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Abstract

This work establishes the complexity class of several instances of the S-
coloring problem: For a graph GG, a positive integer k and a non decreasing
list of integers S = (s1, ..., sx), G admits a S-coloring, if its vertices can be
partitioned into sets Xs,, 4 =1,..., k, where each X, being an s;-packing
(a set of vertices at pairwise distance greater than s;). For a unfixed size
of list, the complexity of the S-coloring problem is determined for several
instances of the problem.

Keywords: NP-hard problem, distance, Packing chromatic number,
d-distance coloring.

1 Introduction

We consider only undirected connected graphs in this paper. Given a graph
G = (V,E), an i-packing is a set X; C V(G) such that for any distinct pair w,
v € X;, da(u,v) > i, where dg(u,v) denotes the usual shortest path distance
between u and v. We will use X; to refer to an i-packing in a graph G. For a non
decreasing sequence of positive integers S = (s;,i € N*), an S-k-coloring of G is
a partition of V(G) into sets X5, , ..., X, , where each X, being an s;-packing.
For a non decreasing list S” = (s1, ..., sk) of k integers, an S’ - (packing)-coloring
of G is a S-k-coloring of G for a sequence S which begins with a list S’. A graph
G is S-colorable if there exists a S-coloring of G. By |S], we denote the size of
the list S, and by s; we denote the ith element of the list. Then we define the
following decision problem:

S-COL
Instance : A graph G
Question: Does G have an S-coloring ?

*Author partially supported by the Burgundy Council



The problem (1,...,1)-COL corresponds to the k-coloring problem (where k is
the number of 1) which is known to be NP-complete for k£ > 3. The S-coloring
problem generalizes coloring problems with distance constraints like the packing
chromatic number or the distance chromatic number of a graph. The packing
chromatic number [2] of G is the least integer k such that the vertex set of G
can be partitioned into sets X;, i = 1,..., k, where each X; being an i-packing.
Hence, the least integer k such that G hasa (1,2,. .., k)-coloring. The d-distance
chromatic number [4] of G is the least integer k such that the vertex set of G
can be partitioned into sets Xgl, i=1,...,k, where each X; being a d-packing.
Initially, the S-coloring has been introduced by Goddard et al. [2] and Fiala et
al. [1]. The S-coloring problem, with |S| = 3 has been studied by Goddard et
al. [2] in order to determine the complexity of the packing chromatic number
when k = 4. Moreover, Goddard and Xu [3] have proven that for |S| = 3,
S-COL is NP-hard, if s1 = so =1 or if s = 1 and sy = s3 = 2 and polynomial
otherwise.

In order to represent an S-coloring, we will denote colors of vertices in different
i-packings by ¢ followed by a letter of the alphabet (2a and 2b for example).

Remark 1.1. Notice that the (1,1)-colorable graphs correspond to bipartite
graphs. If so > 1, only trees of diameter 2 are (s1, $2)-colorable. Hence, (s1,82)-
COL 1is polynomial time solvable.

In the second section, properties on the S-coloring of paths are used to
determine polynomial instances of S-COL. In the third section, various NP-
hard instances of S-COL are determined.

2 S-coloring of path and polynomial instances of
S-COL

2.1 S-coloring of infinite graphs

Proposition 2.1. Let S be a non decreasing list of integers, with s; > 1 and
G be a graph. If G contains a vertex of degree |S|, then G is not S-colorable.

Proof. Let v be a vertex of degree |S|. As v and the neighbors of v are at
pairwise distance at most 2, every vertex must have a different color and we

only have |S| colors. O
d-1

Definition 2.1. Let k and d be two positive integers. By n(k,d) = 1+k > (k—
i=0

1)¢, we denote the Moore bound. The Moore bound corresponds to the mazimum
number of vertices for a graph of diameter d and maximal degree k.

Proposition 2.2. Let S be a non decreasing list of integers, with s1 > 1. If an
infinite graph is S-colorable, then Py, is S-colorable.



Proof. Notice that a graph of diameter d has the graph P; as subgraph. Hence,
if an infinite graph with a unbounded diameter is S-colorable, then P, is S-
colorable. By contradiction, we suppose there exists an infinite S-colorable
graph G with a fixed diameter d, d > 0. By Proposition 2.1, the maximum
degree of G is |S| — 1. Therefore, using the Moore bound, G has order at most
n(|S| — 1, d). O

Definition 2.2. Let S be a non decreasing list of integers. Let tymq.(S) be the
order of the largest graph which admits an S-coloring. If tpmax(S) is not bounded,
then we define tyq.(S) as co.

Claim 2.3. Let S be a non decreasing list of integers. If tya.(S) is bounded,
then there exists an S-colorable tree of order tyq.(S).

Proposition 2.4. Let S be a non decreasing list of integers. If s1 > |S| then
tmaz(S) =S|

Proof. A graph of order |S| + 1 has diameter at most |S|. Hence, every vertex
should be colored differently. O

2.2 S-coloring of the path

For a vertex x € V(G), the ball of radius n centered at z is the set B, (z) = {v €
V(G)|dg(xz,v) < n}. The density of a set of vertices X C V(Q) is dg(X) =

lim sup ma&({%}. Suppose Py, admits an S-coloring and let v be a vertex
l—soc0 Z€
of Py colored c. Let N.(v) be the set of vertices (no more than two vertices)

which have the color ¢ such that in the smallest path between each of these
vertices and v, no vertex is colored c.

Proposition 2.5. Let S be a non decreasing list of integers. For every S-
coloring of P there exists another S-coloring such that for every verter v, if
v 18 colored s;, for some i, then every vertex in N, (v) is at distance at most
2s; — 1 from v.

Proof. Suppose that two vertices u and v colored s; are such that d(u,v) > 2s;
with no vertex colored s; in the path between v and v. Let | = |d(u,v)/s;]
and let uy, ... ug(y,0)—1 be the vertices in the path between u and v. By adding
a vertex between u and v, we mean remove the edge uv, add a vertex w and
connect it to u and v. We add one vertex colored s; between the vertices uy,
and wuys, 41, for each I’ such that 0 < I’ < 1. We obtain an S-coloring such that
for every vertex v colored s;, every vertex in N, (v) is at distance at most 2s; —1
from v. O

Corollary 2.6. Let S be a non decreasing list of integers with s; = 1. For every
S-coloring of Py there exists another S-coloring such that for every vertex v
colored 1, the vertices in Ny(v) are at distance 2.

Definition 2.3. Let G be a graph. The maximum density of an i-packing in G
is denoted dg(X;).



S|
Claim 2.7. Let S be a non decreasing list of integers. If Y (da(Xs,) < 1},
i=1

then G is not S-colorable.

Claim 2.8. If X; C V(Px) is an i-packing of P, then d(X;) < 14%1
Definition 2.4. Let S be a non decreasing list of integers. Let pmas(S) be
the order of the largest S-colorable path. If P, is S-colorable, then we define

DPmaz(S) as 0o.

Remark 2.9. Let S be a non decreasing list of integers. First, remark that
Pmaz(S) < tmaz(S). Second, if pmax(S) is bounded and s1 > 2, then using the
Moore bound, we have tpmqe:(S) < n(|S] — 1, Pmaz(9))-

S|
o . . . . 1
Proposition 2.10. Let S be a non decreasing list of integers. If 21 1 <L
1=
then Pmaz(S) < 0o.
S| S|
Proof. Claim 2.8 allows to conclude that 21 d(Xs,) < 21 Siil < 1. Thus, using
1= 1=
claim 2.7 P, does not admit an S-coloring. O

Proposition 2.11. Let S be a non decreasing list of integers, with s; = 1. If
[S|

Z m < 1, then pmaz(S) < 00.

i=1

Proof. Suppose that s; = 1, Corollary 2.6 gives us that there exists an S-coloring
where X7, the set of vertices colored by 1, is one of the two independent sets

that form a bipartition of P.. A consequence is that any i-packing, with ¢
S|

even, is an (¢ + 1)-packing too. We obtain that if ) m < 1, then
i=1 ‘

DPmaz(S) < 0o (the formula corresponds to add one to even numbers ). O

2.3 Polynomial instances of S-COL

Definition 2.5. A Tree decomposition of a graph G = (V, E) is a triple (T, F, X)
consisting of an undirected tree (T, F) and a map X : T — 2Vl associating to
each vertex i € T, a subset X; CV such that:

1. V= UiET Xi,'
2. For all edges uwv € E, there exists i € T such that v and v are in X;;
3. If j lies on the path between i and k in (T, F) then X; N X; C X;.

The width of (T, F, X) is max;er(|X;| — 1). The treewidth of G is the smallest
width of a tree decomposition of G.

For a given list S such that pyq.(S) < oo, we aim to bound the treewidth
of the S-colorable graphs, isolating vertices of degree at least k.



Proposition 2.12. For a given S-colorable graph G with pma.(S) < oo, the
treewidth of G is bounded.

Proof. If s1 > 1 and pma.(S) < oo, then by Proposition 2.2 the size of G is
bounded. Thus, the treewidth of G is bounded. Suppose that s; = 1 and let
X1 be the set of vertices colored by 1 for a fixed S-coloring of G. Moreover, we
can suppose that ss > 1, as P,, would be S-colorable if s = 1. There exists a
tree decomposition of G, (W, F, X) where

W =A{ulu e X1} U{N(uw)|u e X1} U(V(GQ)\ X1);

F={(u, N(u))|lu € X1} U{((N(u), V(G) \ X1)lu € X1};

Xu=A{u}; Xnw) = N(u); Xvienx, = V(G)\ Xi.

Property 1 follows from the fact that (V(G)\ X1)UX1 = V(G). Property 2 is
satisfied, as in an edge uv in E(G), the vertices are either in V(G)\ X; or in N,
for some u. For Property 3, suppose u and v are in X; and uw # v. The different
inequalities are true: {u}N{v} =0, {u}NN(@) =0, {u}N(V(G)\ X;) =0 and
N(@w)NN(u) C (V(G)\ X1). For the last case, only V(G) \ X; lie on the path
between N (v) and N (u). Therefore (W, F, X) is a tree decomposition of G.

As the vertices in X; can be colored 1, there have degree at most |S| —
1. Hence, for each u we have |N(u)| < |S|. Moreover, if a graph admits an
(s2,...,5)g))-coloring with s, > 1, then it cannot contain vertices of degree at
least |S| — 1. Thus, using the Moore bound on the graph G\ X1, |[V(G) \ X1| <
n(]S| — 1, pmaz(S)). Therefore, the treewidth of G is bounded. O

Proposition 2.13 ([5]). Every S-colorable graph, for S = (s1,...,5|3i/2)) and
81 = 8|3i/2) = i, has treewidth as most 2i.

Corollary 2.14. Every S-colorable graph, for S = (s1,...,5|3i/2)) and s1 > 1,
has treewidth as most 2i.

Proof. As every S-colorable graph, for S = (s1,...,5|3i/2)) and s > i, is S'-
colorafble, for S/ = '(5’1,...,5131./2” and s] = S’Lgi/2J = 4, these graphs have
treewidth at most 2i. o

In the remainder of the paper, the elements of a sequence S’ are denoted
si,...,sis,r

Proposition 2.15 ([1]). Let S be a non decreasing list of integers. The problem
S-COL can be solved in polynomial time for graph of bounded treewidth.

Corollary 2.16. The problem S-COL can be solved in polynomial time for tree.

Corollary 2.17. The problem S-COL can be solved in polynomial time for
S = (s1,...,53i/2)) and 51 > i.

Proposition 2.18. Let k be a positive integer and S be a non decreasing list
15|

of integers. 1If > S_{H < 1, then S-COL can be solved in polynomial time.
i=1""




S|
Moreover for sy = 1, if Y m < 1, then S-COL can be solved in
i=1 ¢

polynomial time.

Proof. Using Propositions 2.10 and 2.11, we obtain that p,,..(S) is finite.
Hence, using Proposition 2.12, every S-colorable graph has bounded treewidth.
By Proposition 2.15, S-COL can be solved in polynomial time. O

3 NP-hard instances of S-COL

The following result establishes a dichotomy between NP-hard problems and
polynomial time problems for |S| = 3.

Theorem 3.1 ([3]). Let k > 1 be an integer. The problems (1,1,k)-COL and
(1,2,2)-COL are both NP-hard. FExcept these problems, S-COL is polynomial
time solvable for |S| = 3.

3.1 NP-hard instances of S-COL, for s; > 2

A. Sharp [4] has determined NP-hard instances of S-COL, for s; = s, =i > 2.
The next Theorem recall her result.

Theorem 3.2 ([4]). The problem S-COL is NP-hard for sy = s|g =i, 1 > 1
and |S| > [3i/2].

In the following proposition, we establish the NP-hardness of the following
problem:

Proposition 3.3. The problem S-COL is NP-hard for i > 1, s1 = S;41 = 1
and |S| > [3i/2].

Proof. Let N; denotes the number of times the integer j appears in the list S
and let N, = N; —i+ 1.
The proof is by reduction from N;-COL (as N; > 3, N;-COL is NP-hard).

k-COL

Instance: A graph G without leaves and an integer k.

Question: Is there a partition of GG into k£ independent sets.
Let G be a graph without leaves. Let m = IT (G +1). Let L;s be

JEN||IN;|>1

the following graph: Take the path of length m with vertices ug, ..., %m—1,0-
By the rank of a vertex in the path, we mean the first index of the ver-
tex. By an [-insertion at rank j, we mean: adding a clique of [ vertices
Uj jmantls - oo s Widmantls With Jrmae = max{k|lujr € V(L; s)} and connect each
vertex of the clique to every vertex of rank 7 — 1, j or j 4 1. First, do an N, -
insertion at rank j, for each j such that 7 = [i/2] (mod i+1). Second, for every
integer [ > ¢, do an Nj-insertion at rank j, for each j such that j > 0 and j =0
(mod !+ 1). The constructed graph is the graph L;ﬁ g Third, take two copies of



L;’S and merge the vertex up in the first copy with the vertex up in the sec-
ond copy. Finally, do an (|.S| — N;)-insertion at rank 0 on this vertex wug . The
constructed graph is the graph L; 5. The graph J;  is the graph constructed as
L; s where one of the vertex ,,—1,0 from one copy of L;S is removed. Figure 1
illustrates a constructed L; g, for i = 2 and S = (2,2,2,2,2,3,3). By connectors
of L; s or J; s we denote the vertices u,,—1,0 of the two copies of L;,s (Um—2,0, if
this vertex does not exist in J; g). Let R; g be the graph from Figure 2. Observe
that, depending the parity of ¢, the graph R; s is different. By connectors of
R; s, we denote the vertices ¢, ¢ and c3 from Figure 2. By connecting, two
copies of R; g by L; g (or J; g, respectively) we mean: taking two connectors of
L; s (of J; s, respectively), connecting one connector to a connector of the first
copy of R; s and connecting the other connector to a connector of the second
copy of R; s, as in Figure 3. The used connectors are not consider connectors
of R; s anymore. We will construct a graph G’, using the graph L; g, J; s and
R; s. For each vertex v € V(G) of degree d, we associate d copies of the graph
R; s, denoted by Rg,Sa 1 >4 >d. Foreach 0 < j < d, we connect ngs to
R{El by L; g, then we connect Rz'l,s to R;{S by L;s. The obtained graph is G,
and contains d connectors (each one in a different copy of R; s. For each edge
uv € E(G), we connect G, to G, by J; 5. The obtained graph is G’. By initial
vertices of G', we denote the connectors of the graph G, for each v € V(G). In
order to prove that the construction is a reduction from N; — SAT to S-COL,
we prove the following facts:

Fact 1: In every copy of R; s, the vertices ¢;, co and c3 have the same color
and this color is some 1.

Remark that the diameter of R; s is i + 1 and |V(R;,s)| = |S| + 2. Moreover,
there exist only three pairs of vertices a distance i+ 1 and these pairs of vertices
are composed of vertices in {¢1, c2,c3}. Thus, except ¢1, co and c3 each vertex
should be colored differently and there are only one color remaining, this color
should be given to {c1, c2,c3} and this color should be a color 4.

Fact 2: For every S-coloring of L; g or J; g in G’, there is at most 2m/(s; + 1)
vertices colored s;. Suppose the contrary. It means that there exist 2m/(s; +
1)+1 vertices colored s; in L; g or J; s. In every case, a vertex colored s; would
be at distance less than i + 1 from a vertex colored s; in a copy of R; s (R; g
always contains a vertex colored s;). Thus, we have a contradiction.

Fact 3: In every coloring of G’ two connectors of different copies of R; s have
the same color if they are connected by L; ¢ and a different color if they are
connected by J; g. Let si be the color of a connector of R; ;. Using Fact 2,

every color s; appears at most 2m/(s; + 1) times in L; . L; g contains less
5]

than [] 2m/(s. + 1) vertices. A consequence is that for every [, there exists a
r=1

vertex of rank [ colored i. Therefore, using the fact that between two vertices

colored s, there are vertices added by N, -insertion, we obtain that in every

S-coloring of G’, two connectors of different copies of R; ; have the same color.

The argument is similar for J; .

Fact 4: There exists an S-coloring of L; g and J; 5. First, color the vertices
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Figure 2: The graph R; g, for ¢ even (on the left) and ¢ odd (on the right).

Ug,k, for some k, alternating ¢ 4+ 1 colors 7. Second, for each Nj-insertion did in
the construction, color the added vertices by the corresponding color I.

Fact 5: For any vertex v, in every S-coloring of D, the original vertices have
the same color 7. Using Fact 1 and Fact 3, this fact is trivial.

Fact 6: In any S-coloring of G/, any pair of colors in N; can be given to original
vertices connected by J; 5. This fact is not trivial, this is a consequence of the
following property: in every D,,, any color can be given to the vertices adjacent
to a connector as Figure 3 illustrates it.

Suppose that G admits an N;-coloring. We can prove that G’ admits an S-
coloring. We give the colors from G to original vertices of G'. To the color
number j corresponds the color s; of S. Using Fact 3 and Fact 6, the coloring
can be extended to an S-coloring of G’. Suppose that G’ admits an S-coloring,
using Fact 3 and Fact 5, we can deduce that every original vertex is colored
some color i. We give the colors from original vertices of G’ to vertices of G.

To the color s; = %, corresponds the color number j.
O

3.2 From S-COL to S’-COL, for |5'| =|S|+1

Proposition 3.4. Let S be a non decreasing list of integers with so = 1. If
S-COL is NP-hard, then S'-COL is NP-hard for |S'| = |S| + 1 and s} = s; for
every i, 1 <14 <|S|.

Proof. Suppose S-COL is NP-hard and siS|+1 = {. Let Ny be the number of
integers £ in S. From a graph G, we construct a new graph G’ obtained from
G, by connecting every vertex v in V(G) to a path of |S| — 1 vertices with end
vertex m,. Adding one vertex my and connecting it to any end vertex of a
path m,. Taking a complete graph K54, and making the join between the set



L3,(2,2,2,2,2,3,3)

Figure 3: A S-coloring of two copies of Ry g connected by Lg g, for S =
(2,2,2,2,2,3,3).

Figure 4: Illustration of the reduction for s, = 1.

{my|v € V(G)} Umy and a set of |S| — Ny — 1 vertices in K|g|4+1. The graph
obtained is the graph G’. By original vertices of G, we denote the vertices that
come from G.

Suppose G admits an S-coloring. We gives the S-coloring of G to original
vertices of G'. Afterwards, for every vertex v we alternate colors s; = la and
so = 1b for every path until m,. We give the color la or 1b to my (depending
the color of the vertex connected to my). We have N, 4 2 vertices in K|g|41
not connected to m,. Colors la, 1b and every color £ in S are given to these
vertices. The remaining colors are given to the vertices not colored in K|g|41-
Suppose that G’ admits an S’-coloring. In K|g|41, every color should be given.
As the two colors given to m, and my should be used on the N, + 2 vertices
in K541 not connected to m,, at most Ny vertices could be colored ¢ in the
Ny + 2 vertices in K|g|4+1 not connected to m,. Hence, one vertex should be
colored £ in the remaining vertices of K|g 4. Thus, one color £ cannot be used
in the remaining graph. The coloring used on the initial vertices of G’ gives us
an S-coloring of G. O

Proposition 3.5. Let S be a non decreasing list of integers. If S-COL is NP-
hard, then S’-COL is NP-hard, for every S’ such that |S’| = |S|+1, s§ =1 and
Siyq = 28 or 2s; + 1, for every i, 1 <i <|S|.



Proof. Suppose that S-COL is NP-hard. There exists a reduction from S-COL
to S’-COL completely similar to the reduction introduced by Goddard et al. [2]
from (1,1,2)-COL to (1,2,3,4)-COL. Let G be a connected graph. We build a
new graph G’ where we replace each edge uv by |S|+ 1 parallel edges and then
subdivide each edge. The vertices u and v are called initial vertices.

Let G be a graph which admits an S-coloring and let X; C V(G) be an i-packing.
Every vertices v and v in X; are such that d(u,v) > i. Let X] C V(G’) be the
set of initial vertices in X;. Observe that every vertices v and v in X/ are such
that dg/(u,v) > 2i + 1. To conclude, X/ is an (2i + 1)-packing (therefore an
2i-packing of G'). Let X] be the set of vertices created by subdividing each
edge. This set is an independent set and can be colored 1. Hence, there exists
|S| + 1 sets, X7, X7 ,... 7X;\5\ that form a partition of G'. Thus, G’ admits a
S’-coloring.

Suppose that G’ admits an S’-coloring. Suppose that there exists an initial
vertex u colored 1. Since u has |S| 4 1 neighbors, then two of these neighbors
have the same color s;. The fact that s, > 1 gives us that this coloring cannot
be extended in an S’-coloring. Hence, no initial vertices are colored 1. Using
the S’-coloring of the initial vertices in G’ we can create an S-coloring of G by
giving the color s;41 to the vertices colored s in G'. O

Proposition 3.6. The problem (s1, 2, 83, $4)-COL is NP-hard for s1 =1, s <
3,83 <5 and sy <5, fors; =1, s9 <3, 83 <3 and s4 > 3 and for s; = 2,
So =2, s3 =2 and s4 > 2. The problem (s1, s2, 83, 84)-COL is polynomial time
solvable for s1 > 3, for s1 =1 and s3 > 3, for s1 =1,2 < s, <3 and s3 > 7,
forsi; =1,2<s59<3,4<s3<5andsqy>11 and for s; =1, 2 < s9 <3,
6<s3<7andsg>"1.

Proof. Using Proposition 3.4, we obtain that for every sequence S beginning
with 1, 1 and £ > 1, S-COL is NP-hard. Moreover, using Proposition 3.5 from
(1,2,2)-COL and (1,1,k)-COL, k > 1, we obtain (s1, s2, s3,54)-COL is NP-
hard, for s;1 =1, s5 <3, s3 <5 and s4 <5 and for s1 =1, s90 < 3, s3 < 3 and
84 > 3. Finally, using Proposition 3.3 we obtain (s1, s2, 3, $4)-COL is NP-hard,
for s1 =2, s =2, s3 =2 and s4 > 2.

Moreover, by Proposition 2.18, we can see that in the different cases proved
to be polynomial, P,, does not admit an S-coloring. Hence, these cases are
polynomial. For s; = s4 = 3, Corollary 2.17 is used. O
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