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S-Packing Colorings of Cubic Graphs

Nicolas Gastineau∗and Olivier Togni

LE2I UMR6306, CNRS, Arts et Métiers,

Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

April 29, 2016

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an
S-packing coloring of a graph G is a mapping c from V (G) to {s1, s2, . . . , sk} such
that any two vertices with the ith color are at mutual distance greater than si, 1 ≤
i ≤ k. This paper studies S-packing colorings of (sub)cubic graphs. We prove that
subcubic graphs are (1, 2, 2, 2, 2, 2, 2)-packing colorable and (1, 1, 2, 2, 2)-packing
colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we
provide an example of a cubic graph of order 38 which is not (1, 2, . . . , 12)-packing
colorable.

Keywords: graph, coloring, packing chromatic number, cubic graph.

1 Introduction

A proper coloring of a graph G is a mapping which associates a color (integer) to each vertex
such that adjacent vertices get distinct colors. In such a coloring, the color classes are stable
sets (1-packings). As an extension, a d-distance coloring of G is a proper coloring of the d-th
power Gd of G, i.e. a partition of V (G) into d-packings (sets of vertices at pairwise distance
greater than d). While Brook’s theorem implies that all cubic graphs except the complete
graph K4 of order 4 are properly 3-colorable, many authors studied 2-distance colorings of
cubic graphs.

The aim of this paper is to study a mixing of these two types of colorings, i.e. colorings
of (sub)cubic graphs in which some colors classes are 1-packings while other are d-packings,
d ≥ 2. Such colorings can be expressed using the notion of S-packing coloring. For a non-
decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing coloring (or simply
S-coloring) of a graph G is a coloring of its vertices with colors from {s1, s2, . . . , sk} such
that any two vertices with the ith color are at mutual distance greater than si, 1 ≤ i ≤ k.
The color class of each color si is thus an si-packing. The graph G is S-colorable if there
exists an S-coloring and it is S-chromatic if it is S-colorable but not S′-colorable for any
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S′ = (s1, s2, . . . , sj) with j < k (notice that Goddard et al. [14] define differently the S-
chromaticness for infinite graphs).

A (d, . . . , d)-coloring is thus a d-distance k-coloring, where k is the number of d (see [17] for
a survey of results on this invariant) while a (1, 2, . . . , d)-coloring is a packing coloring. The
packing chromatic number χρ(G) of G is the integer k for which G is (1, . . . , k)-chromatic.
This parameter was introduced by Goddard et al. [12] under the name of broadcast chromatic

number and the authors showed that deciding whether χρ(G) ≤ 4 is NP-hard. A series of
works [3, 6, 8, 9, 12, 18] considered the packing chromatic number of infinite grids. For
sequences S other than (1, 2, ..., k), S-packing colorings were considered more recently [11,
13, 14]. Other papers are about the complexity class of the decision problem associated to
the S-packing coloring problem [7, 10].

Regarding subcubic graphs, the packing chromatic number of the hexagonal lattice and
of the infinite 3-regular tree is 7 and at most 7, respectively. Recently, Brešar et al. [4],
have proven that the packing chromatic number of some cubic graphs, namely the base-3
Sierpiński graphs, is bounded by 9. Goddard et al. [12] asked what is the maximum of the
packing chromatic number of a cubic graph of order n. For 2-distance coloring of cubic graphs,
Cranston and Kim have recently shown [5] that any subcubic graph is (2, 2, 2, 2, 2, 2, 2, 2)-
colorable (they in fact proved a stronger statement for list coloring). For planar subcubic
graphs G, there are also sharper results depending on the girth of G [2, 5, 16].

In this paper, we study S-packing colorings of subcubic graphs for various sequences S
starting with one or two ‘1’. We also compute the distribution of S-chromatic cubic graphs
up to 20 vertices, for three sequences S. The corresponding results are reported on Tables 1, 2,
and 3. They are obtained by an exhaustive search, using the lists of cubic graphs maintained
by Gordon Royle [15]. The paper is organized as follows: Section 2 is devoted to the study
of (1, k, . . . , k)-colorings of subcubic graphs for k = 2 or 3; Section 3 to (1, 1, 2, . . .)-colorings;
Section 4 to (1, 2, 3, . . .)-colorings and Section 5 concludes the paper by listing some open
problems.

1.1 Notation

To describe an S-coloring, if an integer s is repeated in the sequence S, then we will denote
the colors s by sa, sb, . . ..

The subdivided graph S(G) of a (multi)graph G is the graph obtained from G by subdividing
each edge once, i.e. replacing each edge by a path of length two. In S(G), vertices of G are
called original vertices and other vertices are called subdivision vertices. Let us call a graph d-
irregular if it has no adjacent vertices of degree d. Notice that graphs obtained from subcubic
graphs by subdividing each edge at least once are 3-irregular graphs.

The following method (that is inspired from that of Cranston and Kim [5]) is used in the
remainder of the paper to produce a desired coloring of a subcubic graph (except for Theorem
3): for a graph G and an edge e = xy ∈ E(G), a level ordering of (G, e) is a partition of
V (G) into levels Li = {v ∈ V (G) : d(v, e) = i}, 0 ≤ i ≤ ǫ(e), with ǫ(e) = max({d(u, e), u ∈
V (G)}) ≤ diam(G). The vertices are then colored one by one, from level ǫ(e) to 1, while
preserving some properties. These properties are used at the end to allow to color the vertices
x and y by recoloring possibly some vertices in their neighborhoods.

Two vertices u and v of G are called siblings if they are not adjacent, are on the same level
Li for some i ≥ 1 and have a common neighbor in Li−1. A vertex in a level i is a k-vertex if
it has k neighbors in Li ∪ Li+1. Notice that a 2-vertex in a subcubic graph has at most one
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Figure 1: Level ordering of a subcubic graph from the edge xy. The vertices v,w are siblings
but u, v′ are not siblings.

sibling (see Figure 1). Given a (partial) coloring c of G, let C1(u) = {c(v) : uv ∈ E(G)} and
C2(u) = {c(v) : d(u, v) = 2, with u, v not siblings}.

2 (1, k, . . . , k)-coloring

In this section, (1, k, . . . , k)-colorings of subcubic graphs are studied for k = 2 or 3.

2.1 (1, 3, . . . , 3)-coloring

The following proposition is used to obtain an S-coloring of a subdivided graph:

Proposition 1. Let G be a graph and S = (s1, . . . , sk) be a non-decreasing sequence of

integers. If G is S-colorable then S(G) is (1, 2s1 + 1, . . . , 2sk + 1)-colorable.

Proof. Let c be an S-coloring of G. Every pair of vertices u, v ∈ V (G) such that d(u, v) = d
become at distance 2d in S(G). Therefore, every set of vertices in V (G) forming an i-
packing also forms a (2i + 1)-packing in S(G). Using color 1 on subdivision vertices and
using the coloring c (considering the sequence differently) on original vertices, we obtain a
(1, 2s1 + 1, . . . , 2sk + 1)-coloring of S(G).

Corollary 1. For every subcubic graph G, S(G) is (1, 3, 3, 3)-colorable.

Proof. Brooks’ theorem asserts that every subcubic graph except K4 is (1, 1, 1)-colorable.
Hence, by Proposition 1, every subcubic graph G except K4 is such that S(G) is (1, 3, 3, 3)-
colorable. We define a (1, 3, 3, 3)-coloring of S(K4) as follows: let γ : E(K4) → {a, b, c} be
a proper edge 3-coloring of K4. Put color 1 on all four original vertices of K4 and put color
3γ(e) on each subdivision vertex corresponding to edge e of K4.

Goddard et al. [12] characterized (1, 3, 3)-colorable graphs as the graphs obtained from any
bipartite multigraph by subdividing it and adding leaves on original vertices. Therefore, there
are many subdivided subcubic graphs that are not (1, 3, 3)-colorable (for instance S(C3) =
C6), showing that the bound of Corollary 1 is tight in a certain sense.
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2.2 (1, 2, . . . , 2)-coloring

Notice that a vertex of degree at least 3 in a (1, 2, 2)-colored graph can not be colored by 1.
Thus, a (1, 2, 2)-colorable graph does not contain three vertices of degree larger than 2 at mu-
tual distance at most 2 and in particular no cubic graph is (1, 2, 2)-colorable. However, there
exist (1, 2, 2)-colorable subcubic graphs and it has been recently proved [10] that determining
if a subcubic bipartite graph is (1, 2, 2)-colorable is NP-complete.

Theorem 1. Every subcubic graph is (1, 2, 2, 2, 2, 2, 2)-colorable.

Proof. Let G be a subcubic graph and let e = xy be any edge of G. Define a level ordering
Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).

We first construct a coloring c of the vertices of G from level r to 1 and with colors from
the set C = {1, 2a, 2b, 2c, 2d, 2e, 2f}, that satisfies the following properties:

i) color 1 is used as often as possible, i.e. when coloring a vertex u, if no neighbor is
colored 1, then u is colored 1;

ii) if u is colored by 2, then there is a subsidiary color c̃(u) ∈ C different from c(u) such
that c̃(u) 6∈ C1(u) ∪ C2(u), but with possibly c̃(u) = c(v) if u and v are siblings.

The set Lr induces a disjoint union of paths and cycles in G. Since paths and cycles are
(1, 2, 2, 2)-colorable, we are able to construct a coloring of the vertices of Lr as follows. Start
by coloring each path/cycle with colors {1, 2a, 2b, 2c} with color 1 used as often as possible.
We suppose that color 1 is used for the end-vertices (vertices of degree 1) of the paths except
in the case the path has length 1. Remark that a vertex of a cycle of Lr or a vertex of
degree 2 inside a path of Lr can be at distance 2 of at most one vertex in Lr outside this
cycle/path. A vertex of a path of length 1 of Lr can be at distance 2 of at most two vertices
in Lr outside this path. We then recolor each vertex u of a path of length 1 in Lr with color
from {2a, 2b, 2c} by a color from {2d, 2e, 2f} not given to vertices at distance at most 2 from u
and we set c̃(u) = 2a. Then, for each pair of vertices u, v in different paths/cycles at distance
2 both colored by 2a (2b or 2c respectively), set c(u) = 2d (2e or 2f , respectively). Afterwards,
for every vertex u of color 2a (2b, 2c, 2d, 2e or 2f , respectively), set c̃(u) = 2d (2e, 2f , 2a, 2b
or 2c, respectively). Then, the produced coloring is a partial (1, 2, 2, 2, 2, 2, 2)-coloring of G
and Property ii) is satisfied.

Assume that we have already colored all vertices of G of levels from r to i+1 and that we
are going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. If 1 6∈ C1(u) then set c(u) = 1 (Property i)
is then satisfied). If u is a 0-vertex, then it has been colored by 1. If u is a 1-vertex, then
|C1(u) ∪ C2(u)| ≤ 3 and u has at most two siblings v and v′. In this case, we can set a color
and a subsidiary color to u from the set C \ (C1(u)∪C2(u)∪{c(v), c(v′)}). Therefore, we now
suppose that u is a 2-vertex.

If 1 ∈ C1(u), then let u1 be the neighbor of u of color 1 and let u2 be the other neighbor of
u, if any. By construction, either c(u2) = 1 or 1 ∈ C1(u2), hence |C1(u)∪C2(u)| ≤ 5. In that
case there are at least two colors {2α, 2β} ⊂ C \ {C1(u) ∪ C2(u)} for some α, β ∈ {a, . . . , f},
with possibly, if u has a sibling v, 2β = c(v). Then set c(u) = 2α and c̃(u) = 2β (Property ii)
is then satisfied). Figure 2 illustrates this case.

Finally, it remains to color vertices of L0, i.e., x and y. If 1 ∈ C1(x) ∩ C1(y) then, by
Property i), the neighbor x2 of x colored by 2, if any, has a neighbor of color 1 and the same
goes for y, with y2 being the neighbor of y colored by 2, if any. Hence |C1(x) ∪ C2(x)| ≤ 5,
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Figure 2: A configuration in the proof of Theorem 1, when coloring vertex u. The label 2f :2e
on u means that c(u) = 2f and c̃(u) = 2e.

x y

2f2ex22b:2ax12a:2b

x′12c:2a 1 x′2 2d1

x
2c

y
1

2f2ex22ax12b

x′12a 1 x′2 2d1

Figure 3: A configuration in the proof of Theorem 1, before (on the left) and after (on the
right) coloring x and y.

|C1(y) ∪ C2(y)| ≤ 5 and there remains at least two colors 2 available for x and two colors 2
available for y. Therefore x and y can be assigned a different color 2.

If 1 ∈ C1(x) but 1 6∈ C1(y) (or 1 ∈ C1(y) but 1 6∈ C1(x), by symmetry), then set c(y) = 1.
We recall that x2 is the neighbor of x not colored by 1. If C1(x) ∪ C2(x) = C, then set
c(x) = c(x2) and c(x2) = c̃(x2), else give to x an available color.

Otherwise, 1 6∈ C1(x) ∪ C1(y). Then set c(y) = 1 and we show that there is always a color
2 to assign to x. If |C1(x) ∪ C2(x)| ≤ 6, then there is a color available for x. Else, let x1, x2
be the two neighbors of x other than y and let x′1 (x

′
2, respectively) be the neighbor of x1 (x2,

respectively) colored 2 other than x (no more than one, as x1 and x2 both have a neighbor
colored by 1). Suppose, without loss of generality, that c(x1) = 2a, c(x2) = 2b, c(x

′
1) = 2c

and c(x′2) = 2d. If c̃(x1) ∈ {2d, 2e, 2f} then recolor x1 by its subsidiary color c̃(x1) and set
c(x) = 2a. Similarly, if c̃(x2) ∈ {2c, 2e, 2f} then recolor x2 by its subsidiary color c̃(x2) and
set c(x) = 2b. Else, c̃(x1) = 2b and c̃(x2) = 2a. Recolor x′1 by its subsidiary color c̃(x′1) and
set c(x) = 2c. If c̃(x

′
1) = 2a = c(x1), then switch the colors of x1 and x2 (this is possible since

c̃(x1) = c(x2) and c̃(x2) = c(x1)). Figure 3 illustrates this case.
Therefore, we obtain, in all cases, a (1, 2, 2, 2, 2, 2, 2)-coloring of G.

The Petersen graph is an example of cubic graph which is not (1, 2, 2, 2, 2, 2)-colorable,
showing that the result of Theorem 1 is tight in a certain sense. However, the experiments
reported on Table 1 suggest that the Petersen graph could be the only non (1, 2, 2, 2, 2, 2)-
colorable subcubic graph. These experiments have been done using a computer to check
every possible color configuration and by verifying that it is a S-coloring, for sequences S
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with s1 = 1, |S| ≥ 4 and si = 2, for i ≥ 2 . We have considered the list of cubic graphs from
Gordon Royle [15] .

n\S (1, 2, 2, 2) (1, 2, 2, 2, 2) (1, 2, 2, 2, 2, 2) (1, 2, 2, 2, 2, 2, 2)

4 1 0 0 0
6 1 1 0 0
8 2 1 2 0
10 11 7 0 1
12 11 74 0 0
14 254 250 5 0
16 1031 3017 12 0
18 15960 25297 44 0
20 178193 332045 251 0
22 2481669 4835964 1814 0

Table 1: Number of S-chromatic cubic graphs of order n up to 22.

Furthermore, as the following proposition shows, even some bipartite cubic graphs are not
(1, 2, 2, 2, 2, 3)-colorable.

Proposition 2. There exist bipartite cubic graphs that are not (1, 2, 2, 2, 2, 3)-colorable.

Proof. The cubic graph depicted in Figure 4 is bipartite and is (1, 2, 2, 2, 2, 2)-colorable, as
shown on the figure. Let (A,B) be the two subsets of vertices that form a bipartition of this
graph. Suppose this graph is (1, 2, 2, 2, 2, 3)-colorable and let c be a (1, 2, 2, 2, 2, 3)-coloring
and X1 be the set of vertices colored 1. Remark that the cardinality of any 2-packing is at
most 2 and that any pair of vertices (u, v) included in A or in B is such that d(u, v) ≤ 2. We
have |X1| ≥ 5, as at most one vertex can be colored by 3 (since the diameter of the graph is
3) and at most two vertices can be colored the same color 2.

First, if X1 ⊆ A or X1 ⊆ B, then each remaining vertex should be colored differently in
the other partition, which is impossible since |A| = |B| = 7.

Second, if there are vertices colored by 1 in A and B, then the only possibility in order to
have |X1| ≥ 5 is to have one vertex colored by 1 in one partition and four vertices colored 1 in
the other partition (since othewise we obtain adjacent vertices of color 1). Suppose, without
loss of generality, that |X1 ∩A| = 1 and |X1 ∩B| = 4. Exactly three vertices are not colored
1 in B. Consequently, only three pairs of vertices can have the same color 2 and the three
vertices not colored by 1 in A cannot be all colored with the remaining colors 2 and 3.

The next results show that there are sub-families of subcubic graphs that can be colored
with fewer colors.

Theorem 2. Every 3-irregular subcubic graph is (1, 2, 2, 2)-colorable.

Proof. Let G be a 3-irregular graph and let e = xy be any edge of G such that x and y are
both of degree at most 2. If no such edge exists, then the graph is the subdivision S(H) of
some subcubic graph H where leaves could be added on original vertices of degree 2 and thus
G is (1, 3, 3, 3)-colorable by Corollary 1. Define a level ordering Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).

We construct a coloring c of the vertices of G from level r to 1 and with colors from the
set {1, 2a, 2b, 2c}, that satisfies the following properties:
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1

2a 2b 2c

1 2b 2a 2c 2d 2e

2e 2d 1 1

Figure 4: A cubic bipartite (1, 2, 2, 2, 2, 2)-chromatic graph of order 14.

i) color 1 is used as often as possible for vertices of degree at most 2, i.e. when coloring a
vertex u of degree at most 2, if no neighbor is colored by 1, then u is colored by 1;

ii) every vertex of degree 2 is colored by 1 when first coloring vertices of Li, except if the
connected component containing this vertex in Li is a path of order 2 (in which case
one of the two vertices is colored 1).

The set Lr induces a disjoint union of paths of order at most 3 in G. Since paths are
(1, 2, 2)-colorable, the vertices of Lr can be (1, 2, 2, 2)-colored. Moreover, in every path of
order 3 in Lr, the central vertex has degree 3, thus a color 1 could be given to every vertex
of degree 2. If the path is of order 2, one of its end-vertices is colored by 1. Thus, Properties
i) and ii) are satisfied.

Assume that we have already colored all vertices of G of levels from r to i + 1 and that
we are going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. We consider two cases depending on the
degree of u:
Case 1. u is of degree 3.

If 1 /∈ C1(u), then u can be colored by 1. Let u1 and u2 be the colored neighbors of u, with
c(u1) = 1. By Property i), either u2 or a colored neighbor of u2 has color 1. Hence, we have
|C1(u) ∪C2(u)| ≤ 3 and u can be colored some color 2.
Case 2. u is of degree 1 or 2.

If u has degree 1, then we can color u by 1. If 1 /∈ C1(u), then we can set c(u) = 1.
Otherwise, let u1 be the colored neighbor of u, if any. If u1 is of degree 3, let u1,1 and u1,2
be the colored neighbor of u, let u1,1,1 be the neighbor of u1,1 different from u and let u1,2,1
be the neighbor of u1,2 different from u. Since 1 ∈ C1(u), c(u1) = 1 and thus c(u1,1) 6= 1
and c(u1,2) 6= 1. Therefore, by Property i), c(u1,1,1) = c(u1,2,1) = 1. Thus, u1 can be
recolored by some color 2 and we can set c(u) = 1. If u1 is of degree at most 2, then, since
|C1(u1) ∪ C2(u1)| ≤ 3, we can recolor u1 by a color 2. Thus, we can set c(u) = 1.

Finally, it remains to color vertices of L0, i.e. x and y. Let x1 be the possible neighbor of x
different from y and let y1 be the possible neighbor of y different from x. We consider three
cases that cover all the possibilities by symmetry:
Case 1. x1 and y1 both have degree 3.

If their neighbors different from x and y are not adjacent between them, then, by Property
ii), these vertices have color 1 (they have not been recolored when coloring the vertices of L1
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Figure 5: The graphs G(1,2,2,2) (on the left) and G′
(1,2,2,2) (on the right) from Proposition 2.

since x1 and y1 have degree 3) and x1 and y1 have some color 2. Thus we can set c(x) = 1
and some color 2 to y, as |C1(y) ∪ C2(y)| ≤ 3. Suppose that the two vertices of N(x1) \ {x}
are each adjacent to a different vertex of N(y1) \ {y}. Thus, G is the graph G(1,2,2,2) from
Figure 5 and is (1, 2, 2, 2)-colorable. Suppose that the two vertices of N(x1)\{x} are adjacent
and that the two vertices of N(y1) \ {y} are adjacent. In this case, G is the graph G′

(1,2,2,2)

from Figure 5 and is (1, 2, 2, 2)-colorable. Suppose that only one vertex of N(x1) \ {x} is
adjacent to a vertex of N(y1) \ {y}. Let x1,1 and y1,1 be these two adjacent neighbors, the
other neighbors are colored by 1 by Property ii). One of these two vertices is colored by 1
and the other one is colored by 2. Suppose without loss of generality that c(x1,1) = 1. Hence,
we have |C1(x) ∪ C2(x)| ≤ 3 and we can color x by a color 2 and set c(y) = 1. Suppose now
that the two vertices of N(x1) \ {x} are adjacent and that the two vertices of N(y1) \ {y} are
not adjacent. By Property ii), the neighbors of y1 have color 1 and y1 has some color 2. In
this case, we color y by 1, x by another color 2, x1 by 1 and the two adjacent neighbors of x1
by colors from C \ {1, c(x)}.
Case 2. x1 has degree at most 2 and y1 has degree 3.

Since |C1(y1) ∪ C2(y1)| ≤ 3, then y1 can be recolored by some color 2. If x1 and y1 are
not adjacent, then x1 is colored by 1 by Property ii). Otherwise (x1 and y1 are adjacent), we
can color x1 by 1 since y1 has not been colored by 1. Afterward, we set c(y) = 1, and since
|C1(x) ∪C2(x)| ≤ 3 we can set a color 2 to x.
Case 3. x1 and y1 are both of degree at most 2.

If x1 and y1 are adjacent, then the graph is C4 which is trivially (1, 2, 2, 2)-colorable. If x1
and y1 are not adjacent, then, by Property ii), they both have color 1, |C1(x) ∪ C2(x)| ≤ 2
and |C1(y) ∪ C2(y)| ≤ 2. Thus, we can set some colors 2 to x and y.

Therefore, we obtain in all cases a (1, 2, 2, 2)-coloring of G.

Remark that the 5-cycle C5 is 3-irregular and is not (1, 2, 2)-colorable, hence the result of
Theorem 2 is tight in a certain sense. However, there are 3-irregular subcubic graphs that
are (1, 2, 2, 3)-colorable. The graphs from Figure 5 are such examples (the color 2c can be
replaced by color 3).

We end this section with some results on subdivided graphs. Let δ(G) be the minimum
degree of G. In the following theorem, we suppose that δ(G) ≥ 3 in order to avoid cycles
with few vertices of degree at least 3 (every cycle, except C5, is (1, 2, 2)-colorable).

Proposition 3. For every graph G with δ(G) ≥ 3, if S(G) is (1, 2, 2)-colorable, then G is

bipartite.

Proof. Suppose S(G) is (1, 2, 2)-colorable and G contains an odd cycle. In every (1, 2, 2)-
coloring of a graph, every vertex of degree at least 3 should be colored some color 2 (if a
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vertex of degree at least 3 is colored by 1, the coloring cannot be extended to the neighbors
of this vertex). Therefore, if G contains an odd cycle, then S(G) contains a cycle with an
odd number of vertices of degree 3 and the colors 2a and 2b are not sufficient to alternately
color these vertices. Hence S(G) is not (1, 2, 2)-colorable.

Since every bipartite graph G is (1, 1)-colorable, by Proposition 1, S(G) is (1, 3, 3)-colorable
(and also (1, 2, 2)-colorable and (1, 2, 3)-colorable). Thus, we obtain the following corollary.

Corollary 2. For every graph G with δ(G) ≥ 3,

S(G) is (1, 2, 2)-colorable ⇔ S(G) is (1, 2, 3)-colorable ⇔ S(G) is (1, 3, 3)-colorable ⇔ G
is bipartite.

3 (1, 1, 2, . . .)-coloring

Similarly with (1, 2, 2)-coloring, it has been recently proved [10] that determining if a subcubic
or a cubic graph is (1, 1, 2)-colorable is NP-complete. Remind that bipartite graphs are (1, 1)-
colorable. For non-bipartite subcubic graphs, we prove the following result using a different
argument than for the previous theorems. Using the method of proofs of Theorems 1 and 2
allows to show that subcubic graph are (1, 1, 2, 2, 2, 2)-colorable.

Theorem 3. Every subcubic graph is (1, 1, 2, 2, 2)-colorable.

Proof. Let G be a subcubic graph. For a vertex u of V (G), we denote by B2(u) the set
{v ∈ V (G)| dG(u, v) ≤ 2, u 6= v}. A set X ⊆ V (G) is an odd-cut set if the graph induced by
V (G)\X is a bipartite graph. Such set can be obtained by removing one vertex per odd cycle
from V (G). Let GX be the graph with vertex set X and edge set {uv| u, v ∈ X, dG(u, v) ≤
2, u 6= v}. The proof consists of proving the existence of an odd-cut set X such that GX is a
subcubic graph (not necessarily connected) and GX has no connected component isomorphic
to K4.

If GX is subcubic and has no connected component isomorphic toK4, then we can construct
a coloring c of G with colors from the set C = {1a, 1b, 2a, 2b, 2c} as follows. Since the graph
induced by V (G) \X is bipartite, we can color the vertices of V (G) \X with colors 1a and
1b. By Brook’s Theorem, if GX is subcubic and has no connected component isomorphic to
K4, then there exists a proper vertex-coloring c′ of GX with colors from the set {a, b, c}. For
a vertex u ∈ X, we define c by c(u) = 2c′(u).

For a cycle C ofG, we denote by V (C) the set of vertices in C. For an odd-cut setX ⊆ V (G)
and a vertex u ∈ X, we denote by Cu a cycle such that X ∩ V (Cu) = {u}. In the rest of the
proof, when GX is supposed to have an induced subgraph isomorphic to K4, we denote by u1,
u2, u3 and u4 the vertices of this induced subgraph and by U the set {u1, u2, u3, u4}. For two
vertices ui and uj, 1 ≤ i < j ≤ 4, we denote by uij a common neighbor of ui and uj in V (G)
when dG(ui, uj) = 2. When uij exists, we denote by u′ij, the possible vertex inN(uij)\{ui, uj}.

Claim 1. For an odd-cut set X in G with minimum cardinality, the following properties
hold:

(A1) for every vertex u ∈ X, there exists at least one cycle C such that V (C)∩X = {u} and
consequently |N(u) ∩X| ≤ 1;
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(A2) for every two vertices u, v ∈ X such that uv ∈ E(G), we have dGX
(u) ≤ 3 and dGX

(v) ≤
3;

(A3) for every vertex u ∈ X, dGX
(u) ≤ 4;

(A4) if there does not exist three vertices u, v, w ∈ X such that N(u)∩N(v)∩N(w) 6= ∅ and
max(dGX

(u), dGX
(v), dGX

(w)) ≥ 3, then for every vertex x ∈ X, dGX
(x) ≤ 3.

Proof. The left part of Figure 6 illustrates a vertex u ∈ X satisfying dGX
(u) = 4.

(A1): If such cycle did not exist, then X \ {u} would be also an odd-cut set, contradicting
its minimality. Moreover, since u has two neighbors in V (Cu), |N(u) ∩X| ≤ 1.

(A2): Let u and v be two adjacent vertices of X. By Property (A1), there exist two pairs
of distinct vertices {u1, u2} and {v1, v2} such that {u1, u2} ⊆ N(u) ∩ V (Cu) and {v1, v2} ⊆
N(v) ∩ V (Cv). Notice that both u1 and u2 have at least two neighbors in V (Cu). Then,
|B2(u) \ (V (Cu) ∪ V (Cv))| ≤ 3. Since the same property holds for Cv, we have dGX

(u) ≤ 3
and dGX

(v) ≤ 3.
(A3) and (A4): Let u be a vertex of X. By Property (A1), there exist two distinct vertices

u1 and u2 such that {u1, u2} ⊆ N(u) ∩ V (Cu). As previously, u1 and u2 have at least two
neighbors in V (Cu). Let u3 be the possible vertex in N(u)\V (Cu). By Property (A2), if u3 ∈
X, then dGX

(u) ≤ 3. Thus, we can now suppose that u3 /∈ X. Since |(N(u3) \ {u})∩X| ≤ 2,
we have |B2(u) ∩X| ≤ 4 and consequently dGX

(u) ≤ 4. Moreover, if there exists a vertex u
such that dGX

(u) = 4, then we have |(N(u3) \ {u})∩X| = 2 and u3 is a common neighbor of
three distinct vertices of X. Consequently, the contrapositive of Property (A4) follows.

�

Claim 2. For an odd cut set X of minimum cardinality minimizing |E(GX)|, the following
properties hold:

(B1) there does not exist three vertices u, v, w ∈ X such that N(u) ∩N(v) ∩N(w) 6= ∅ and
max(dGX

(u), dGX
(v), dGX

(w)) ≥ 3;

(B2) if there is an induced K4 in GX , then at most two vertices of U are adjacent in G;

(B3) if there is an induced K4 in GX and two vertices of U are adjacent in G, then no vertex
of U is in an induced triangle in G;

(B4) if there is an induced K4 in GX and two vertices of U are adjacent in G, then for every
vertex v ∈ {u12, u13, u14, u23, u24, u34}, we have |B2(v) ∩X| ≤ 4;

(B5) if there is an induced K4 in GX and U is an independent set in G, then for every vertex
v ∈ {u12, u13, u14, u23, u24, u34}, we have |B2(v) ∩X| ≤ 3;

(B6) if there is an induced K4 in GX and U is an independent set in G, then the vertices of
at most one pair among {(u12, u34), (u13, u24), (u14, u23)} have a common neighbor.

Proof.

(B1): Let u, v and w be three distinct vertices of X and let z be a common neighbor of
these three vertices. Suppose dGX

(u) ≥ 3. Notice that, for any odd cycle Cu, z /∈ Cu, since it
would imply that either v or w belongs to V (Cu). Thus, there exist two distinct vertices u1
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and u2 such that {u1, u2} ⊆ (N(u) \ {z}) ∩ V (Cu). Moreover, both u1 and u2 have at least
two neighbors in V (Cu). Since dGX

(u) ≥ 3, either u1 or u2 has a neighbor in X. Suppose,
without loss of generality, that u1 has a neighbor u′ ∈ X. In this case, we can also suppose
that there exists one odd cycle Cu′ such that u1 /∈ V (Cu′). If such odd cycle did not exist, then
(X \{u, u′})∪{u1} would be also an odd-cut set, contradicting the minimality of X. Let u′′ be
the neighbor of u1 in V (Cu) \ {u}. Since u′ has two neighbors in V (Cu′), u′ has no neighbors
in X and since u′′ has two neighbors in V (Cu), we obtain that |(B2(u1) ∩ X) \ {u}| ≤ 2.
Consequently, (X \{u})∪{u1} is also a odd cut set, and since {u1v, u1w} /∈ E(G(X\{u})∪{u1})
and we added at most one edge in E(G(X\{u})∪{u1}), we have |E(G(X\{u})∪{u1})| < |E(GX )|,
contradicting the minimality of |E(GX )|.

(B2): Notice that by Property (B1), no three vertices of U have a common neighbor.
Moreover, by Property (A1), a vertex of X cannot have two neighbors in X. Consequently,
at most two pairs of vertices of U are adjacent. Suppose, without loss of generality, that
(u1, u2) and (u3, u4) are two pairs of adjacent vertices. In this case, we remove U from X and
replace it by {u13, u14, u24}, contradicting the minimality of X.

(B3): Suppose, without loss of generality, that u12 and u13 exist and are adjacent. Let
u′ and u′′ be two existing vertices among {u14, u23, u24, u34} such that the three vertices u′,
u′′ and u13 have no common neighbor. In this case, we remove U from X and replace it by
{u′, u′′, u13}, contradicting the minimality of X. There exist three configurations depending
on which are the two adjacent vertices from U . However, for the three possibilities, it is trivial
to check that if we remove U from X and replace it by {u′, u′′, u13} we obtain an odd-cut set.

(B4): Suppose, without loss of generality, that u1 and u2 are adjacent. We can remark that,
by Property (B1), no vertex of {u13, u14, u23, u24, u34} has a neighbor in X \U . A consequence
is that |B2(u34) ∩X| ≤ 4. Suppose that |B2(u13) ∩X| > 4. Then, X contains two neighbors
of u′13. Consequently, every odd cycle C with u1 ∈ V (C) contains also another vertex of X.
Hence, X \{u1} is an odd-cut set, contradicting the minimality of X. By symmetry, the same
goes for u14, u23 and u24.

(B5): Suppose that the vertex u12 satisfies |B2(u12) ∩ X| > 3. We can remark that if
u13 satisfied also |B2(u13) ∩X| > 3, then, as for Property (B4), X \ {u1} would be an odd-
cut set, contradicting the minimality of X. Thus, we can suppose that |B2(u13) ∩ X| ≤
3. Consequently, we can remove {u1} from X and replace it by {u13}, contradicting the
minimality of |E(GX)|. By symmetry, the same property holds for u13, u14, u23, u24 and u34.

(B6): Suppose that the vertices of two pairs among {(u12, u34), (u13, u24), (u14, u23)} have a
common neighbor and that these two pairs are (u12, u34) and (u13, u24), i.e. N(u12)∩N(u34) 6=
∅ and N(u13) ∩ N(u24) 6= ∅ (other pairs can be treated similarly). Notice that (X \ U)
∪{u′12, u14, u23} is also an odd-cut set, contradicting the minimality of X. Note that in this
case, there is an even cycle containing each vertex of U that does not contain vertices of
(X \ U) ∪ {u′12, u14, u23}.

�

Now suppose that X is an odd-cut set in G of minimum cardinality minimizing |E(GX )|.
We consider two types of induced K4 in GX . The first type is a K4 such that U is an
independent set in G and that both (u12, u34) and (u14, u23) are pairs of vertices with no
common neighbor. The second type is a K4 such that u1 and u2 are adjacent in G. By
Properties (B2), (B3) and (B6), every induced K4 in GX is isomorphic to an induced K4 of
the first or second type. We construct Y by replacing U by {u12, u23, u34, u41} in X, each
time there is an induced K4 of the first type in GX and by replacing U by {u2, u3, u4, u13} in
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→

→

u

Figure 6: A vertex u ∈ X satisfying dGX
(u) = 4 (on the left) and four vertices of X forming

an induced K4 in GX (on the middle) and their corresponding vertices in Y (on the
right) (bold vertices: vertices from X (on the left and middle) or Y (on the right),
thick edges: edges belonging to Cu).

X, each time there is an induced K4 of the second type in GX . The middle part of Figure 6
illustrates the two types of induced K4 in GX and the right part illustrates the corresponding
vertices in Y . Notice that, by Properties (B4) and (B5), the graph GY has no more induced
K4.

Now, it remains to prove that Y is an odd-cut set and that GY is subcubic. Suppose there
is an induced K4 in GX . If this K4 is of the first type, then, since the set {u12, u23, u34, u41}
contains two neighbors of each vertex from U , we obtain that if ui belongs to an odd cycle,
then at least one vertex from {u12, u23, u34, u41} belongs to this odd cycle. If this K4 is of
the second type, notice that if u1 belongs to an odd cycle, then at least one vertex from
{u2, u13} belongs to this odd cycle. Consequently, Y is an odd-cut set and since X has the
same cardinality than Y , Y has minimum cardinality and satisfies Property (A4). Moreover,
by Properties (B4) and (B5), we obtain that no vertex of Y \X has a common neighbor with
two other vertices of Y and consequently that Y satisfies Property (B1). Hence, by Property
(A4), we obtain that GY is subcubic and has no connected component isomorphic to K4,
which concludes the proof.

Remark that in the previous proof, except in the proof of Property (B6), we did not use
the fact that the cycles have odd length. Thus, using a similar proof, we can possibly obtain
that for any subcubic graph G, there exists a minimum cut set that can be partitioned in
three disjoint 2-packings of G.

The Petersen graph is an example of cubic graph which is not (1, 1, k, k′)-colorable, for any
k, k′ ≥ 2, showing that the result of Theorem 3 is tight in a certain sense.

Proposition 4. For any k, k′ ≥ 2, the Petersen graph is not (1, 1, k, k′)-colorable.

Proof. Since the diameter of the Petersen graph is 2, for any k ≥ 2, a color k can be used
to color only one vertex. Hence, it suffices to prove that we can color at most seven vertices
with the two colors 1. A maximum independent set in the Petersen graph contains at most
four vertices and an independent set of four vertices is made of two vertices of the outer cycle
and two vertices of the inner cycle of the Petersen graph. We can remark that for every
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3a
1a 1b

3b

1b 1a

1a
1b 1a

3c

3d 1b

Figure 7: A cubic non (1, 1, 3, 3, 3)-colorable graph of order 12.

possible independent set of four vertices A, there are at most three non-adjacent vertices not
belonging to A.

The experiments suggest that the Petersen graph could be the only non (1, 1, 2, 3)-colorable
subcubic graph, see Table 2. Furthermore, the next result shows that the three colors 2 cannot
be replaced by three colors 3 in Theorem 3.

Proposition 5. There exist cubic graphs that are not (1, 1, 3, 3, 3)-colorable.

Proof. Consider the cubic graph depicted in Figure 7. Since it has diameter 3, no more than
one vertex could be colored by a color 3. Moreover, it contains four disjoint triangles and
each triangle should contain one vertex not colored by 1. Thus, it is impossible to color it
with the sequence (1, 1, 3, 3, 3).

n\S (1, 1) (1, 1, 2) (1, 1, 2, 3) (1, 1, 2, 3, 3)

4 0 0 1 0
6 1 0 1 0
8 1 2 2 0
10 2 9 7 1
12 5 42 38 0
14 13 314 182 0
16 38 2808 1214 0
18 149 32766 8386 0
20 703 423338 86448 0
22 4132 6212201 1103114 0

Table 2: Number of S-chromatic cubic graphs of order n up to 22.

We now show that 3-irregular subcubic graphs are (1, 1, 2)-colorable. Notice that the sub-
divided graph S(G) of any graph G is (1, 1)-colorable as it is bipartite.

Theorem 4. Every 3-irregular subcubic graph is (1, 1, 2)-colorable.

Proof. Let G be a 3-irregular graph and let e = xy be any edge of G such that x and y both
have degree at most 2. If no such edge exist then the graph is bipartite and consequently
(1, 1)-colorable.
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Figure 8: A cubic graph of order 24 with packing chromatic number 11.

Define a level ordering Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).
We first construct a coloring c of the vertices of G from level r to 1 and with colors from

the set {1a, 1b, 2}, that satisfies the following property:

i) No vertex of degree at most 2 is colored 2.

The set Lr induces a disjoint union of paths of order at most 3 in G. Since paths are
(1, 1)-colorable, Lr is (1, 1)-colorable. Thus, Property i) is satisfied.

Assume that we have already colored all vertices of G of levels from r to i+1 and that we are
going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. If u has degree at most 2, then {1a, 1b} 6⊆ C1(u).
Hence, u can be colored by 1a or 1b and Property i) is satisfied. If u has degree 3 and if
C1(u) 6= {1a, 1b}, then u can be colored by 1a or 1b. Else if C1(u) = {1a, 1b}, let u1 and u2
be the colored neighbors of u, with c(u1) = 1a and c(u2) = 1b. The vertex u1 has a neighbor
colored by 1b and the vertex u2 has a neighbor colored by 1a, if not u1 and u2 could be
recolored and u could be colored by 1a or 1b. Thus, we have C1(u)∪C2(u) = {1a, 1b} because
G is 3-irregular and we can color u by the color 2.

Finally, it remains to color vertices of L0, i.e. x and y. If 1a 6∈ C1(x) and 1b 6∈ C1(y)
(or, symmetrically, 1b 6∈ C1(x) and 1a 6∈ C1(y)). Then set c(x) = 1a and c(y) = 1b (or,
symmetrically, c(x) = 1b and c(y) = 1a). Let x1 be the possible neighbor of x different from y
and let y1 be the possible neighbor of y different from x. Without loss of generality, suppose
that c(x1) = 1a and c(y1) = 1a. Suppose that x1 has degree at most 2. If 2 ∈ C1(x1), then
x1 can be recolored by 1b and we can set c(x) = 1a and c(y) = 1b. Else, C1(x1) = {1b} and
we can set c(x) = 2 and c(y) = 1b. If x1 has degree 3, then every colored neighbor of x has
at most degree 2 and is colored by 1b by Property i). Thus, since 2 /∈ C1(x1), we can set
c(x) = 2 and c(y) = 1b. Therefore, we obtain a (1, 1, 2)-coloring of G.

4 (1, 2, 3, . . .)-coloring

The question of whether cubic graphs have finite packing chromatic number or not was raised
by Goddard et al. [12]. We give some partial results related to this question.

For the subdivision of a cubic graph, Proposition 1 implies that if every subcubic graph G
different from the Petersen graph is (1, 1, 2, 2)-colorable, then S(G) is (1, 3, 3, 5, 5)-colorable
and consequently χρ(S(G)) ≤ 5. On the other side, it can be easily verified that χρ(S(K4)) =
5.

For arbitrary cubic graphs, we can (only) state the following:
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Proposition 6. There exists a cubic graph with packing chromatic number 13.

Proof. The cubic graph of order 38 and diameter 4 (which is a largest cubic graph with
diameter 4) described independently in [1, 19] needs 13 colors to be packing colored (checked
by computer). By running a brute force search algorithm, we found that at most 28 vertices
can be colored with colors {1, 2, 3}. But, since this graph has diameter 4, then every color
greater than 3 can be given to only one vertex, implying the use of all colors from {4, . . . , 13}
to complete the coloring.

The distribution of packing chromatic numbers for cubic graphs of order up to 20 is pre-
sented in Table 3. With the help of a computer, we also found a cubic graph of order 24 and
packing chromatic number 11. This graph is illustrated in Figure 8.

n \ χρ 4 5 6 7 8 9 10 11

4 1 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0
8 0 3 2 0 0 0 0 0
10 0 3 15 1 0 0 0 0
12 0 7 42 36 0 0 0 0
14 0 13 252 222 22 0 0 0
16 0 34 907 2685 433 1 0 0
18 0 116 5277 21544 14050 314 0 0
20 0 151 22098 206334 226622 55284∗ 0

Table 3: Number of cubic graphs of order n with packing chromatic number χρ up to 20.∗There
are 55284 cubic graphs of order 20 and with packing chromatic number between 9 and
10 (our program takes too long time to compute their packing chromatic numbers).

5 Concluding remarks

We conclude this paper by listing a few open problems:

• Is it true that any subcubic graph except the Petersen graph is (1, 1, 2, 3)-colorable?

• Is it true that any subcubic graph except the Petersen graph is (1, 2, 2, 2, 2, 2)-colorable?

• Does there exist a 3-irregular subcubic graph that is not (1, 2, 2, 3)-colorable?

• Is it true that any 3-irregular subcubic graph is (1, 1, 3)-colorable?

• Is it true that the subdivision of any subcubic graph is (1, 2, 3, 4, 5)-colorable?

• Does there exist a cubic graph with packing chromatic number larger than 13?
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