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Abstract

The packing chromatic number x,(G) of a graph G is the smallest
integer p such that vertices of G' can be partitioned into disjoint classes
X1, ..., X}, where vertices in X; have pairwise distance greater than .
For k < t we study the packing chromatic number of infinite distance
graphs D(k,t), i.e. graphs with the set Z of integers as vertex set
and in which two distinct vertices ¢, j € Z are adjacent if and only if
i = j| € {k, t}.

We generalize results by Ekstein et al. for graphs D(1,t¢). For
sufficiently large t we prove that x,(D(k,t)) < 30 for both k, ¢ odd,
and that x,(D(k,t)) < 56 for exactly one of k, t odd. We also give
some upper and lower bounds for x,(D(k,t)) with small £ and ¢.
Keywords: distance graph; packing coloring; packing chromatic
number
AMS Subject Classification (2010): 05C12, 05C15

1 Introduction

The concept of a packing coloring was introduced by Goddard et al. [9] under
the name broadcast coloring where an application to frequency assignments
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was indicated. In a given network the signals of two stations that are using
the same broadcast frequency will interfere unless they are located sufficiently
far apart. The distance, in which the signals will propagate, is directly
related to the power of those signals. Bresar et al. in [2] mentioned that
this concept could have several additional applications, as, for instance, in
resource placements and biological diversity (different species in a certain
area require different amounts of territory). Moreover, the concept is both a
packing and a coloring (i.e., a partitioning) concept. Therefore Bresar et al.
in [2] proposed a notion packing coloring which we follow in this paper.

In this paper we consider simple undirected graphs only. For terminology
and notations not defined here we refer to [I]. Let G be a connected graph
and let dists(u, v) denote the distance between vertices u and v in G. We ask
for a partition of the vertex set of G into disjoint classes Xj, ..., X, according
to the following constraints. Each color class X; should be an i-packing,
a set of vertices with property that any distinct pair u,v € X; satisfies
distg(u, v) > 7. Such a partition is called a packing p-coloring, even though
it is allowed that some sets X; may be empty. The smallest integer p for
which there exists a packing p-coloring of G is called the packing chromatic
number of G and it is denoted x,(G). The determination of the packing
chromatic number is computationally difficult. It was shown to be NP-
complete for general graphs in [9]. Fiala and Golovach [7] showed that the
problem remains N'P-complete even for trees.

Let D = {dy,ds,...,dy}, where d; (i = 1,2, ..., k) are positive integers such
that d; < dy < ... < dj. The (infinite) distance graph D(dy,ds, ..., d)) has the
set Z of integers as a vertex set and in which two distinct vertices i, j € Z are
adjacent if and only if |i — j| € D. The study of a coloring of distance graphs
was initiated by Eggleton et al. [6] and a lot of papers concerning this topic
have been published (see [3], [I1], [12], [13], [15] for a sample of results).

The study of a packing coloring of distance graphs was initiated by
Togni. In [14] Togni showed that x,(D(1,t)) < 40 for odd t > 447 and
that x,(D(1,t)) < 81 for even ¢t > 448. Ekstein et al. in [5] improved
these upper bounds and proved that x,(D(1,t)) < 35 for odd ¢ > 575 and
that x,(D(1,t)) < 56 for even ¢ > 648. A lower bound 12 for the packing
chromatic number of D(1,t), for ¢ > 9, is also given in [3].

In this paper we generalize mentioned results as follows.



Theorem 1. Let k,t be odd positive integers such that t > 825 and k,t
coprime (i. e. D(k,t) is a connected distance graph). Then

Xo(D(k,t)) < 30.

Note that, for £k = 1, Theorem [ also improves the upper bound given
in [5].
Corollary 2. For any odd positive integer t > 825, x,(D(1,t)) < 30.

Theorem 3. Let k,t be positive integers such that k is odd, t > 898 is even
and k,t coprime (i.e. D(k,t) is a connected distance graph). Then

Xo(D(k,t)) < 56.

Theorem 4. Let k,t be positive integers such that k is even, t > 923 is odd
and k,t coprime (i. e. D(k,t) is a connected distance graph). Then

Xp(D(k, 1)) < 56.
Theorem 5. Let D(k,t) be a connected distance graph, t > 9. Then
(D, 1) > 12

For k, t both even and also for k,t commensurable, the distance graph
D(k,t) is disconnected and contains copies of a distance graph D(k’,t') as
its components with &' < k, t' < t, at least one of £, ¢ odd and k', t' coprime
(as will be shown in a proof of Lemma [{). In the view of this fact, we can
color each copy of D(K',t') in the same way, thus we obtain the following
statement.

Proposition 6. Let k,t be positive integers and g their greatest common
divisor. Then x,(D(k,t)) = x, (D(S, 3))

For small values of k,t we give lower and upper bounds as it is shown in
the following Table [l Note that, for £ = 1, an analogous table was published

in [5].

Throughout the rest of the paper by a coloring we mean a packing
coloring.



(kneff3[ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 |
2 [13[D@A,2) [14—22] DA,3) [ 15—-27 | D(1,4) [ 12—31 | D(1,5)
—[1a—19] 13 | D(1,2) | 13—17 | 14—28 | D(1,3) | 13— 29
— | — 13-22]D23) [ 16-32] D(1,2) | 15-32| D(2,5)
15—29 | 13—20 | 14—32 | 13—23 | D(1,2)
— |15=29 | D(3,4) | D(2,3) | D(3,5)
— — |14a—34|12-23|12—40
— — — |12=37| D(4,5)
— — — — [12-42

Table 1: Values and bounds of x,(D(k,t)) for 2 < k <t < 10. The empha-
sized numbers are exact values and all pairs of values are lower and upper
bounds.

2 Bounds for x,(D(k,t)) for small k, ¢

In this section we determine new lower and upper bounds for the packing
chromatic number of D(k,t) which are mentioned in Table [

For the upper bounds, we found and verified (with a help of a computer)
patterns, which can be periodically repeated for a whole distance graph
D(k,t). This means that we color vertices 1,...,l of D(k,t) using a pattern
of length [ and copy this pattern on vertices 1+pl,...,l+pl, p € Z. As most
of these patterns are of big lengths, they do not appear in this paper, but
can be viewed at the web page http://le2i.cnrs.fr/o.togni/packdist/
and tested using the java applet provider.

k,t| ¢ | p | Configurations Time

2,3112]213 1.1-10"2 46 hours
2,513 | 45 5.9-10% 327 hours
3,413 | 43 5.6 -10'2 297 hours
3,512 | 106 5.7-101 35 hours
3,7112| 54 2102 179 hours
4,512 37 4-101 23 hours

Table 2: Computations for finding lower bounds of x,(D(k,t)). Time of the
computation is measured on a one-core workstation from year 2012.


http://le2i.cnrs.fr/o.togni/packdist/

k.t |q b Configurations Time
2.7 |5|37/45| 327107 14 min
3,8 | 7|38/42 1.5- 10 1 hours
3,10 | 8 | 47/50 1013 125 hours
4,7 | 7144/50 7.6 - 102 58 hours
4,9 | 7147/52 1.9-10% 145 hours
5,6 |6 [43/50 1.1-10%2 7 hours
5,7 | 847/50 2.7-1012 19 hours
5,8 | 8|42/45 7.8 1012 58 hours
5,9 | 7|48/52 1.2-10% 107 hours
6,7 |6 |44/50 3.5- 102 27 hours
7,8 | 6]50/55 1.4-10 120 hours

Table 3: Computations for finding lower bounds of x,(D(k,t)). Time of the
computation is measured on a one-core workstation from year 2012.

For the lower bounds, we followed methods used in proofs of Lemmas
6 and 8 in [5]. Some of the lower bounds were obtained using brute force
search programs (one in Pascal and one in C++). We showed that a subgraph
D,(k,t) of D(k,t) induced by vertices {1,2, ..
colors from 1 to ¢, for some p and ¢ (the results of computations can be seen
in Table [2)), which implies that x,(D(k,t)) > ¢+ 1. For a shortening of a
computation time the programs precolored vertex 1 with color ¢ and tried to
extend the coloring for whole D, (k,t).

.,p} cannot be colored using

For the remaining lower bounds we used a density method. A density of
a color class X; in a packing coloring of G can be defined as a fraction of
all vertices of X; and all vertices of G. For the exact definition of densities
d(X;) and d(X; U---U X;) we refer to [5].

The density method is based on the following proposition.

Lemma 7. [8] For every finite packing coloring with k classes X1, Xo, . .., X},
of a graph G and any positive integer | satisfying 1 <1 < k, it holds that

k k
D dX) Zd(X U UX)+ Y d(X) Zd(X UL UX,) =1,
i=1 i=l+1



Again using brute force search programs (one in Pascal and one in C++)
we showed that the density d(X; UX,U---UX,) is bounded by b, for some
g and b (the results are summarized in Table [3)). For instance, for k,t = 2,7
we found that d(1,2,3,4) < 32/41. Since there is no pair of vertices in
D7;15(2,7) with distance greater than i (i > 5), d(i) = 1/(7i—13) for i > 5.
Then d(1,2,3,4)+d(5)+---+d(13) < 0.9915326 < 1 and hence, from Lemma
[@ x,(D(2,7)) > 14. The bounds for the other values of k,¢ in Table [3 are
proved similarly, observing that for D(k,t), d(i) = 1/(ti—«), with o = 13 for
k,t=2T7Tandi>5 a=17for k,t =3,8 and i > 8; a = 22 for k,t = 3,10
and i > 9; a =8 for k,t =4,7and ¢ > 8; a = 21 for k,t = 4,9 and 7 > §;
a=>5fork,t=5"7andi>9;, a =10 for k,t =5,8 and ©+ > 9; a = 19 for
k,t=59andt>8 anda=—-1fork=t—1andi>1t—1.

The lower bounds for D(2,9), D(7,9), D(7,10), D(8,9) and D(9, 10) are
obtained from Theorem [

3 Proofs

First of all we prove for which k, ¢ a distance graph D(k,t) is connected.

Lemma 8. A distance graph D(k,t) is connected if and only if the greatest
common divisor of k, t is 1.

Proof. If the greatest common divisor of k, ¢ is 1, then from linear algebra
1 = mk + nt, where m,n € Z. For every vertex corresponding to a number
p € Z it holds that p = pmk + pnt and therefore there exists a path between
this vertex and vertex corresponding to 0. Hence it follows that there exists
a path between any pair of vertices and that D(k,t) is connected.

If the greatest common divisor of k, ¢ is p > 1, than we divide a set of
vertices of D(k,t) into subsets in terms of equivalence classes modulo p and
clearly there is no edge between any pair of vertices from distinct subsets
of vertices of D(k,t). Hence D(k,t) is not connected which completes the
proof. Moreover, vertices corresponding to the equivalence classes modulo p
induce p isomorphic copies of a graph D(%, %) where %, % are coprime positive
integers. 0

A key observation of this section is that a connected distance graph
D(k,t) can be drawn as k vertex disjoint infinite spirals with ¢ lines or-
thogonal to the spirals (e.g. D(3,8) on Fig. [).



Figure 1: Distance graph D(3, 8).

Fori € {0,1,...,t — 1}, the i-band in a connected distance graph D(k,t),
denoted by B, is an infinite path in D(k,t) on the vertices V(B;) = {ik +
jt,j € Z}. Fori € {0,1,...,t — 24}, the i-strip in a connected distance graph
D(k,t), t > 24, denoted by S;, is a subgraph of D(k,t) induced by the union
of vertices of B;, Bii1, ..., Biio3.

For a connected graph D(k,t) we use a notation D(k,t) = SyB24S25Bug - . -
to express that we view D(k,t) as a union of strips Sy, Sas, ... and bands
By, Byg, . . . (including edges between strips and bands).

It is obvious that an i-strip in D(k, t) is isomorphic to an é-strip in D(1,t).
Hence we apply results in [5] for a coloring of strips in D(k,t). Moreover we
color vertices of all strips using the pattern on 24 x24 vertices made by Holub
and Soukal in [I0], in which it is possible to replace color 16 (17) by 22 (23),
because two vertices colored with 16 (17) are in a whole strip at distance at
least 24, respectively (see Fig. ().

Lemma 9. Let D(k,t) be a connected distance graph, t > 24, and S; its i-
strip. Then it is possible to color S; using colors C' = {1,2,...,14,15,22 23}.

Then we can use colors 16 and 17 for coloring of bands as it is explained
in the following statement.



i 2131 2 110 1 4 1 91 2 1 3 1 2 1 5 1 4 114
T 15161 3 1 2131815141 3 1 2 1 31
i1 31 214 1 7 15 1 2131 2 111 1 6 110 1 2
4 1 91 31 21316 1 41 7 1 31 2 1 3 15 1
i 2 115 1 5 111 1 2 1 3 1 2 123 1 5 1 4 1 2 1 3
6 1 31 21 3 1 4 114 1 5 1 3 1 2 1 3 1 7 1 8 1
i1 51 4 122 1 2 1 3 1 2 110 1 4 113 1 2 1 3 1 2
3121316 1517131 2131 9 15 1 41
i 7 110 1 2 1 3 1 2 1 4 1 6 1 5 1 2 1 3 1 2 111
2131514181 31213171416 1 31
i1 41 21 3 1 21 915 111 1 2 1 3 1 2 112 1 5
316 1213 1 7 1 31 2 1 31 4 1 8 1 5 1 3 1 2 1
i 2131 2 151 4 115 1 2 1 3 1 2 110 1 4 1 9
g 1 51 41 31 2131 715161 3 1 21 31
i1 31 2 111 1 6 110 1 2 1 3 1 2 1 4 1 7 1 5 1 2
4 1 7131 21 315141 91312 13161
i 2 123 151 41 21 31 2 114 1 5 111 1 2 1 3
5131213171816 1 31 2131 4 115 1
110 1 4 1 9 1 2 1 3 1 2 1 5 1 4 122 1 2 1 3 1 2
31213112 1 5 1 41 3 1 2 1316 15 171
i1 6 151 2131 2 1111 7 110 1 2 1 3 1 2 1 4
213171 416 1 31 2131514181 3 1
111 1 2 1 3 1 2 113 1 51 4 1 2 1 3 1 2 1 9 1 5
314181 5651 31 21316 112 1 7 1 3 1 2 1

Figure 2: A modified pattern on 24 x 24 vertices.

Lemma 10. Let D(k,t) be a connected distance graph, t > 56, and B;,
B o5 its bands. Then it is possible to color B; and B; o5 using colors C =
{1,16,17,...,21,24,25, ..., 30}.

Proof. We prove this lemma by exhibiting a repeating pattern using colors 1,
16, 17, ..., 21, 24, 25, ..., 30. The pattern was found with help of a computer,
it has period 144 and is given here:

1,16,1,19,1,24,1,17,1,26,1,25,1,18,1,20,1,21,1,16,1,27,1,19,
1,17,1,28,1,29,1,24,1,18,1,30,1,16,1,20,1,21,1,17,1,19,1,25,
1,26,1,27,1,18,1,16,1,24,1,28,1,17,1,20,1,19,1,21,1,29,1,30,
1,16,1,18,1,25,1,17,1,26,1,24,1,19,1,20,1,21,1,16,1,27,1,18, (*)
1,17,1,28,1,29,1,25,1,19,1,30,1,16,1,20,1,21,1,17,1,18,1,24,
1,26,1,27,1,19,1,16,1,25,1,28,1,17,1,20,1,18,1,21,1,29,1,30.



We color B; cyclically with pattern (x) starting at the vertex ¢ and B, o5
cyclically with pattern (k) starting at the vertex (i + 25)k + jt for any j €
{—25,-24,...,—6,6,7,...,25}. Let D. be a minimal distance between two
vertices colored with the same color ¢ in the same band. Then from the
coloring of a whole band with pattern (%) we have D5 = 26, Do = 32,
Do7r = 30, Dog = 32, Dyg = 32 and D3y = 36. Let u € V(B;) and v €
V' (Bit25) be colored with the same color ¢. For ¢ < 24, the distance between
u and v is greater than 24. For ¢ > 25, the distance between u and v is
at least min{|j|, D. — |j|} + 25 which is greater than c¢. Hence we have a
packing coloring of B; and B, 5. O

In proofs of Theorems [3] and @] we use the following statement proved by

Goddard et al. in [9].

Proposition 11. [9] For every | € N, the infinite path can be colored with
colors l,l+1,...,3l + 2.

Now we are ready to prove Theorems [I B and @l

3.1 Proof of Theorem I

Proof. Let D, = {—25,-24,...,—6,6,7,...,25}. Let k; = min{k (mod 24),
24 — k (mod 24)}.

Let r, s be positive integers such that t = 24s + r, where r is odd (since
t is odd) and minimal such that k; < r < 33. We prove Theorem [ even
for ¢t > 24r + r, which is in the worst case (for r = 33) the general bound
t > 825. Hence s > r and we have s disjoint strips and r disjoint bands such
that D(k,t) = SoB24S25B49..-S24(r—1)4r—1 Boar4r—1524r17---524(s—1)4r-

For odd i = 1,3,...,7 — ki + 1, we color the strips Syy(i—1)1i—1 cyclically
with the pattern from Fig. [ starting at the vertex 24(i — 1)k + (: — 1)k. If
r > ki, then, for even i = 2,4, ...,r — ki, we color Syy(i—1)4i—1 cyclically with
the pattern from Fig. [ starting at the vertex 24(i — 1)k + (i — 1)k — ¢.

Let ki = k (mod 24). Then, for i =r + 1,7 +2,..., 5, we color Sas(i—1)4r
cyclically with the pattern from Fig. [ starting at the vertex 24(i — 1)k +
rk—kyt. If ky # 1, then, for i =r—ky+2,r—k;+3,...,r, we color the strips



So4(i—1)+i—1 cyclically with the pattern from Fig. [ starting at the vertex
24— 1Dk+(i— 1Dk — (G —7+ Kk — 1)t.

Let ky = 24—k (mod 24). Then, fori = r+1,742, ..., s, we color Sas(i—1)4r
cyclically with the pattern from Fig. [ starting at the vertex 24(i — 1)k +
rk+kit. If ky # 1, then, fori =r—ky+2,7—k;+3, ..., 7, we color the strips
So4(i—1)+i—1 cyclically with the pattern from Fig. [ starting at the vertex
24(i — D)k + (i — 1)k + (i — r + k; — 1)t. Hence we have a packing coloring
of all s disjoint strips of D(k,t) using Lemma [

For i =1,2,...,r, we color the bands Ba4;,; 1 cyclically with pattern (x)
starting at the vertex 24ik + (i — 1)k + j;t such that j; is even (odd) for odd
(even) i, respectively, for i > 1, j; — j;_1 € D,, and for s = r, |j, — j1 +
k| (mod 144) € D,

If s > r, then j; exist. Now assume that r = s.

If r = s =1, then we set j; = 0. Note that from k; < r we have only
distance graphs D(1,25) and D(23,25).

If r = s = 5, then we have distance graphs D(k,125) with £ < 123
such that ky < r = 3. For k = 1,3,5,19,43,45,47,49,51, we set 7, = 0,
Jo = —13, js = —26 and jy4, j5 such that j4 — j3 € D, and js5 = j3. For k =
21,23,25,27,29,53,67,69, 71, we set j; = 0, jo = —23, j3 = —46 and jq4, J5
such that js — js € D, and j5 = j3. For k = 73,75,77,91,115,117,119, 121,
123 we set j; = 0, jo = —25, j3 = =50, j4 = =75 and j5 = —98. For
k = 93,95,97,99,101 we set 71 = 0, jo = —21, j3 = —42, j4 = —63 and
Js = —84.

If r = s = 3, then we have distance graphs D(k,75) with & < 73 such
that k& < r = 3 and we proceed for feasible k£ in a similar way as in the case
r=s=0>5.

If r = s> 7, then we proceed analogously to previous cases (a combina-
tion of r numbers from D, could be from 0 to 144, which is the length of the
pattern (x)).

Hence we have a packing coloring of all r disjoint bands of D(k,t) using
the same principle as in the proof of Lemma

Note that the bands are colored with colors 1,16,17,...,21,24, 25, ..., 30
and the strips are colored with colors 1,2, ..., 15,22, 23 in such a way that no
pair of adjacent vertices is colored with color 1. Then we conclude that we
have a packing coloring of D(k,t), hence x,(D(k,t)) < 30. O

10



Some cases, in which we can decrease t for which Theorem [ is true, are

given in Table [l

r 3] 5 7 9 1n]13]15]17
Ky 1,3]1,3,5[1,3,5,7[1,3,5,7,9| v | Vv | v | Vv

t>[25]75 | 125 | 175 225 | 275325375 | 425
r [ 19 ] 21 ] 23 25 27 29 | 31 [ 33
k| v ] v ]|V ][3570911]570911]7911]9,11] 11
t > 475|525 575 625 675 725 | 775 | 825

Table 4: Table for ¢ depending on odd ki, r with r > ky.

3.2 Proof of Theorem

Proof. Let D, = {—25,—-24,...,—6,6,7,...,25}. Let k; = min{k (mod 24),
24 — k (mod 24)}.

Let 7, s be positive integers such that t = 24(s + 2) + r, where r is even
(since t is even) and minimal such that k; < r < 34. We prove Theorem
even for ¢ > 24(r +2) +r, which is in the worst case (for r = 34) the general
bound ¢t > 898. Hence s > r and we have s + 2 disjoint strips and r dis-
joint bands such that D(k,t) = SyS24BagSug...S2a(r—1)+r—2Boarir—2S24r4r—1
S24(r+1)+r—1-+-524(s+1) +r—1B24(s42) 471

We color the strip Sy cyclically with the pattern from Fig. [ starting
at the vertex 0. For odd ¢ = 1,3,...,7 — ki, we color the strips Sosii; 1
cyclically with the pattern from Fig. Rl starting at the vertex 24ik + (1 — 1)k.
If r > k141, then, for even i = 2,4,...,r —k; — 1, we color Soy;1,;_1 cyclically
with the pattern from Fig. [ starting at the vertex 24ik + (i — 1)k — t.

Let k1 = k (mod 24). Then, for i = r+1,...;s + 1, we color Say;i, 1
cyclically with the pattern from Fig. [ starting at the vertex 24ik + (r —
1)k — kyt. If ky # 1, then, for i = r — ky + 1,7 — ky + 2, ..., 7, we color the
strips Soy;15—1 cyclically with the pattern from Fig. [2 starting at the vertex
24ik + (i — 1)k — (1 — r + Ky )t

Let k& = 24 — k (mod 24). Then, for ¢ r+1,r+2,...,s+ 1, we
color Soy;1,—1 cyclically with the pattern from Fig. [2] starting at the vertex

11



24ik + (r — 1)k + kqt. If by # 1, then, fori =r —ky + 1,r — k1 + 2, ....7, we
color the strips Ssy;1;-1 cyclically with the pattern from Fig. [ starting at
the vertex 24ik + (i — 1)k + (i — r + k1)t. Hence we have a packing coloring
of all s disjoint strips of D(k,t) using Lemma [0

For + = 1,2,...,7 — 1, we color the bands Bay(y1)+i—1 cyclically with
pattern (x) starting at the vertex 24(i + 1)k + (i — 1)k + j;t such that j; is
even (odd) for odd (even) i, respectively, and for i > 1, j; — ji_1 € D).

We color Byy(st2)4r—1 With a sequence of colors 18, 19, ..., 21, 16, 17,
24, 25, ..., 56 starting at any vertex of Bay(s19)1r—1. By Proposition [ for
[ = 18, we can color Bayy(s42)+r—1 With colors 18, 19, ..., 56. Since we used
colors 22 and 23 for a coloring of strips, we replace color 22 (23) by 16
(17), respectively, in the coloring of this band. Note the band Bay(sy2)4r—1
is the only one with colors greater than 48. By Lemma [0 and the fact that
a distance between any vertex of Byys12)4r—1 and any vertex of any other
band of D(k,t) is at least 49 the defined coloring is a packing coloring of all
r disjoint bands of D(k,t).

Note that the bands are colored with colors 1,16,17,...,21,24,25, ..., 56
and the strips are colored with colors 1,2, ..., 15,22, 23 in such a way that no
pair of adjacent vertices is colored with color 1. Then we conclude that we
have a packing coloring of D(k,t), hence x,(D(k,t)) < 56. O

Some cases, in which we can decrease t for which Theorem [ is true, are
summarized in Table [l

rl2] 47 6 8 10 1214716 18
k| 111,3]1,3,5(1,3,5,7/1,357,9| V|V | V|V
t>[08|148] 198 | 248 298 | 348 | 398 | 448 | 498
r 120227 24 26 28 30 | 32 [ 34
kLl v | Vv ]|V |[357911]570911]7911]9,11] 11
t > | 548 ] 598 | 648 698 748 798 | 848 | 898

Table 5: Table for t depending on odd k; and even r with r > k;.
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3.3 Proof of Theorem (4

Proof. Let D, = {—25,-24,...,—6,6,7,...,25}. Let k; = min{k (mod 24),
24 — k (mod 24)}.

Let s be a positive integer such that ¢ = 24s + 1 and k; = 0. Hence we
have s disjoint strips and 1 band such that D(k,t) = SoS24...524(s—1)Baas. For
1t =0,...s — 1 we color the strips Sy4; cyclically with the pattern from Fig.
starting at the vertex 24ik. We color Bagys with a sequence of colors 18, 19, ...,
21, 16, 17, 24, 25, ..., 56 starting at any vertex of Bay,. Hence the band Bay,
is colored with colors 1,16,17,...,21,24,25,...,56 and the strips are colored
with colors 1, 2,...,15,22,23 in such a way that no pair of adjacent vertices
is colored with color 1. Then we conclude that we have a packing coloring of
D(k,t), hence x,(D(k,t)) < 56.

Let r, s be positive integers such that t = 24(s + 2) + r, where r is
odd (since t is odd) and minimal such that k&1 < r < 35. We exclude
the previous case k; = 0, » = 1 and we prove Theorem M even for ¢t >
24(r 4+ 2) + r, which is in the worst case (for r = 35) the general bound
t > 923. Hence s > r and we have s 4+ 2 disjoint strips and r disjoint bands
such that D(k,t) = S0 S24BagSug.-.S24(r—1)1r—2Boartr—2S24r4r—1524(r 1) 4r—1---
S24(s41)+r—1B2a(s42)4r—1-

The rest of the proof of Theorem Ml is exactly same as of the proof of
Theorem O

Some cases, in which we can decrease t for which Theorem Ml is true, are
given in Table [6

r 1] 3 5 7 9 11 Bl1[17]19
ki | 010,2[0,24[0,2,4,6][0,2,4,6,8[0,2,4,6,8,10| V | V | V | V
t>|25[123] 173 223 273 323 373 | 423 | 473 | 523
r |21 23 25 27 29 31 33 | 35
B | V | V |2,4,6,810,12]4,6,8,10,12] 6,8,10,12 [ 8,10,12 | 10,12 | 12
t> 5731623 673 723 773 823 873 | 923

Table 6: Table for ¢t depending on even k; and odd r with r > k;.
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3.4 Proof of Theorem

Proof. 1t is shown in [4] that a finite square lattice 15 x 9 cannot be colored
using 11 colors. Clearly D(k,t) contains a finite square grid as a subgraph
and t > 9 assures existence of the square lattice 15 x 9 in a connected D(k, t).
Therefore, x,(D(k,t)) > 12 for every ¢t > 9. O
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