attendre à ce
	qu'il comprenne une fraction élevée de la distribution des valeurs qui
	1.2.4.1 Phase 1 : Description du processus et calcul du mesurande pourraient être attribuées raisonnablement au mesurande Y, multiplier
	La phase 1 est composée de 5 étapes, à savoir : l'incertitude-type composée u c (y) par un facteur d'élargissement k,
	-Définition du mesurande -Analyse du processus divisant la dispersion par √ . L'hypothèse d'une loi de densité de probabilité uniforme n'est bien sûr pas obligatoire mais il faudra justifier le choix et le passage typiquement situé dans la plage de 2 à 3, pour obtenir U = k.u c (y) »
	-GUM 1 : « Exprimer mathématiquement la relation entre le mesurande Y et les de la dispersion à l'incertitude-type. Cette étape est presque toujours essentielle, sur le plan industriel en particulier. On
	peut toujours essayer de proposer à son client une incertitude-type composée
	-GUM 4 : « Évaluer les covariances associées à toutes les estimations d'entrée comme résultat mais on aura peu de succès. Le fait de fournir un résultat sous la
	Matériel qui sont corrélées ». forme d'un intervalle reste un point clé. Milieu L'idée que le coefficient d'élargissement k puisse être situé entre 2 et 3 est Matière
	Les étapes GUM 3 et GUM 4 constituent la phase « métrologique » par excellence directement liée à un résultat bien connu pour une densité de probabilité gaussienne.
	puisqu'il s'agit d'évaluer la contribution de chaque entrée isolément ou non. Pour une loi normale, 95% de la population se situe dans un intervalle de ±2 écarts-
	type, 99,7% de la population se situe dans un intervalle de ±3 écarts-type. Effet 1.2.4.3 Phase 3 : coefficient de sensibilité et propagation des incertitudes La question est « peut-on considérer la population comme gaussienne ? ».Pour
	Le GUM ne propose pas à ce niveau de calculer les coefficients de sensibilité qui répondre à cette question, il faut vérifier si les hypothèses du théorème central limite
	correspondent aux dérivées partielles de la fonction f vis-à-vis des grandeurs sont vérifiées.
	Main d'oeuvre d'entrée. A l'étape GUM6 on propose un peu directement d'écrire la formule de -GUM 8 : « Donner dans un rapport le résultat du mesurage y avec son Méthode propagation suivante : incertitude-type composée u c (y) ou son incertitude élargie U ». On utilise ici la
	( ) ∑ ( ) règle d'arrondi dite de Gauss. A noter, que dans tous les calculs, les arrondis ( ) n'interviennent qu'à la fin pour ne pas propager d'incertitudes (on pourrait ici
	parler d'erreurs) purement calculatoires				
	Sans corrélation, ou : Ces deux étapes qui consistent à déterminer l'incertitude élargie et à mettre en forme
	le résultat final correspondent à la dernière phase qui met un point final à l'évaluation
	( ) ∑ ∑ des incertitudes.	(	) ∑ ( )	( )	∑ ∑	(	)
	Si l'on tient compte des corrélations.				
	Ainsi, on passe sous silence, comme si elle était toujours triviale, le calcul des
	dérivées partielles. Il n'est donc pas inutile de rappeler à ce niveau qu'il incombe au
	métrologue de faire un peu de calcul de dérivation. On trouve, si nécessaire, sur le
	marché aujourd'hui d'excellents logiciels de calcul formel pour faire cela.		
	-GUM 6 : « Déterminer l'incertitude-type composée u c (y) du résultat de mesure
	y à partir des incertitudes-types et des covariances associées aux estimations
	d'entrée »						
	Le calcul des coefficients de sensibilité et l'utilisation de la formule de propagation
	avec ou sans corrélation constituent une phase très calculatoire et presque
	automatique si toutes les étapes précédentes ont bien été traitées.		
	A ce niveau, on a tous les éléments pour faire une analyse des importances

grandeurs d'entrée Xi dont Y dépend : Y = f(X 1 , X 2 , ..., X N ). La fonction f doit contenir chaque grandeur, y compris toutes les corrections et facteurs de correction qui peuvent contribuer à une composante significative de l'incertitude du résultat du mesurage ». Il s'agit ici de transformer en expression mathématique le processus décrit précédemment pour pouvoir le manipuler numériquement -GUM 2 : « Déterminer xi, la valeur estimée de la grandeur d'entrée Xi, soit sur la base de l'analyse statistique de séries d'observations, soit par d'autres moyens ». -GUM 5 « Calculer le résultat du mesurage, c'est-à-dire l'estimation y du mesurande Y, à partir de la relation fonctionnelle f en utilisant pour les grandeurs d'entrée Xi les estimations xi obtenues à l'étape 2 (GUM2) ».

Les étapes de définition du mesurande, d'analyse du processus, ainsi que les étapes GUM1, GUM2 et GUM5 que nous venons de parcourir peuvent donc être regroupées en une seule phase qui conduit à un processus connu qui fournit un résultat connu. Pour cela, on a décalé l'étape 5 du GUM. Il est vrai que dans la présentation du GUM, il n'est pas indispensable de calculer le résultat si tôt, mais nous pensons qu'il assez naturel de le faire à ce niveau. 1.2.4.2 Phase 2 : Phase « métrologique » -contribution des données d'entrée -GUM 3 : « Évaluer l'incertitude-type u(xi) de chaque estimation xi » Avant d'aller plus loin, il s'agit d'expliciter la notion d'incertitude-type. Mathématiquement, une incertitude-type est un écart-type : pourquoi deux noms pour la même chose. En relisant les premiers articles, on s'aperçoit que l'expression « incertitude-type » est issue de discussions un peu tendues avec les mathématiciens considérant que les métrologues manipulaient les notions issues des statistiques avec une certaine « légèreté ». L'expression « incertitude-type » est issue de la volonté d'affirmer que l'évaluation des incertitudes « c'est de la métrologie, pas des statistiques ». Ceci étant, concrètement, on manipule les mêmes outils.

2 Les limites de la méthode analytique 2.1 Prise en compte des lois de densité de probabilité

  

	densité de probabilité uniforme et la densité de probabilité gaussienne équivalente
	(Figure 2) on voit que le choix de la densité de probabilité n'est pas négligeable. Le
	fait de ne propager que des variances fait perdre cette information, il est donc
	impossible d'évaluer l'impact de ce choix sur la distribution finale. Ceci étant, en
	pratique, supposons que l'on considère la somme de trois variables aléatoires de
	densité de probabilité uniforme entre -1 et 1, la somme présente un écart-type égal à
	1 (à 10 -4 obtenu par simulation numérique). Si on remplace les trois lois uniformes
	par des gaussiennes d'écart-type √	, on trouve que l'écart-type de la
	somme à la même valeur.	
	Figure 2 : Prise en compte de la loi de densité de probabilité uniforme par la méthode
	analytique	
	C'est au moment de calculer l'incertitude élargie que la limite de la notion de
	propagation de variances sera la plus claire.	
	Lorsqu'on pose le problème du choix du coefficient d'élargissement k, si le théorème
	central limite s'applique, on fait l'hypothèse que la densité de probabilité qui
	caractérise l'incertitude finale est gaussienne. On peut alors choisir k en toute
	connaissance de cause. Le problème est que la question de savoir si on peut
	évoquer voire invoquer le théorème central limite est difficile à documenter.
	Si le théorème central limite ne s'applique pas, la situation est encore plus complexe
	mais on manque d'éléments pour avancer puisque l'on ne dispose pas de la loi de
	densité de probabilité.	
	Le fait que la méthode analytique soit une méthode de propagation de variances est
	donc une réelle limite. La simulation apporte réellement un élément nouveau, l'allure
	de la distribution sous la forme d'un histogramme.
	Si on examine la méthode présentée précédemment, il est clair qu'il s'agit d'une
	méthode de propagation de variances. Le problème de la distribution intervient à
	deux niveaux, d'une part, au moment de l'étude du bilan des sources d'incertitudes
	et d'autre part au moment de la détermination de l'incertitude élargie.
	Pour chaque composante, on réalise une étude soit de type A soit de type B.
	Pour le type B, le problème est particulièrement clair. On qualifie une dispersion.
	Faisons l'hypothèse d'une loi de densité de probabilité uniforme, on passe à une
	variance en divisant la dispersion par √ . Cette division par √ est rigoureuse, le
	problème n'est pas là. Imaginons une dispersion uniforme de	soit un intervalle
	(une dispersion) de 2. On calculera un écart-type de √	. Si on compare la

Prise en compte des covariances 2.3.1 Calcul théorique

  Le GUM fournit une expression de la loi de propagation qui tient compte des covariances. Le problème est d'évaluer les covariances. La covariance entre deux variables aléatoires X et Y peut être calculée par

	100 150 200 250 300 2.3 ( Nombre d'observation	)	( )	( ) ( )
	50							
	0							
	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010
				Distance en mm			

( ) correspond à la courbure. Pour poursuivre sur cette interprétation géométrique, on peut donc dire que le fait de ne retenir que les dérivées du premier ordre dans la formule de Taylor est licite lorsque les dérivées du second ordre sont négligeables donc lorsque la courbure est négligeable. Même avec des expressions franchement non linéaires, le problème est souvent de peu d'importance car les incertitudes-types sur les grandeurs d'entrée sont suffisamment faibles, en pratique, pour ne pas provoquer d'effets sensibles. Prenons un exemple. Soit la fonction f(x)=x 5 pour x=1 avec une incertitude sur x caractérisée par une fonction gaussienne d'écart-type 0.01. Un calcul linéaire donne une incertitude-type sur la valeur de f(1) de 0.05 et une valeur simulée identique. Avec une incertitude-type de 0.1 soit 10% de la valeur de x, l'incertitude-type sur la valeur de f(1) est de 0.5 et l'incertitude simulée est de l'ordre de 0.55. Malgré tout, il n'en reste pas moins que la linéarisation aboutissant à la loi de propagation mérite d'être vérifiée lorsque le modèle est non linéaire et les incertitudes fortes.

  Ce résultat est en réalité pessimiste car les deux empilages C1 et C2 ont été réalisés à l'origine avec la même cale E3. Il existe donc une corrélation sur la détermination des longueurs C1 et C2 qu'il faut obligatoirement prendre en compte. Cette covariance peut s'écrire :(

	Etalon	Longueur	u c ²		U(µm)
	C1	110 mm	0,0116		0,11
	C2	130 mm	0,0136		0,12
	Tableau 1 : Tableau initial établi par le métrologue de l'entreprise
	Etalon	Longueur	u²	U(µm)	U (C1,C2)
	C1 C2	110 mm 130 mm	0,0116 0,0136		0,11 0,12	0,01
	Tableau 2 : Tableau présentant la corrélation entre les 2 cales étalonnées
	Si on oublie le fait que les empilages sont fabriqués avec la même cale de 100mm,
	pour déterminer l'incertitude-type sur la différence D de longueur entre les deux
	empilages C1 et C2, on effectue donc la racine carrée de la somme des variances
	cumulées des deux cales C1 et C2, à savoir :		
		( )=√ ( ) 2	( ) 2 =√0,1	2 0,1	2 0,1	µm.
			2 0,1	µm	

3 Simulation de Monte Carlo 3.1 Introduction de la méthode

  ou 6 variables, cela fonctionne déjà remarquablement. Dans un autre ordre d'idée, faisons deux calculs. Le premier calcul, typique d'une incertitude-type composée √ . Pour le second calcul, prenez votre calculatrice et faites varier légèrement les valeurs, par exemple, √ ou bien √ . Tant que les variations sont raisonnablement faibles, l'effet sur le résultat final est très modeste. La rapidité avec laquelle on stabilise la somme d'un nombre raisonnable de variables en termes de loi de densité de probabilité (cela ressemble à une gaussienne) et en termes d'écart-type fait qu'en pratique le calcul classique d'incertitudes donne souvent de bons résultats. Dans ces conditions, pourquoi passer à une simulation de Monte-Carlo lorsqu'un calcul analytique est possible ? Cela permet de vérifier qu'il est suffisant (en particulier au moment de calculer l'incertitude élargie) et de croiser les résultats entre le calcul et la simulation et donc diminuer le risque d'erreur. Reste tous les cas où le calcul analytique n'est pas possible, La deuxième approche pour estimer les incertitudes de mesure est la méthode de Monte Carlo [af600, se4072], utilisée très tôt en métrologie, elle n'a été formalisée dans le Supplément 1 du Guide pour l'estimation des incertitudes de mesure qu'en 2008. Le supplément 1 est également téléchargeable en version anglaise sur le site internet du BIPM [JCGM 101:2008]. Cette méthode est numérique, au lieu de propager les variances, on propage les distributions [FD X07-023].

des résultats de la simulation 4.1 Optimisation du nombre d'itérations

  * Définition du nombre Npt de simulation de Monte Carlo *) Une grande difficulté dans les simulations est donc de prendre en compte les covariances. Or le Supplément 1 du GUM ne fournit un algorithme que pour des variables gaussiennes. Il faut donc prendre en charge celle-ci dans le modèle. Il est ainsi impératif d'intégrer la dépendance entre les variables au niveau du modèle Il faut donc préciser au possible les algorithmes et codages utilisés et vérifier les densités de probabilité mais aussi s'assurer qu'il ne présente pas de corrélation entre les variables, c'est-à-dire qu'il n'existe pas d'« effet mémoire » du tirage sur les suivants et que la période de répétition des nombres aléatoires est suffisante. En résumé, pour tester les générateurs de nombre aléatoire, il est possible d'utiliser des outils logiciels spécialisés, par exemple, SAS  ou Statistica  . Il convient donc également de réaliser des tests d'indépendance des valeurs générées successivement mais aussi de tester la périodicité des séries de valeurs aléatoires ou encore la tendance des valeurs consécutives. ( ), avec m, a, c des entiers où m est choisi le plus grand possible et I 0 est un entier inférieur à m que l'on appelle le germe. Pour obtenir une distribution uniforme comprise entre 0 et 1, il suffit alors de diviser les différents I j par m car le reste de la division est compris entre 0 et m-1. Au niveau du choix logiciel, chacun est libre de choisir selon ses préférences, il faut toutefois vérifier la qualité de génération des nombres aléatoires. Le logiciel Excel est fortement implanté en entreprise, malheureusement le générateur de nombres aléatoires de base ne permet de répondre aux besoins en métrologie. Par contre, il est possible d'acheter Oracle Crystal Ball (Add on Excel) qui répond parfaitement à la demande. Il est également possible de programmer en utilisant les générateurs du logiciel Mathematica  , par exemple, qui sont également de qualité. Dans MATLAB, le générateur de nombre pseudo-aléatoire est basé sur l'algorithme de Mersenne-Twister. Ce générateur possède une très grande période et est donc bien adapté également. Le nombre d'itérations doit être suffisant afin de limiter les erreurs dus à la stabilisation du résultat numérique. Néanmoins, le nombre d'itération ne doit pas être excessif pour ne pas augmenter considérablement le temps de calcul. Néanmoins, la problématique du choix du nombre de tirage est secondaire par rapport aux préoccupations liées notamment à l'analyse du processus, à la quantification des paramètres d'entrée et à la propagation des distributions. En effet, il vaut mieux avoir une incertitude sur le résultat lié au nombre de tirage effectué qu'avoir une erreur lié à l'oubli ou à la génération inconsciente d'une erreur systématique. Le supplément 1 préconise un million de tirage. Il faut donc respecter cette recommandation quand c'est possible mais ce n'est pas une obligation. Le million de tirage est basé sur un coefficient de variation de 10% et une probabilité de 10 -4 . Le coefficient de variation est un écart-type relatif, c'est-à-dire une dispersion relative que l'on exprime en pourcentage et qui est le rapport entre l'écart-type et la moyenne (La moyenne doit évidemment être différente de zéro). Si on note CV le coefficient de variation recherché et p la probabilité souhaitée, on peut considérer que le nombre de tirage nécessaire doit être supérieur à Lorsque le million n'est pas réalisable eu regard du temps de calcul, il est possible de décider par exemple de stopper la simulation lorsque la stabilisation de l'écart-type est compatible avec l'incertitude recherchée. Le supplément 1 du GUM quant à lui préconise plutôt d'adapter le nombre de tirages en fonctions de la dispersion des résultats obtenus. Pour ce faire, le nombre minimum de tirages est fixé à M=20000. On réalise alors 2 simulations à M/2 itérations, soit 10000 itérations. Si les variations constatés entre les 2 simulations sont compatibles (nombre de chiffres significatifs recherché) alors le nombre M de tirage est validé. Dans le cas contraire, on augmente le nombre de tirages et on recommence cette analyse jusqu'à la convergence du résultat. Dans tous les cas, il faudra être extrêmement prudent quant aux conclusions d'autant plus si l'intérêt de la simulation est d'estimer les bornes d'un intervalle de confiance.

	Les générateurs les plus connus sont les suivant :
	-Lehmer (1951),	
	Npt=1000000; (* Constitution d'un tableau contenant l'ensemble des Npt valeurs possibles de la longueur de la cale étalon E1 *) data10= Table[10+RandomReal[NormalDistribution[0,0.00004]],{i,1,Npt}]; (* On réalise de la même façon les 3 tableaux data30 et data100 correspondant aux valeurs possibles des cales de 30 et de 100 mm *) data30= Table[30+RandomReal[NormalDistribution[0,0.00006]],{i,1,Npt}]; data100= Table[100+RandomReal[NormalDistribution[0,0.0001]],{i,1,Npt}]; -Lewis, Goodman et Miller (1969) qui tout en étant simple et particulièrement Exemple : efficace On mesure deux cales positionnées dans une enceinte climatique régulée. Les -Hill-Wichmann (1982) qui est la somme de trois générateurs linéaires multiplicatifs températures relevées sont comprises entre 19.5 et 20.5. Il n'y a aucune raison pour et qui permet d'avoir une période relativement longue très facilement. que les 2 cales varient en température de manière complétement indépendantes. De Pour obtenir une loi normale, en général, on utilise ensuite la transformation de Box-ce fait, en simulation, on considère que la cale 1 à une température T1 comprise Muller (1958) ou la méthode Ziggourat. La méthode de Zigourrat [2] (George entre 19,5°C et 20,5°C et on pose que la température de la cale 2 est à une Marsaglia et Wai Wan Tang) qui est considérablement plus rapide que les autres température T2 = T1 +  où  correspond à une variable d'écart qu'il suffit de chiffrer méthodes pour simuler des variables aléatoires de loi normale mais qui est plus expérimentalement (mesure de la variation de température dans l'espace de temps complexe à implémenter. Cette méthode est relativement bien adaptée lorsque l'on a considéré). besoin de nombres aléatoires en grande quantité.
	Pour tester les distributions, il existe divers tests d'adéquation, dont notamment : (* On réalise de la même façon un autre tirage aléatoire de Npt valeurs possibles de -la droite de Henry la cale de 100 mm que l'on stocke également en tableau noté data1001. Les Deux -le test du  2 , listes de valeurs de la cale de 100 mm, à savoir data100 et data1001 sont donc -le test de Kolmogorov-Smirnov, indépendantes *) -le test de Cramer-von Mises, data1001= Table[100+RandomReal[NormalDistribution[0,0.0001]],{i,1,Npt}]; -le test de Anderson-Darling.
	(* On simule maintenant la mesure de la cale C1 de 100 mm qui est constitué de la
	somme des cales de 10 et de 100 mm *)
	dataC1=data10+data100;	
	(* On fait la même chose pour la cale C2 mais de deux façons différente : *)
	(* La première dataC2 en prenant les mêmes données de la cale de 100 que pour la
	détermination de dataC1, on prend donc data100 en compte pour le calcul *)
	dataC2=data30+data100;	
	(* La seconde façon en prenant les données de data1001 en compte pour la cale de
		100 *)
	dataC21=data30+data1001;	
	(* On simule la mesure de la distance D obtenue par les 2 façons *)
	dataD=dataC2-dataC1;	
	dataD1=dataC21-dataC1;	
	(* On affiche la valeur de la moyenne et de l'écart-type obtenu *)
	Print[''mD = '', Mean[dataD], ''	ETD= '', √Variance[dataD] ]
	Print[''mD1= '', Mean[dataD], ''	ETD1= '', √Variance[dataD ] ]
	On obtient alors mD=mD1=20 mm. et ETD 0,072 µm et ETD1 0,16 µm
	Cette simulation simple permet de montrer l'effet de la covariance sur le résultat. En
	termes d'incertitudes de mesure, les assemblages des cales de 110 et de 130 mm

ne sont pas indépendants car on utilise la même cale de 100 mm. dataC21 qui est la somme des tirages des cales de 30 et du tirage data1001 correspond physiquement à utiliser une autre cale de 100 pour constituer l'assemblage de cales, c'est pourquoi la covariance n'est pas prise en compte dans ce calcul.

3.5 Qualité des générateurs et logiciels

L'estimation des incertitudes de mesure par la méthode de Monte Carlo impose de « simuler des expériences » en utilisant des lois de distributions basées sur des générateurs de nombres aléatoires. La technologie des générateurs n'est pas toujours décrite par l'éditeur du logiciel. La génération de nombres aléatoires est donc une nouvelle difficulté propre à cette méthode qui impose de devoir valider les générateurs des logiciels utilisés afin d'assurer la qualité dans les calculs informatiques.

L'ensemble des calculs reposent sur la génération de nombres suivant une loi uniforme. Or, il existe de nombreuses méthodes pour programmer ces générateurs de nombres aléatoires, mais celles-ci ne sont pas toujours exemptes de biais statistiques. Il n'est donc pas satisfaisant de valider un générateur de nombre aléatoire en précisant uniquement que ce générateur linéaire est basé sur la congruence. Les modèles paramétriques de densités de probabilités à un (uniforme) ou deux paramètres (moyenne et écart type pour la loi normale) pour réaliser ces simulations numériques doivent donc être vérifiés. Les méthodes statistiques dites paramétriques ne sont pas très robustes et peuvent si le modèle choisi n'est pas raisonnable, conduire à des résultats erronés.

Les générateurs linéaires basés sur la congruence sont les plus rencontrés et sont suffisants pour les besoins de calculs en termes d'incertitudes de mesure mais nécessitent une programmation optimisée afin de garantir de longues périodes. Pour générer n nombres aléatoires ( { }), il suffit de calculer :

4 Analyse

  Le Tableau 3 fournit quasiment la réponse finale. L'analyse du processus ayant été fait et un modèle déduit, il reste à calculer les dérivées partielles, par exemple ce qui ne présente pas de difficulté. On retrouve les valeurs après application numérique dans le tableau, par exemple :

	Variable X i	Estimation	Distribution Incertitude-	Coefficient	Contribution
		x i		type u(x i )	de	c i . u(x i )
					sensibilité c i	
	M(mg)	5.033	normale	0.0088	1.	0.0088
	δm res (mg)	0.	uniforme	0.001/√	1	0.00029
	δm etal (mg)	0.	normale	0.005	1	0.005
	t (°C)	19.5		0.		
	0. ρ w (mg.µl -1 ) 0.9983 δt cal (°C) ρ A (mg.ml -1 ) 0.0012 ρ B (mg.µl -1 ) 7.96 γ (°C -1 ). 0.000240	normale uniforme uniforme uniforme uniforme	0.05 0.0000116 0.000061 0.0346 0.0000289	-0.0012 -5.02 4.39 9.6*10 -8 -2.51	-0.00006 -0.000058 0.00027 3.3*10 -9 -0.0000725
			Tableau 3 : Sources d'incertitudes	

géométrie de la machine Ecarts dus à la machine Ecarts Mesurés sur la pièce mesurée Système de palpage Dilatation de la pièce Etat de surface Prise de référence … Calcul des mesurandes Etude Statistique Incertitudes sur les mesurandes +

  Ce niveau correspond à la modélisation de la phase d'étalonnage de la MMT. Les différents défauts de la machine sont estimés via le modèle dit du corps solide en petits déplacements. Les techniques expérimentales ont été particulièrement soignées et des procédures automatiques sont prévues pour éviter toute erreur liée à l'opérateur. Une estimation complète des incertitudes sur l'estimation des défauts de la machine est donc effectuée. La traçabilité et le raccordement aux Unités SI sont donc réalisés, lors de cette phase de détermination de la géométrie de la machine. En effet, la MMT est raccordée aux étalons nationaux par une chaîne ininterrompue de raccordement successifs (via une cale à gradins étalonnée par le LNE) dont on maîtrise les incertitudes.-Le second niveau permet de réaliser l'estimation des incertitudes sur les mesurandes considérés, c'est-à-dire la phase d'utilisation de la MMT. Cette décomposition en 2 niveaux permet donc de se rapprocher au plus près de la physique de la mesure. Un avantage supplémentaire de cette méthode d'évaluation des incertitudes à deux niveaux est de permettre un gain notable de temps de calculs. En effet, lors d'une nouvelle évaluation, on peut récupérer les résultats du premier niveau. La source 2 correspond à la répétabilité de la machine qui est déterminée expérimentalement. -La source 3 correspond à l'état de surface de la règle qui est utilisée pour estimer les défauts de rectitude de la machine. L'état de surface de celle-ci est relevé par un profilomètre mécanique. Le RΔq du profil est relevé. Ce paramètre correspond aux pentes moyennes du profil de rugosité. Le RΔq est ensuite multiplié par l'erreur de poursuite de la commande numérique de la machine. -Les sources 4 et 5 sont issues du procès-verbal d'étalonnage de la cale à gradins utilisées (PV LNE sous accréditation COFRAC). -La source 6 correspond à l'incertitude liée aux variations du coefficient de dilatation de la cale à gradin (valeur standard). -Les sources 7 et 8 correspondent aux déformations en rectitude de la machine sous l'effet des gradients de température (déformation des marbres). Les variations de températures ont été mesurés sur plusieurs mois et analysés afin d'estimer ces gradients thermiques et les déformations des marbres sont alors estimées (déformations paraboliques). Les flèches calculées sont les paramètres retenus. -Les sources 9 à 12 correspondent aux erreurs liées aux prises de température, tel que :  La source 9 est l'erreur liée aux fluctuations de température entre la surface de la pièce et le coeur de celle-ci (diffusion de température au sein du matériau).  Les sources 10 et 11 sont les erreurs de justesse de la sonde de contact et des sondes de température de la machine.  La source 12 correspond aux erreurs liées à la résolution et à la répétabilité des prises de température. -Les justesses et les rectitudes de la machine sont obtenues expérimentalement (méthode de retournement de la règle pour les rectitudes et mesure de cale à gradins pour les autres défauts). Ces défauts de la machine sont interpolés par un polynôme de degré 3. Les résidus d'interpolation sont pris en compte par distributions gaussienne de moyenne nulle (sources 13 et 14). -Les sources 15 à 18 concernent la tête mesurante de la machine. Celle-ci présente un défaut qui est fonction de la calibration (source 17). Ce défaut est modélisé, les paramètres sont l'amplitude (source 15) et la phase (source 16) de celui-ci. La répétabilité et la résolution de la tête mesurante sont également prises en compte (source 18). -Les sources 19 à 22 concerne les défauts liés à la pièce mesuré elle-même, à savoir l'incertitude sur la connaissance du coefficient de dilatation (source 19), sur l'état de surface de celle-ci (source 20) et les erreurs sur la prise de référence suivant respectivement les axes X et Y (sources 21 et 22).

				Niveau
	N°	Description des sources d'incertitude et type d'évaluation	Type de distribution	du Monte
				Carlo
	1 Résolution de la machine	B Uniforme	1 et 2
	2 Répétabilité de la machine	A Gaussienne	1 et 2
	3 Etat de surface de la règle de rectitude	A Gaussienne	1
		Incertitudes cale à gradins (PV LNE)		
	4  Terme constant	B Gaussienne	1
	5  Terme proportionnel	B Gaussienne	1
	6  Coefficient de dilatation linéique	B Uniforme	1
		Variations de température		
		 Bilames rectitudes -Déformation parabolique :		
	7	 Flèche au centre en rectitude X	B Uniforme	1
	8	 Flèche au centre en rectitude Y	B Uniforme	1
		 Prises de température (liés aux sondes thermiques) :		
	Figure 10 : Descriptif de la méthode de monte Carlo à 2 niveaux 6.2.2 Mise en place -sources d'incertitude Le Tableau 3 présente les différentes sources d'incertitudes considérées. Ce sont donc les paramètres de cette simulation de Monte Carlo à deux niveaux. La dernière colonne précise dans quel niveau du Monte Carlo les sources d'incertitude sont prises en compte. Nous ne donnons pas ici les valeurs caractéristiques des distributions correspondantes pour des questions de confidentialité. Néanmoins, une explication complémentaire pour la détermination et de la prise en compte des sources est donné ci-dessous : -La source n°1 concerne la résolution de la machine. Celle-ci est donnée par le fabricant, Hexagon Metrology, (Machine Leitz PMM-C 1000P). Incertitudes associées à la Monte Carlo N 1 Monte Carlo N 2 9  Variation température matériau (coeur/surface) B Uniforme 1 et 2 10  Justesse de la sonde de contact B Uniforme 1 et 2 11  Justesse sondes machine B Uniforme 1 et 2 12  Résolution/répétabilité prises de température B Uniforme 1 et 2 Résidus de correction des défauts de la machine 13  De justesse et de rectitude A Gaussienne 2 14  De lacet et perpendicularité A Gaussienne 2 Tête mesurante  Incertitudes liés au palpage de la sphère de calibrage : 15  Amplitude du défaut B Uniforme 2 16  Phase du défaut B Uniforme 2 17  Incertitude sur le calibrage (sphère de référence) B Gaussienne 2 18  Résolution + Répétabilité B Gaussienne 2 Master d'engrenage (pièce) 19  Incertitude coefficient de dilatation linéique B Uniforme 2 20  Etat de surface A Gaussienne 2 21  Erreur prise de référence suivant X B Gaussienne 2 22  Erreur prise de référence suivant Y B Gaussienne 2 -Caractérisation et Tableau 4 : tableau des paramètres de la simulation à 2 niveaux

6.3 Cas des processus intégrant des calculs complexes et longs La

  13 : Exemple de simulation du fpt des flancs gauches (Monte Carlo, Niveau 2) Au niveau de l'affichage des résultats, pour chacun des mesurandes considérés, la meilleure incertitude d'étalonnage a été évaluée. Cette incertitude optimale est présentée dans le Tableau 4. Elle est calculée à partir de la simulation de Monte Carlo de notre machine (niveau 1) et d'un étalon présentant des caractéristiques optimale notamment en termes d'état de surface et augmentée d'un coefficient de sécurité (paramètres optimum pour le niveau 2). Cette simulation de Monte Carlo est effectuée pour chacun des étalons à mesurer et pour chaque mesurande. En pratique les simulations obtenues fournissent une incertitude inférieure à la meilleure incertitude d'étalonnage déclarée, néanmoins la valeur indiquée dans Tableau 4 est En effet, sur ces valeurs, un coefficient de sécurité, par soucis de prudence, a été appliqué afin de tenir compte des résultats de l'intercomparaison qui a été effectuée en parallèle (certains laboratoires nationaux affichent des incertitudes supérieures). Au niveau des logiciels, ce qui correspond au point le plus critique pour l'accréditation, nous avons opté pour une validation logicielle à chacune des étapes. Cette validation passe, entre autre, par une vérification de notre calcul des mesurandes développé sous Mathematica ® 6.02, par comparaison avec Quindos 6, qui est validé par le PTB. Une autre comparaison des résultats entre Quindos 6 et Quindos 7 a dû être effectuée dans la mesure où le Cetim utilise les fonctionnalités de Quindos 7, qui n'est pas validé directement par le PTB. Aucune différence n'a été constatée. Pour éviter les problèmes logiciels, nous avons alors convenu de ne pas changer de version. La version Mathematica ® restera la version 6.02, qui est la version d'origine pour l'écriture et la validation de nos programmes. Les mesures MMT, liées à l'accréditation, seront exécutées à l'aide de Quindos 7. Aucun changement ne peut être effectué sans une campagne de vérification sérieuse. méthode de Monte-Carlo nécessite un volume de calculs important qui peut rapidement devenir prohibitif en particulier si, dans le programme de simulation, on fait intervenir une simulation par éléments finis ou une autre méthode numérique du même type. Imaginons que chaque étape de calculs dure 5 minutes. 10000 exécutions représentent 50000 minutes soit plus d'un mois. Il y a alors deux solutions, utiliser la « force brute » c'est-à-dire multiplier les machines et les puissances ou utiliser des méthodes plus fines.Parmi ces méthodes « plus fines » certaines sont dites « non intrusives » (on en décrira un exemple plus loin) en ce sens qu'elles ne nécessitent pas de modifier le coeur du logiciel de calculs, d'autres sont dites « intrusives » en ce sens que l'on modifie le logiciel de calculs par éléments finis (ou d'une façon plus générale la méthode numérique).La méthode des polynômes de chaos, que nous allons présenter ensuite sans prétendre à la rigueur mathématique, peut être utilisée comme méthode nonConclusionAu terme de cet article, on constate donc qu'il n'y a pas de changement de démarche métrologique entre la méthode analytique et la méthode numérique. Malgré les nombreuses critiques, dans beaucoup de cas, la méthode analytique reste très pertinente dans la mesure où les cas de non linéarité sont rares dans les ordres de grandeur pratiques des sources d'incertitudes. Par contre, dans les processus complexes, la méthode numérique est la seule viable. De plus, une fois que le modèle numérique est établi, il est aisé de faire une modification, contrairement au GUM analytique où il faut refaire toute la démarche. Pour un processus défini, la méthode de Monte Carlo est donc plus flexible. Cette méthode n'est pas si compliqué que cela à mettre en oeuvre et permet en plus de documenter la normalité de la (des) grandeur(s) de sortie. Dans bon nombre d'études, les deux méthodes sont donc faisables et il est intéressant d'effectuer ces deux calculs en parallèle pour vérifier son résultat. En effet, dans toute démarche métrologique, le recoupement des résultats est un élément d'assurance de la qualité.

	affichée. Objet soumis à mesurage	Mesurande		Meilleure Incertitude d'étalonnage	Domaine de mesure / étendue de mesure
	Etalon de	Ecart total de division : F p	2,1 µm d/400
	division	Ecart individuel de division : f pt	1,5 µm
		Ecart total de profil : F 		1,7 µm + d/400
	Etalon de profil	Ecart d'inclinaison de profil : F H	1,4 µm + d/400
		Ecart de forme du profil : f f	0,9 µm + d/400
		Tableau 4: Meilleures incertitudes d'étalonnage obtenues
	6.2.5 Réflexion logiciel				
	tirages	800 600				
	Nombre de	200 400				
		0				
		5	6	7	8	9	10
					µm	

intrusive.

La méthode des polynômes de chaos consiste à remplacer la fonction modèle (a priori connue numériquement) par une combinaison linéaire de polynômes bien choisis selon une méthode qui relève fondamentalement des moindres carrés. Les polynômes utilisés sont des polynômes orthogonaux dans un sens que l'on précisera.

La formule (1) exprime que la fonction y est une combinaison linéaire d'un nombre infini de fonctions notées ψ k ., x est le vecteur des variables d'entrée. Evidemment, comme un nombre infini de fonctions est impossible à envisager, on transforme la formule (1) en la formule [START_REF] Doornik | An Improved Ziggurat Method to Generate Normal Random Samples[END_REF]. Dans la pratique, P-1 est le degré du polynôme. P doit être choisi intelligemment ; trop élevé, cela engendre des calculs lourds et éventuellement instables, trop bas, cela engendre une approximation excessive. Le choix de P a engendré beaucoup d'articles.

Les polynômes ψ k sont orthogonaux par rapport à la mesure de probabilité ( ) selon la formule (3) qui a la nature d'un produit scalaire.

La formule (4) est alors une norme au carré. Les coefficients de la formule de projection (2) s'en déduisent :

En gérant correctement la normalisation, on associe à la mesure de probabilité gaussienne ( ) √ ( ) les polynômes de Hermite. A une mesure de probabilité uniforme, on associe les polynômes de Legendre, etc.

Le problème est de calculer β k alors que l'on ne connait pas analytiquement y(x). Cela relève de méthode d'intégration numérique (à partir de la formule (5)) puisque y(x) est connue grâce au programme informatique fournissant le mesurande. Une solution est d'ailleurs d'utiliser la méthode de Monte Carlo en tant que technique d'intégration numérique, ce qui est classique.

On démontre que les polynômes ainsi calculés permettent de calculer la variance et la fonction de densité de probabilité.

Pour résumé, sans chercher à aller plus loin mathématiquement, l'idée est de décomposer numériquement la fonction décrivant le mesurande sur une base de polynômes bien choisie (en fonction du type de variables aléatoires à traiter en entrées). On peut ensuite profiter des propriétés de ces polynômes pour étudier statistiquement le mesurande. Ces techniques prennent tout leur sens en dehors du champ de la métrologie lorsque les variations des données d'entrée ne peuvent raisonnablement pas être modélisées au premier ordre.

Pour en savoir plus

Propagation des distributions