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S-Packing Colorings of Cubic Graphs

Nicolas Gastineau∗and Olivier Togni

LE2I, UMR CNRS 6303

Université de Bourgogne, 21078 Dijon cedex, France

March 28, 2014

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an
S-packing coloring of a graph G is a mapping c from V (G) to {s1, s2, . . . , sk}
such that any two vertices with color si are at mutual distance greater than
si, 1 ≤ i ≤ k. This paper studies S-packing colorings of (sub)cubic graphs.
We prove that subcubic graphs are (1, 2, 2, 2, 2, 2, 2)-packing colorable and
(1, 1, 2, 2, 3)-packing colorable. For subdivisions of subcubic graphs we derive
sharper bounds, and we provide an example of a cubic graph of order 38 which
is not (1, 2, . . . , 12)-packing colorable.

Keywords: coloring, packing chromatic number, cubic graph.

1 Introduction

A proper coloring of a graph G is a mapping which associates a color (integer) to each
vertex such that adjacent vertices get distinct colors. In such a coloring, the color
classes are stable sets (1-packings). As an extension, a d-distance coloring of G is a
proper coloring of the d-th power Gd of G, i.e. a partition of V (G) into d-packings (sets
of vertices at pairwise distance greater than d). While Brook’s theorem implies that all
cubic graphs except the complete graph K4 of order 4 are properly 3-colorable, many
authors studied 2-distance colorings of cubic graphs.

The aim of this paper is to study a mixing of these two types of colorings, i.e. colorings
of (sub)cubic graphs in which some colors classes are 1-packings while other are d-
packings, d ≥ 2. Such colorings can be expressed using the notion of S-packing coloring:
For a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing
coloring (or simply S-coloring) of a graph G is a coloring of its vertices with colors from
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{s1, s2, . . . , sk} such that any two vertices with color si are at mutual distance greater
than si, 1 ≤ i ≤ k. The color class of each color si is thus an si-packing. The graph G
is S-colorable if there exists an S-coloring and it is S-chromatic if it is S-colorable but
not S′-colorable for any S′ = (s1, s2, . . . , sj) with j < k (note that Goddard et al. [13]
define differently the S-chromaticness for infinite graphs).

A (d, . . . , d)-coloring is thus a d-distance k-coloring, where k is the number of d (see [16]
for a survey of results on this invariant) while a (1, 2, . . . , d)-coloring is a packing coloring.
The packing chromatic number χρ(G) of G is the integer k for which G is (1, . . . , k)-
chromatic. This parameter was introduced recently by Goddard et al. [11] under the
name of broadcast chromatic number and the authors showed that deciding whether
χρ(G) ≤ 4 is NP-hard. A series of works [3, 5, 7, 8, 11, 17] considered the packing
chromatic number of infinite grids. For sequences S other than (1, 2, ..., k), S-packing
colorings were considered more recently [6, 10, 12, 13].

Regarding cubic graphs, the packing chromatic number of the hexagonal lattice and
of the infinite 3-regular tree is 7 and at most 7, respectively. Goddard et al. [11] asked
what is the maximum of the packing chromatic number of a cubic graph of order n. For
2-distance coloring of cubic graphs, Cranston and Kim have recently shown [4] that any
subcubic graph is (2, 2, 2, 2, 2, 2, 2, 2)-colorable (they in fact proved a stronger statement
for list coloring). For planar subcubic graphs G, there are also sharper results depending
on the girth of G [2, 4, 15].

In this paper, we study S-packing colorings of subcubic graphs for various sequences
S starting with one or two ’1’. We also compute the distribution of S-chromatic cubic
graphs up to 20 vertices, for three sequences S. The corresponding results are reported
on Tables 1, 2, and 3. They are obtained by an exhaustive search, using the lists of cubic
graphs maintained by Gordon Royle [14]. The paper is organized as follows: Section 2 is
devoted to the study of (1, k, . . . , k)-colorings of subcubic graphs for k = 2 or 3; Section
3 to (1, 1, 2, . . .)-colorings; Section 4 to (1, 2, 3, . . .)-colorings and Section 5 concludes the
paper by listing some open problems.

1.1 Notation

To describe an S-coloring, if an integer s is repeated in the sequence S, then we will
denote the colors s by sa, sb, . . ..

The subdivided graph S(G) of a (multi)graph G is the graph obtained from G by
subdividing each edge once, i.e. replacing each edge by a path of length two. In S(G),
vertices of G are called original vertices and other vertices are called subdivision vertices.
Let us call a graph d-irregular if it has no adjacent vertices of degree d. Note that graphs
obtained from subcubic graphs by subdividing each edge at least once are 3-irregular
graphs.

The following method (that is inspired from that of Cranston and Kim [4]) is used
in the remainder of the paper to produce a desired coloring of a subcubic graph: for a
graph G and an edge e = xy ∈ E(G), a level ordering of (G, e) is a partition of V (G)
into levels Li = {v ∈ V (G) : d(v, e) = i}, 0 ≤ i ≤ ǫ(e), with ǫ(e) = max({d(u, e), u ∈
V (G)}) ≤ diam(G). The vertices are then colored one by one, from level ǫ(e) to 1, while
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Figure 1: Level ordering of a subcubic graph from the edge xy. The vertices v,w are
siblings and v and v′ are both cousins of u.

preserving some properties. These properties are used at the end to allow to color the
vertices x and y by recoloring possibly some vertices in their neighborhood.

Two vertices u and v of G are called siblings if they are not adjacent, are on the
same level Li for some i ≥ 1 and have a common neighbor in Li−1. Two vertices u
and v of G are called cousins if they are at distance 3 and in every path of length
3 between u and v, there is a neighbor of u or v in a lower level than the level of u
and v. Note that a vertex has at most one sibling and two cousins (see Figure 1).
Given a (partial) coloring c of G, let C1(u) = {c(v) : uv ∈ E(G)}, C2(u) = {c(v) :
d(u, v) = 2, with u, v not siblings}, C3(u) = {c(v) : d(u, v) = 3, with u, v not cousins},
and C̃3(u) = {c(v) ∈ {2a, 2b, 3}, with u, v cousins}.

2 (1, k, . . . , k)-coloring

In this section, (1, k, . . . , k)-colorings of subcubic graphs are studied for k = 2 or 3.

2.1 (1, 3, . . . , 3)-coloring

The following proposition is used to obtain an S-coloring of a subdivided graph:

Proposition 1. Let G be a graph and S = (s1, . . . , sk) be a non-decreasing sequence of

integers. If G is S-colorable then S(G) is (1, 2s1 + 1, . . . , 2sk + 1)-colorable.

Proof. Let c be an S-coloring of G. Every pair of vertices u, v ∈ V (G) such that d(u, v) =
d become at distance 2d + 1 in S(G). Therefore, every set of vertices in V (G) forming
an i-packing also forms a 2i + 1-packing in S(G). Using color 1 on subdivision vertices
and using the coloring c (considering the sequence differently) on original vertices, we
obtain a (1, 2s1 + 1, . . . , 2sk + 1)-coloring of S(G).

Corollary 1. For every subcubic graph G, S(G) is (1, 3, 3, 3)-colorable.

Proof. Brooks’ theorem asserts that every subcubic graph exceptK4 is (1, 1, 1)-colorable.
Hence, by Proposition 1, every subcubic graph G except K4 is such that S(G) is
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(1, 3, 3, 3)-colorable. We define a (1, 3, 3, 3)-coloring of S(K4) as follows: let γ : E(K4) →
{a, b, c} be a proper edge 3-coloring of K4. Put color 1 on all four original vertices of K4

and put color 3γ(e) on each subdivision vertex corresponding with edge e of K4.

Goddard et al. [11] characterized (1, 3, 3)-colorable graphs as the graphs obtained
from any bipartite multigraph by subdividing it and adding leaves on original vertices.
Therefore, there are many subdivided subcubic graphs that are not (1, 3, 3)-colorable
(for instance S(C3) = C6), showing that the bound of Corollary 1 is tight in a certain
sense.

2.2 (1, 2, . . . , 2)-coloring

Note that no cubic graph with more than 3 vertices is (1, 2, 2)-colorable since a graph
with three vertices of degree larger than 2 at mutual distance less than 2, is not (1, 2, 2)-
colorable. However, there exist (1, 2, 2)-colorable subcubic graphs and it has been re-
cently proved [9] that determining if a subcubic bipartite graph is (1, 2, 2)-colorable is
NP-complete.

Proposition 2. Every subcubic graph is (1, 2, 2, 2, 2, 2, 2)-colorable.

Proof. Let G be a subcubic graph and let e = xy be any edge of G. Define a level
ordering Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).

We first construct a coloring c of the vertices of G from level r to 1 and with colors
from the set C = {1, 2a, 2b, 2c, 2d, 2e, 2f}, that satisfies the following properties :

i) color 1 is used as often as possible, i.e. when coloring a vertex u, if no neighbor is
colored 1, then u is colored 1;

ii) if u is colored 2, then there is subsidiary color c̃(u) ∈ C different from c(u) such
that c̃(u) 6∈ C1(u) ∪ C2(u), but with possibly c̃(u) = c(v) if u and v are siblings.

The set Lr induces a disjoint union of paths and cycles in G. Since paths and cycles are
(1, 2, 2, 2)-colorable, we are able to construct a coloring of the vertices of Lr as follows.
Start by coloring each path/cycle with colors {1, 2a, 2b, 2c}. For each pair of vertices
u, v in different paths/cycles at distance 2 both colored 2a (2b or 2c respectively), set
c(u) = 2d (2e or 2f , respectively). Afterwards, for every vertex u of colors 2a (2b, 2c, 2d,
2e or 2f , respectively), set c̃(u) = 2d (2e, 2f 2a, 2b or 2c, respectively). Then Property
ii) is satisfied.

Assume that we have already colored all vertices of G of levels from r to i + 1 and
that we are going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. If 1 6∈ C1(u) then set c(u) = 1
(Property i) is then satisfied). Now, if 1 ∈ C1(u), then let u1 be the neighbor of u of
color 1 and let u2 be the other neighbor of u, if any. By construction, either c(u2) = 1
or 1 ∈ C1(u2), hence |C1(u) ∪ C2(u)| ≤ 5. In that case there are at least two colors
{2α, 2β} ⊂ C \ C2(u) for some α, β ∈ {a, . . . , f}, with possibly, if u has a sibling v,
2β = c(v). Then set c(u) = 2α and c̃(u) = 2β (Property ii) is then satisfied). Figure 2
illustrates this case.
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2a 2b
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1 2c

Figure 2: A configuration in the proof of Proposition 2, when coloring vertex u. The
label 2f :2e on u means that c(u) = 2f and c̃(u) = 2e.

x y

y22e:2f1x22a:2f1
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x
2a

y
2e
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2c 2d 2b1 2b 2c 12d

Figure 3: A configuration in the proof of Proposition 2, before (on the left) and after
(on the right) coloring x and y.

Finally, it remains to color vertices of L0, i.e., x and y. If 1 ∈ C1(x) ∩ C1(y) then, by
Property i), the neighbor x2 of x colored 2, if any, has a neighbor of color 1 and the same
goes for y, with y2 being the neighbor of y colored 2, if any. Hence |C1(x) ∪C2(x)| ≤ 5,
|C1(y) ∪ C2(y)| ≤ 5 and there remains at least a color 2α available for x and a color 2β
for y. If α = β then set c(x) = c(x2), c(y) = c(y2), c(x2) = c̃(x2) and c(y) = c̃(y2).
Figure 3 illustrates that case.

If 1 ∈ C1(x) but 1 6∈ C1(y) (or 1 ∈ C1(y) but 1 6∈ C1(x), by symmetry), then set
c(y) = 1 and if C2(x) = C then set c(x) = c(x2) and c(x2) = c̃(x2), else give to x an
available color.

Otherwise, 1 6∈ C1(x) ∪ C1(y). Then set c(y) = 1 and we show that there is always a
color 2 to assign to x. If |C1(x) ∪ C2(x)| ≤ 6 then there is a color available for x. Else,
let x1, x2 be the two neighbors of x other than y and let x′1 (x′2, respectively) be the
neighbor of x1 (x2, respectively) colored 2 other than x (no more than one, as x1 and x2
both have a neighbor colored 1). Suppose, without loss of generality, that c(x1) = 2a,
c(x2) = 2b, c(x

′

1) = 2c and c(x′2) = 2d. If c̃(x1) ∈ {2d, 2e, 2f} then recolor x1 by its
subsidiary color c̃(x1) and set c(x) = 2a. Similarly, if c̃(x2) ∈ {2c, 2e, 2f} then recolor x2
by its subsidiary color c̃(x2) and set c(x) = 2b. Else, c̃(x1) = 2b and c̃(x2) = 2a. Recolor
x′1 by its subsidiary color c̃(x′1) and set c(x) = 2c. If c̃(x′1) = 2a = c(x1), then switch
the colors of x1 and x2 (this is possible since c̃(x1) = c(x2) and c̃(x2) = c(x1)). Figure 4
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Figure 4: A configuration in the proof of Proposition 2, before (on the left) and after
(on the right) coloring x and y.

illustrates this case.
Therefore, we obtain, in all cases, a (1, 2, 2, 2, 2, 2, 2)-coloring of G.

The Petersen graph is an example of cubic graph which is not (1, 2, 2, 2, 2, 2)-colorable,
showing that the result of Proposition 2 is tight in a certain sense. However, the ex-
periments reported on Table 1 suggest that the Petersen graph could be the only non
(1, 2, 2, 2, 2, 2)-colorable subcubic graph.

n\S (1, 2, 2, 2) (1, 2, 2, 2, 2) (1, 2, 2, 2, 2, 2) (1, 2, 2, 2, 2, 2, 2)

4 1 0 0 0
6 1 1 0 0
8 2 1 2 0
10 11 7 0 1
12 11 74 0 0
14 254 250 5 0
16 1031 3017 12 0
18 15960 25297 44 0
20 178193 332045 251 0
22 2481669 4835964 1814 0

Table 1: Number of S-chromatic cubic graphs of order n up to 22.

Furthermore, as the following proposition shows, even some bipartite cubic graphs are
not (1, 2, 2, 2, 2, 3)-colorable.

Proposition 3. There exist bipartite cubic graphs that are not (1, 2, 2, 2, 2, 3)-colorable.

Proof. The cubic graph depicted in Figure 5 is bipartite and is (1, 2, 2, 2, 2, 2)-colorable,
as shown on the figure. Let (A,B) be the two subsets of vertices that form a bipartition of
this graph. Suppose this graph is (1, 2, 2, 2, 2, 3)-colorable and let c be a (1, 2, 2, 2, 2, 3)-
coloring and X1 be the set of vertices colored 1. Remark that the cardinality of any
2-packing is at most 2 and that any pair of vertices (u, v) included in A or in B is such
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that d(u, v) ≤ 2. We have |X1| ≥ 5, as at most one vertex can be colored 3 (since the
diameter of the graph is 3) and at most two vertices can be colored the same color 2.

Firstly, if X1 ⊆ A or X1 ⊆ B, then each remaining vertex should be colored differently
in the other partition, which is impossible since |A| = |B| = 7.

Secondly, if there are vertices colored 1 in A and B, then the only possibility in order to
have |X1| ≥ 5 is to have one vertex colored 1 in one partition and four vertices colored
1 in the other partition. Suppose, without loss of generality, that |X1 ∩ A| = 1 and
|X1 ∩ B| = 4. Exactly three vertices are not colored 1 in B. Consequently, only three
pairs of vertices can have the same color 2 and the nine vertices not colored 1 cannot be
all colored with the remaining colors 2 and 3.

1

2a 2b 2c

1 2b 2a 2c 2d 2e

2e 2d 1 1

Figure 5: A cubic bipartite (1, 2, 2, 2, 2, 2)-chromatic graph of order 14.

The next results show that there are sub-families of subcubic graphs that can be
colored with fewer colors.

Proposition 4. Every 3-irregular subcubic graph is (1, 2, 2, 2)-colorable.

Proof. Let G be a 3-irregular graph and let e = xy be any edge of G such that x and y
are both of degree at most 2. If no such edge exists, then the graph is the subdivision
S(H) of some subcubic graph H where leaves could be added on original vertices of
degree 2 and thus G is (1, 3, 3, 3)-colorable by Corollary 1. Define a level ordering Li,
0 ≤ i ≤ r = ǫ(e), of (G, e).

We construct a coloring c of the vertices of G from level r to 1 and with colors from
the set {1, 2a, 2b, 2c}, that satisfies the following properties :

i) color 1 is used as often as possible, i.e. when coloring a vertex u, if no neighbor is
colored 1, then u is colored 1;

ii) every vertex of degree 2 is colored 1 when first coloring vertices of Li, except if the
connected component containing this vertex in Li is a path of order 2 (in which
case one of the two vertices is colored 1).

7



x12a x
2c

y
2b

y1 2a

2b 1

1 2c

Figure 6: The graph G(1,2,2,2) from Proposition 4.

The set Lr induces a disjoint union of paths of order at most 3 in G. Since paths are
(1, 2, 2)-colorable, Lr is (1, 2, 2)-colorable. Moreover, in every path of order 3 in Lr, the
central vertex has degree 3, thus a color 1 could be given to every vertex of degree 2.
If the path is of order 2, one of the vertex is colored 1. Thus, Properties i) and ii) are
satisfied.

Assume that we have already colored all vertices of G of levels from r to i+1 and that
we are going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. We consider two cases depending on
the degree of u:

Case 1. u is of degree 3.

If 1 /∈ C1(u), then u can be colored 1. Let u1 and u2 be the colored neighbors of
u, with c(u1) = 1. By Property i), a colored neighbor of u2 has color 1. Hence, we
have |C1(u) ∪C2(u)| ≤ 3 and u can be colored some color 2.

Case 2. u is of degree at most 2.

Let u1 be the colored neighbor of u, if any. If u1 is of degree 3, let u1,1 and u1,2
be the colored neighbor of u, u1,1,1 be the neighbor of u1,1 different from u and
u1,2,1 be the neighbor of u1,2 different from u. If 1 /∈ C1(u), then we can set
c(u) = 1. Otherwise, c(u1) = 1 and thus c(u1,1) 6= 1 and c(u1,2) 6= 1. Therefore,
c(u1,1,1) = c(u1,2,1) = 1. Thus, u1 can be recolored some color 2 and we can set
c(u) = 1. If u1 is of degree at most 2, then, as |C1(u1)∪C2(u1)| ≤ 3, we can recolor
u1 by a color 2. Thus, we can set c(u) = 1.

Finally, it remains to color vertices of L0, i.e. x and y. Let x1 be the possible neighbor
of x different from y and let y1 be the possible neighbor of y different from x. We consider
three cases that cover all the possibilities by symmetry:

Case 1. x1 and y1 both have degree 3.

If their neighbors different from x and y are not adjacent between them, then, by
Property ii), these vertices have color 1 and x1 and y1 have some color 2. Thus we
can set c(x) = 1 and some color 2 to y, as |C1(y) ∪C2(y)| ≤ 3. Suppose two pairs
of neighbors of x1 and y1 different from x and y are adjacent. Thus, this graph
is the graph G(1,2,2,2) from Figure 6 and is (1, 2, 2, 2)-colorable. Suppose only two
neighbors of x1 and y1 different from x and y are adjacent. Let x1,1 and y1,1 be
these two neighbors, the other neighbors are colored 1 by Property ii). One of
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these two vertices is colored 1 and the other one is colored 2. Suppose without
loss of generality that c(x1,1) = 1. Hence, we have |C1(x)∪C2(x)| ≤ 3 and we can
color x by a color 2 and set c(y) = 1.

Case 2. x1 has degree at most 2 and y1 has degree 3.

By Property ii), x1 is colored 1. As |C1(y1)∪C2(y1)| ≤ 3, then y1 can be recolored
some color 2. Thus, we can set c(y) = 1, and as |C1(x) ∪ C2(x)| ≤ 3 we can set a
color 2 to x.

Case 3. x1 and y1 are both of degree at most 2.

If x1 and y1 are adjacent, then the graph is C4 which is trivially (1, 2, 2, 2)-colorable.
If x1 and y1 are not adjacent, then they both have color 1, |C1(x)∪C2(x)| ≤ 2 and
|C1(y) ∪ C2(y)| ≤ 2. Thus, we can set some colors 2 to x and y.

Therefore, we obtain in all cases a (1, 2, 2, 2)-coloring of G.

Remark that the 5-cycle C5 is 3-irregular and is not (1, 2, 2)-colorable, hence the result
of Proposition 4 is tight in a certain sense. However, there are 3-irregular subcubic graphs
that are (1, 2, 2, 3)-colorable. The graph from Figure 6 is such an example (the vertex x
can be recolored 1 and then color 2c can be replaced by color 3).

We end this section with some results on subdivided graphs. Let δ(G) be the minimum
degree of G.

Proposition 5. For every graph G with δ(G) ≥ 3, if S(G) is (1, 2, 2)-colorable then G
is bipartite.

Proof. Suppose S(G) is (1, 2, 2)-colorable and G contains an odd cycle. In every (1, 2, 2)-
coloring of a graph, every vertex of degree at least 3 should be colored some color 2 (if a
vertex of degree at least 3 is colored 1, the coloring cannot be extended to the neighbors
of this vertex). Therefore, if G contains an odd cycle, then S(G) contains a cycle with
an odd number of vertices of degree 3 and the colors 2a and 2b are not sufficient to
alternately color these vertices. Hence S(G) is not (1, 2, 2)-colorable.

As every bipartite graph G is (1, 1)-colorable, then by Proposition 1, S(G) is (1, 3, 3)-
colorable (and also (1, 2, 2)-colorable and (1, 2, 3)-colorable). Thus, we obtain the fol-
lowing corollary.

Corollary 2. For every graph G with δ(G) ≥ 3,

S(G) (1, 2, 2)-colorable ⇔ S(G) (1, 2, 3)-colorable ⇔ S(G) (1, 3, 3)-colorable ⇔ G bipartite.

3 (1, 1, 2, . . .)-coloring

Remind that bipartite graphs are (1, 1)-colorable. For non-bipartite subcubic graphs,
we prove the following:
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Proposition 6. Every subcubic graph is (1, 1, 2, 2, 3)-colorable.

Proof. Let G be a subcubic graph and let e = xy be any edge of G. Define a level
ordering Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).

We first construct a coloring c of the vertices of G from level r to 1 and with colors
from the set {1a, 1b, 2a, 2b, 3}, that satisfies the following properties :

i) colors 1 are used as often as possible, i.e. when coloring a vertex u, if no neighbor
is colored 1a then u is colored 1a else if no neighbor is colored 1b, then u is colored
1b;

ii) if u is colored 2 or 3, then, except in the case where u and a sibling of u are both
colored some color 2, u has a subsidiary color c̃(u) ∈ {2a, 2b, 3} different from c(u)
such that:

• c̃(u) 6∈ C1(u) ∪ C2(u) ∪ C3(u), but with possibly c̃(u) ∈ C̃3(v), if c̃(u) = 3;

• c̃(u) 6∈ C1(u) ∪ C2(u), otherwise;

iii) if u is colored 3 then its sibling (if any) is colored 1a or 1b.

We begin with recalling that by Property i), vertices of color among {2a, 2b, 3} have
neighbors at the same level or at the above level colored 1a and 1b. Also, by properties
ii) and iii), we have the following claim.

Claim 1. If two cousins u and v are such that c̃(u) = 3 and c(v) = 3 and there is no

vertex at distance at most 2 from v colored by {c̃(v)} ∩ {2a, 2b} in the below levels and

no vertex at distance at most 3 from u colored by 3 in the below levels, then u and v can

be recolored in order that c(u) = 3.

The set Lr induces a disjoint union of paths and cycles in G. Since paths and cycles
are (1, 1, 2)-colorable, we are able to construct a coloring of the vertices of Lr as follows.
Start by coloring each path/cycle with colors {1a, 1b, 2a}, using one color 2a per odd
cycle (and no color 2 for even cycle). For each pair of vertices in different paths/cycles
at distance 2 both colored 2a, recolor one of the vertex with color 2b. Then, Properties
i), ii) and iii) are satisfied.

Assume that we have already colored all vertices of G of levels from r to i + 1 and
that we are going to color vertex u ∈ Li, 1 ≤ i ≤ r− 1. If C1(u) 6= {1a, 1b}, then give to
u the available color 1. Hence Property i) is satisfied and we can suppose that u has two
neighbors in Li ∪ Li+1, say u1 and u2, such that c(u1) = 1a and c(u2) = 1b. Moreover,
we can suppose that u1 has a neighbor u1,1 of color 1b and u2 has a neighbor u2,1 of
color 1a since otherwise, u could be colored by either 1a or 1b after recoloring u1 or u2.
Let u1,2 be the other neighbor of u1 different from u, if any, with c(u1,2) = α and let
u2,2 be the other neighbor of u2 different from u, if any, with c(u2,2) = β. We consider
three cases depending on the values of α and β:

Case 1. α = 1b and β = 1a. Then set c(u) = 2a or c(u) = 2b if the sibling of u is colored
2a, and c̃(u) = 2b if u has no sibling colored 2. Thus Property ii) is satisfied.
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Case 2. α = 1b and β 6= 1a (or α 6= 1b and β = 1a, by symmetry). As u2,2 has no sibling
colored some color 2, then it has a subsidiary color by Property ii).

• If c(u2,2)∪ c̃(u2,2) 6= {2a, 2b}, then set c(u2,2) = 3 (possibly, if u2,2 has a cousin
z colored 3, it can be seen that u2,2 and z satisfy the conditions of Claim 1,
hence z can be recolored by its subsidiary color). Thus we can set c(u) = 2a
and c̃(u) = 2b, or c(u) = 2b if the sibling of u is colored 2a, and Property ii)
is satisfied.

• If c(u2,2) ∪ c̃(u2,2) = {2a, 2b} and the sibling of u is colored 2, then give an
appropriate color to u2,2 in order u to have a color different from its sibling.

• If c(u2,2)∪ c̃(u2,2) = {2a, 2b} and u has no sibling colored 2, suppose, without
loss of generality, that c(u2,2) = 2a. As u2,1 is colored 1a, it has a neighbor
colored 1b different from u2 (if not, u2,1 and u2 can be recolored and we can
give a color 1 to u). If the other neighbor of u2,1 is colored 3 then change
its color by its subsidiary color using Claim 1. Since the vertices u1,1 and
u1,2 are both colored 1b, they could have two neighbors colored 2a and 2b
or these vertices could have one neighbor colored 1a different from u1 and
another neighbor different from u1 of any color. In the latter case, recolor
the possible neighbor of these vertices colored 3 by its subsidiary color using
Claim 1. Then, set c(u) = 2b and c̃(u) = 3.

Case 3. α, β ∈ {2a, 2b, 3}. Then the set A = (c(u1,2) ∪ c̃(u1,2)) ∩ (c(u2,2) ∪ c̃(u2,2)) is
not empty. If 3 ∈ A, then set c(u1,2) = 3 and c(u2,2) = 3 and set c(u) = 2a and
c̃(u) = 2b, or c(u) = 2b, if the sibling of u is colored 2a. Thus Property ii) is
satisfied. Else, if 3 /∈ A and u has a sibling colored 2, then change the color of
u1,2 and u2,2 by appropriate colors and give a color 2 to u. Else, if 3 /∈ A and
u has no sibling colored 2, then give a color 2δ ∈ A, with δ ∈ {a, b} to u1,2 and
u2,2 and recolor each vertex at distance at most 3 from u by its subsidiary color
using Claim 1 (there are at most two vertices colored 3 by hypothesis). Hence,
set c(u) = 2β and c̃(u) = 3, β 6= α and β ∈ {a, b}, and Property ii) is satisfied.
Property iii) is satisfied, as the color 3 has been given to vertices which have no
sibling colored 2.

Now, it remains to color vertices of L0, i.e., x and y. Let x1 and x2 be the possible
neighbors of x different from y and y1 and y2 be the possible neighbors of y different
from x. We consider seven cases that cover all the possible configurations for the colors
of the neighbors of x and y (in order to simplify, configurations that can be obtained by
exchanging x and y are omitted):

Case 1. 1a 6∈ C1(x) and 1b 6∈ C1(y). Then set c(x) = 1a and c(y) = 1b.

Case 2. C1(x) = {1a, α} and C1(y) = {1a}, with α ∈ {2a, 2b, 3}. Then set c(y) = 1b.
Suppose c(x1) = 1a and c(x2) = α. The vertex x1 has a neighbor colored 1b (if not
we would be in Case 1 by recoloring x1). Let x1,1 be the possible neighbor of x1
not colored 1b and β be its color. Recolor x1,1 by its subsidiary color if α 6= β and
α, β ∈ {2a, 2b}. Then give a remaining color 2 to x.

11



Case 3. C1(x) = {α, β} and C1(y) = {1a}, with α, β ∈ {1a, 1b}. Then set c(y) = 1b.
A vertex among x1 and x2 has a neighbor of color 1b (if not we would be in the
first case by recoloring x1 and x2) and we suppose that this vertex is x1. Two
cases can occur, C1(x2) = {2a, 2b} and consequently C2(x2) = {1a, 1b, 2a, 2b} or
C1(x2) = {γ, δ}, with γ ∈ {1a, 1b} and δ ∈ {1a, 1b, 2a, 2b, 3}. In both cases, recolor
every vertex at distance at most 3 from x colored 3 by its subsidiary color (by
Property iii), such a vertex has no sibling colored 2) and set c(x) = 3.

Case 4. C1(x) = {1a, 1b} and C1(y) = {2a, 2b}. Then set c(y) = 1b. We suppose,
without loss of generality, that c(x1) = 1a and c(x2) = 1b. We have 1b ∈ C1(x1)
and 1a ∈ C1(x2) (if not we would be in Case 1 by recoloring x1 or x2). Recolor
every vertex at distance at most 3 from x colored 3 by its subsidiary color (by
Property iii), such a vertex has no sibling colored 2) and set c(x) = 3.

Case 5. C1(x) = {1a, α} and C1(y) = {1a, β}, with α ∈ {2a, 2b, 3} , β ∈ {2a, 2b, 3}.
Then set c(y) = 1b. Suppose c(x1) = 1a and c(x2) = α, x1 has a neighbor colored
1b (if not we would be in Case by recoloring x1) and {1a, 1b} ∈ C1(x2), by Property
i). If α = 3, then change the color of x2 by its subsidiary color α′. Let γ ∈ {2a, 2b},
with γ 6= α, and γ 6= α′ if α = 3. Recolor every vertex at distance at most 2 from
x colored γ by its subsidiary color and set c(x) = γ.

Case 6. C1(x) = {1a, 1b} and C1(y) = {1a, α}, with α ∈ {2a, 2b, 3}. Then set c(y) = 1b.
Suppose c(x1) = 1a and c(x2) = 1b, x1 has a neighbor colored 1b (if not we would
be in Case 1 by recoloring x1) and x2 has neighbors colored 1a (if not we would
be in Case 2 by recoloring x2). Recolor every vertex at distance at most 2 from x
colored 2a by its subsidiary color and set c(x) = 2a.

Case 7. C1(x) = {1a, 1b} and C1(y) = {1a, 1b}. Suppose c(x1) = 1a and c(x2) = 1b, x1
has a neighbor colored 1b and x2 has a neighbor 1a (if not we would be in Case 3 by
recoloring x1 or x2). Recolor each neighbor of x1 or x2 colored 2a by its subsidiary
color (its sibling is colored 1) and set c(x) = 2a. Recolor each neighbor of y1 or y2
colored 2b by its subsidiary color (its sibling is colored 1) and set c(y) = 2b.

Therefore, in each case, we obtain a (1, 1, 2, 2, 3)-coloring of G.

The Petersen graph is an example of cubic graph which is not (1, 1, 2, 3)-colorable,
showing that the result of Proposition 6 is tight in a certain sense. However, experiments
suggest that the Petersen graph could be the only non (1, 1, 2, 3)-colorable subcubic
graph, see Table 2.

Furthermore, the next result shows that the two colors 2 cannot be replaced by two
colors 3 in the previous proposition.

Proposition 7. There exist cubic graphs different from the Petersen graph that are not

(1, 1, 3, 3, 3)-colorable.

Proof. Consider the cubic graph depicted in Figure 7. Since it has diameter 3, hence no
more than one vertex could be colored by a color 3. Moreover, it contains four triangles
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3a
1a 1b

3b

1b 1a

1a
1b 1a

3c

3d 1b

Figure 7: A cubic non (1, 1, 3, 3, 3)-colorable graph of order 12.

and each triangle should contain one vertex not colored 1. Thus, it is impossible to color
it with the sequence (1, 1, 3, 3, 3).

n\S (1, 1) (1, 1, 2) (1, 1, 2, 3) (1, 1, 2, 3, 3)

4 0 0 1 0
6 1 0 1 0
8 1 2 2 0
10 2 9 7 1
12 5 42 38 0
14 13 314 182 0
16 38 2808 1214 0
18 149 32766 8386 0
20 703 423338 86448 0
22 4132 6212201 1103114 0

Table 2: Number of S-chromatic cubic graphs of order n up to 22.

We now show that 3-irregular subcubic graphs are (1, 1, 2)-colorable. For subdivided
graphs S(G) of any graph G, note that S(G) is (1, 1)-colorable as it is bipartite.

Proposition 8. Every 3-irregular subcubic graph is (1, 1, 2)-colorable.

Proof. Let G be a 3-irregular graph and let e = xy be any edge of G such that x and
y both have degree at most 2. If no such edge exist then the graph is bipartite and
consequently (1, 1)-colorable.

Define a level ordering Li, 0 ≤ i ≤ r = ǫ(e), of (G, e).
We first construct a coloring c of the vertices of G from level r to 1 and with colors

from the set {1a, 1b, 2}, that satisfies the following property :

i) No vertex of degree at most 2 is colored 2.

The set Lr induces a disjoint union of paths of order at most 3 in G. Since paths are
(1, 1)-colorable, Lr is (1, 1)-colorable. Thus, Property i) is satisfied.
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Assume that we have already colored all vertices of G of levels from r to i + 1 and
that we are going to color vertex u ∈ Li, 1 ≤ i ≤ r − 1. If u has degree at most 2
then {1a, 1b} 6⊆ C1(u). Hence u can be colored 1a or 1b and Property i) is satisfied.
If u has degree 3 and if C1(u) 6= {1a, 1b}, then u can be colored 1a or 1b. Else if
C1(u) = {1a, 1b}, let u1 and u2 be the colored neighbors of u, with c(u1) = 1a and
c(u2) = 1b. The vertex u1 has a neighbor colored 1b and the vertex u2 has a neighbor
colored 1a, if not u1 and u2 could be recolored and u could be colored 1a or 1b. Thus,
we have C1(u) ∪ C2(u) = {1a, 1b} and we can color u by the color 2.

Finally, it remains to color vertices of L0, i.e. x and y. If 1a 6∈ C1(x) and 1b 6∈ C1(y)
(or, symmetrically, 1b 6∈ C1(x) and 1a 6∈ C1(y)). Then set c(x) = 1a and c(y) = 1b
(or, symmetrically, c(x) = 1b and c(y) = 1a). Let x1 be the possible neighbor of x
different from y and let y1 be the possible neighbor of y different from x. Without loss
of generality, suppose that c(x1) = 1a and c(y1) = 1a. Suppose that x1 has degree at
most 2. If C1(x1) = {2}, then x1 can be recolored 1b and we can set c(x) = 1a and
c(y) = 1b. Else, C1(x1) = {1b} by Property i) and we can set c(x) = 2 and c(y) = 1b. If
x1 has degree 3, then every colored neighbor of x has at most degree 2 and is colored 1b
by Property i). Thus, as 2 /∈ C1(x1), we can set c(x) = 2 and c(y) = 1b. Therefore, we
obtain a (1, 1, 2)-coloring of G.

4 (1, 2, 3, . . .)-coloring

The question of whether cubics graphs have finite packing chromatic number or not was
raised by Goddard et al. [11]. We give some partial results related to this question.

For the subdivision of a cubic graph, Proposition 1 along with Proposition 6 allow to
obtain the following corollaries:

Corollary 3. For every subcubic graph G, S(G) is (1, 3, 3, 5, 5, 7)-colorable.

Corollary 4. For every subcubic graph G, χρ(S(G)) ≤ 6.

On the other side, it can be easily verified that χρ(S(K4)) = 5.
For arbitrary cubic graphs, we can (only) state the following:

Proposition 9. There exists a cubic graph with packing chromatic number 13.

Proof. The cubic graph of order 38 and diameter 4 (which is the largest cubic graph
with diameter 4) described independently in [1, 18] needs 13 colors to be packing colored
(checked by computer). By running a brute force search algorithm, we found that at
most 28 vertices can be colored with colors {1, 2, 3}. But, since this graph has diameter
4, then every color greater than 3 can be given to only one vertex, implying the use of
all colors from {4, . . . , 13} to complete the coloring.

The distribution of packing chromatic numbers for cubic graphs of order up to 20 is
presented in Table 3. We also found, (with the help of a computer), a cubic graph of
order 24 and packing chromatic number 11.
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n \ χρ 4 5 6 7 8 9 10 11

4 1 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0
8 0 3 2 0 0 0 0 0
10 0 3 15 1 0 0 0 0
12 0 7 42 36 0 0 0 0
14 0 13 252 222 22 0 0 0
16 0 34 907 2685 433 1 0 0
18 0 116 5277 21544 14050 314 0 0
20 0 151 22098 206334 226622 55284∗ 0

Table 3: Number of cubic graphs of order n with packing chromatic number χρ up to
20.∗There are 55284 cubic graphs of order 20 and with packing chromatic num-
ber between 9 and 10 (our program takes too long time to compute their packing
chromatic numbers).

5 Concluding remarks

We conclude this paper by listing a few open problems:

• Is it true that any subcubic graph except the Petersen graph is (1, 1, 2, 3)-colorable?

• Is it true that any subcubic graph except the Petersen graph is (1, 2, 2, 2, 2, 2)-
colorable?

• Does there exist a 3-irregular subcubic graph that is not (1, 2, 2, 3)-colorable?

• Is it true that any 3-irregular subcubic graph is (1, 1, 3)-colorable?

• Is it true that the subdivision of any subcubic graph is (1, 2, 3, 4, 5)-colorable?

• Does there exist a cubic graph with packing chromatic number larger than 13?
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