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Abstract

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G.
If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti,
1 ≤ i ≤ k, do not contain common edges and common vertices, except the
vertices u and v, then T1, . . . , Tk are completely independent spanning
trees in G. For 2k-regular graphs which are 2k-connected, such as the
Cartesian product of a complete graph of order 2k − 1 and a cycle and
some Cartesian products of three cycles (for k = 3), the maximum number
of completely independent spanning trees contained in these graphs is
determined and it turns out that this maximum is not always k.

Keywords: Spanning tree, Cartesian product, Completely indepen-
dent spanning tree.

1 Introduction

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees in a graph G. The
spanning trees T1, . . . , Tk are edge-disjoint if E(T1) ∩ · · · ∩ E(Tk) = ∅. For a
given tree T and a given pair of vertices (u, v) of T , let PT (u, v) be the set
of vertices in the unique path between u and v in T . The spanning trees
T1, . . . , Tk are internally disjoint if for any pair of vertices (u, v) of V (G),
PT1

(u, v) ∩ · · · ∩ PTk
(u, v) = {u, v}. Finally, the spanning trees T1, . . . , Tk are

completely independent spanning trees if they are pairwise edge disjoint and
internally disjoint.

∗Author partially supported by the Burgundy Council

1



Disjoint spanning trees have been extensively studied as they are of prac-
tical interest for fault-tolerant broadcasting or load-balancing communication
systems in interconnection networks : a spanning-tree is often used in various
network operations; computing completely independent spanning-trees guaran-
tees a continuity of service, as each can be immediately used as backup spanning
tree if a node or link failure occurs on the current spanning tree. Thus, com-
puting k completely independent spanning trees allows to handle up to k − 1
simultaneous independent node or link failures. In this context, a network is
often modeled by a graph G in which the set of vertices V (G) corresponds to
the nodes set and the set of edges E(G) to the set of direct links between nodes.

Completely independent spanning trees were introduced by T. Hasunuma
[4] and then have been studied on different classes of graphs, such as underlying
graphs of line graphs [4], maximal planar graphs [6], Cartesian product of two
cycles [7] and complete graphs, complete bipartite and tripartite graphs [11].
Moreover, the decision problem that consists in determining if there exist two
completely independent spanning trees in a graph G is NP-hard [6].

Other works on disjoint spanning trees include independent spanning trees
which focus on finding spanning trees T1, . . . , Tk rooted at r, such that for any
vertex v the paths from r to v in T1, . . . , Tk are pairwise openly disjoint. the
main difference is that T1, . . . , Tk are rooted at r and only the paths to r are
considered. Thus T1, . . . , Tk may share common edges, which is not admissible
with completely independent spanning trees. Independent spanning trees have
been studied in several topologies, including product graphs [10], de Bruijn and
Kautz digraphs [3, 5], and chordal rings [9]. Related works also include Edge-
disjoint spanning trees, i.e. spanning-trees which are pairwise edge disjoint
only. Edge-disjoint spanning trees have been studied on many classes of graphs,
including hypercubes [1], Cartesian product of cycles [2] and Cartesian product
of two graphs [8].

We use the following notations : for a tree, a vertex that is not a leaf is
called an inner vertex. For a vertex u of a graph G, let dG(u) be its degree in
G, i.e. the number of edges of G incident with it.

For clarity, we recall the definition of the Cartesian product of two graphs :
Given two graphs G and H , the Cartesian product of G and H , denoted G�H ,
is the graph with vertex set V (G) × V (H) and edge set {(u, u′)(v, v′)|(u =
v ∧ u′v′ ∈ E(H)) ∨ (u′ = v′ ∧ uv ∈ E(G))}.

The following theorem gives an alternative definition [4] of completely inde-
pendent spanning trees.

Theorem 1.1 ([4]). Let k ≥ 2 be an integer. T1, . . . , Tk are completely indepen-
dent spanning trees in a graph G if and only if they are edge-disjoint spanning
trees of G and for any v ∈ V (G), there is at most one Ti such that dTi

(v) > 1.

It has been conjectured that in any 2k-connected graph, there are k com-
pletely independent spanning trees [6]. This conjecture has been refuted, as
there exist 2k-connected graphs which do not contain two completely indepen-
dent spanning trees [12], for any integer k. However, the given counterexamples
are not 2k-regular.
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Proposition 1.2 ([12]). For any k ≥ 2, there exist 2k-connected graphs that
do not contain two completely independent spanning trees.

The proof of the previous proposition consists in constructing a 2k-connected
graph with a large proportion of vertices of degree 2k adjacent to the same
vertices and proving that these vertices of degree 2k can not be all adjacent to
inner vertices in a fixed tree.

This article is organized as follows. Section 2 presents necessary conditions
on 2r-regular graphs in order to have r completely independent spanning trees.
Section 3 presents the maximum number of completely independent spanning
trees in Km�Cn, for n ≥ 3 and m ≥ 3. In particular, we exhibit the first
2r-regular graphs which are 2r-connected and which do not contain r com-
pletely independent spanning trees. In Section 4, we determine three com-
pletely independent spanning trees in some Cartesian products of three cycles
Cn1

�Cn2
�Cn3

, for 3 ≤ n1 ≤ n2 ≤ n3.

2 Necessary conditions on 2r-regular graphs

Proposition 2.1. If in a 2r-regular graph G there exist r completely indepen-
dent spanning trees, then every spanning tree has maximum degree at most r+1.

Proof. By Theorem 1.1, every vertex should be of degree 1 in every spanning
tree except in one spanning tree. Hence, in a spanning tree, a vertex is either
of degree 1 (a leaf) or has degree between 2 and r + 1 (an inner vertex), as
2r − (r − 1) = r + 1.

Let IN(T ) be the set of inner vertices in a tree T .

Proposition 2.2. If in a 2r-regular graph G of order n there exist r completely
independent spanning trees, then there exists a spanning tree T among them
such that |IN(T )| ≤ ⌊n/r⌋.

Proof. Let T1, . . . , Tr be completely independent spanning trees in G and sup-
pose that |IN(Ti)| > ⌊n/r⌋ for every i ∈ {1, . . . , r}. By Theorem 1.1, we have
r
∑

i=1

|IN(Ti)| ≤ n. With our hypothesis, we have
r
∑

i=1

|IN(Ti)| ≥ (⌊n/r⌋+ 1)r > n,

and a contradiction.

Proposition 2.3. If in a 2r-regular graph G of order n there exist r completely
independent spanning trees T1, . . . , Tr, then for every integer i, 1 ≤ i ≤ r,

⌈

n− 2

r

⌉

≤ |IN(Ti)| ≤ n−

⌈

n− 2

r

⌉

(r − 1).
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Proof. In a spanning tree T of a graph of order n we recall that
∑

v∈V (T )

dT (v) =

2n− 2. By Proposition 2.1, we have
∑

v∈V (T )

dT (v) ≤ |IN(T )|r+n and we obtain

⌈n−2
r

⌉ ≤ |IN(T )|. By Theorem 1.1,
r
∑

i=1

|IN(Ti)| ≤ n. For a fixed integer i, using

the previous inequality, we obtain |IN(Ti)| ≤ n− ⌈n−2
r

⌉(r − 1).

Definition 2.1. Let G be a 2r-regular graph of order n for which there exist r
completely independent spanning trees T1, . . . , Tr. A lost edge is an edge of G
that is in none of the spanning trees T1, . . . , Tr. We let El be the set of lost edges,
i.e. El = E(G) −

⋃

1≤i≤r

E(Ti). Let also El
Ti

= {uv ∈ E(G)|u, v ∈ IN(Ti), uv /∈

E(Ti)}, for i ∈ {1, . . . , r}, i.e. El
Ti

is the subset of edges of El that have their
two extremities in IN(Ti).

Proposition 2.4. If in a 2r-regular graph G of order n there exist r completely
independent spanning trees T1, . . . , Tr, then |El| = r.

Proof. We have
r
∑

i=1

|E(Ti)| + |El| = E(G) = rn and
r
∑

i=1

|E(Ti)| = r(n − 1).

Hence, |El| = r.

Since each edge of El
Ti

is also in El and each edge of El is in at most one

set El
Ti

for some integer i, we have the following observation.

Observation 2.5. In a 2r-regular graph G of order n for which there exist r
completely independent spanning trees T1, . . . , Tr, we have

∑

1≤i≤r

|El
Ti
| ≤ |El| =

r.

Definition 2.2. The potential extra degree of a spanning tree T in a 2r-regular
graph G of order n is ped(T ) = |IN(T )|r − n+ 2.

With Proposition 2.3, we have the following easy observation:

Observation 2.6. Let G be a graph, for which there exist r completely inde-
pendent spanning trees T1, . . . , Tr. Then, for every i, 0 ≤ i ≤ r, ped(Ti) ≥ 0.

Note also that, by definition, the number of inner vertices of Ti of degree at
most r is bounded by ped(Ti).

Proposition 2.7. If in a 2r-regular graph G of order n there exist r completely
independent spanning trees, then there exists a spanning tree T among them
such that ped(T ) ≤ 2 and El

T ≤ 1, with strict inequalities if r does not divide n.

Proof. By Proposition 2.2, there exists a tree T among them such that |IN(T )| ≤
⌊n/r⌋. Hence, ped(T ) ≤ ⌊n/r⌋r − n + 2 ≤ 2, with strict inequality if r does
not divide n. For every edge uv in El

T , both u and v are adjacent to one inner
vertex of every spanning tree other than T . Hence, both u and v have degree
at most r in T and thus ped(T ) ≥ 2|El

T |.
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Note that the inequality ped(T ) ≥ 2|El
T | can be strict.

Corollary 2.8. Suppose that G is a 2r-regular graph of order n for which there
exist r completely independent spanning trees T1, . . . , Tr, for r ≥ 3 and n ≡ 0
(mod r). Then, for every integer i, 1 ≤ i ≤ r, |IN(Ti)| = n/r and ped(Ti) = 2.

Observation 2.9. For a 2r-regular graph G of order n for which there exist r
completely independent spanning trees T1, . . . , Tr, for every tree Ti, 1 ≤ i ≤ r,
and every edge e in El

Ti
, the extremities of e have degree at most r in Ti.

3 Cartesian product of a complete graph and a

cycle

Let m ≥ 3 and n ≥ 2 be integers. In this section, the considered graphs are
Km�Pn, and Km�Cn n ≥ 3.

Let V (Km�Pn) = V (Km�Cn) = {uj
i , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} and

E(Km�Pn) = {uj
iu

j
k, 0 ≤ i, k ≤ m−1, i 6= k, 0 ≤ j ≤ n−1}∪{uj

iu
j+1
i , 0 ≤ i ≤

m− 1, 0 ≤ j ≤ n− 2}). E(Km�Cn) = E(Km�Pn)∪ {u0
iu

n−1
i , 0 ≤ i ≤ m− 1}.

For j ∈ {0, . . . , n − 1}, the subgraphs Kj induced by {uj
i , 0 ≤ i ≤ m − 1

are thus complete graphs on n vertices that we call K-copies. In order to study
the distribution of inner vertices of the spanning trees among the K-copies, we
let Vj(T ) = IN(T ) ∩ V (Kj) and nj(T ) = |Vj(T )| for any spanning tree T of
Km�Cn.

In the remaining, the subscript of uj
i is considered modulo m and its super-

script and the subscripts of Vj(T ) and nj(T ) are considered modulo n.

Proposition 3.1. Let n and r be integers, n ≥ 2, r ≥ 2. There exist r com-
pletely independent spanning trees in K2r�Pn.

Proof. We construct r completely independent spanning trees T1, . . ., Tr as
follows: E(Ti) = {uj

i−1u
j+1
i−1 , u

j
r+i−1u

j+1
r+i−1|j ∈ {0, . . . , n− 2}} ∪ {u0

i−1u
0
r+i−1}∪

{uj
i−1u

j
i+k, u

j
r+i−1u

j
r+i+k|k ∈ {0, . . . , r − 2} , j ∈ {0, . . . , n− 1}}.

Corollary 3.2. Let n and r be integers, n ≥ 3, r ≥ 2. There exist r completely
independent spanning trees in K2r�Cn.

In the three next propositions, we will prove that there do not exist r com-
pletely independent spanning trees in K2r−1�Cn, for some integers r and n.
Let p = |V (K2r−1�Cn)| = n(2r − 1) and assume that there exist r completely
independent spanning trees T1, . . . , Tr in K2r−1�Cn. Let T be the spanning
tree among them which minimizes |IN(T )|, i.e. ped(T ). By Proposition 2.2, T
is such that |IN(T )| ≤ ⌊p/r⌋ = 2n− ⌈n/r⌉, ped(T ) ≤ 2nr − ⌈n/r⌉r − p + 2 ≤
n − ⌈n/r⌉r + 2 ≤ 2 and |El

T | ≤ 1. In order to establish this property we will
consider all possible distributions of inner vertices of T among the different
K-copies and prove that for each of them we have a contradiction.

The properties given in the following lemma will be useful.
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Lemma 3.3. Let ai(T ) be the number of K-copies which contains exactly i inner
vertices of T . The distribution of inner vertices among the different K-copies
is such that:

i) if nj(T ) ≥ k, for some integer j, then |El
T | ≥

1
2 (k − 1)(k − 2);

ii) nj(T ) < 4, for every integer j;

iii) a3(T ) ≤ 1;

iv) if a3(T ) = 1, then n ≡ 0 (mod r) and n ≥ r;

v) if a0(T ) = 0, then a3(T ) ≤ a1(T ) − ⌈n/r⌉; in particular a1(T ) > a3(T )
and a1(T ) ≥ ⌈n/r⌉.

Proof. i) : A complete graph of order k contains 1
2k(k− 1) edges and only k− 1

edges are in E(T ). Thus we have |El
T | ≥

1
2 (k − 1)(k − 2).

ii) and iii) : If nj(T ) ≥ 4 for some j or a3(T ) > 1, then by i), we have |El
T | ≥ 2.

Hence, a contradiction.
iv) : As ped(T ) ≤ n− ⌈n/r⌉r+2, we have |El

T | < 1 in the case n 6≡ 0 (mod r).
As n > 0, we have n ≥ r.
v) : By ii), we have |IN(T )| = a1(T ) + 2a2(T ) + 3a3(T ) and a2 = n− a1(T )−
a3(T ). Hence |IN(T )| = a1(T ) + 2(n − a1(T ) − a3(T )) + 3a3(T ) ≤ 2n− ⌈n/r⌉
by the choice of T . Thus, a3(T ) ≤ a1(T )− ⌈n/r⌉ and consequently a1(T ) > a3
and a1(T ) ≥ ⌈n/r⌉.

We recall the following observation used in [12].

Observation 3.4 ([12]). If in a graph G there exist r completely independent
spanning trees T1, . . . , Tr, then for every integer i, 1 ≤ i ≤ r, every vertex is
adjacent to an inner vertex of Ti.

Proposition 3.5. Let n, r be integers, with n ≥ 3 and r ≥ 6. There do not
exist r completely independent spanning trees in K2r−1�Cn.

Proof. The proof is by contradiction, using Properties i)-v) of Lemma 3.3. Sup-
pose that there exist r completely independent spanning trees in K2r−1�Cn

and let T be the tree from Proposition 2.2. If a K-copy Ki, 1 ≤ i ≤ n, contains
no inner vertex, then, by Observation 3.4, ni−1(T ) + ni+1(T ) ≥ 2r − 1 ≥ 11.
Consequently, we have ni−1(T ) ≥ 6 or ni+1(T ) ≥ 6, contradicting Property ii).
Hence a0(T ) = 0.

By Property v), a1(T ) ≥ ⌈n/r⌉ ≥ 1. Hence there exists an integer i, 0 ≤ i ≤
n−1, such that ni = 1. Let u be the (unique) vertex of Vi(T ). The vertex u has
degree at most r+1 in T and is adjacent in T to a vertex of Vi−1(T )∪Vi+1(T ).
Then, u is adjacent in T to at most r vertices of V (Ki). Thus, at least r−2 ≥ 4
vertices are not adjacent in T to u. Hence, these r − 2 vertices are adjacent in
T to vertices of Vi−1(T ) ∪ Vi+1(T ) and consequently ni−1(T ) + ni+1(T ) ≥ 5.
Therefore, we have ni−1(T ) ≥ 3 or ni+1(T ) ≥ 3.

Assume, without loss of generality, that ni+1(T ) ≥ 3. By Property ii),
ni+1(T ) = 3 and by Property iii), a3(T ) = 1, i.e., nj(T ) < 3 for any j 6= i.
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Ki−1 Ki Ki+1 Kj Kj+1

Figure 1: A configuration of inner vertices in the proof of Proposition 3.6. Boxes
are inner vertices and the dashed edge represents a lost edge.

But, by Property iv), n ≥ r and by Property v), a1 ≥ 2. Let j be such that
nj(T ) = 1, with j 6= i. Using a similar argument than above, we obtain that
nj−1(T ) ≥ 3 or nj+1(T ) ≥ 3. But, as a3(T ) = 1, the only possibility is to have
j = i+2, i.e. both K-copies with one internal vertices are adjacent to the same
K-copy with three internal vertices.

Let v be the (unique) vertex of Vj(T ). One vertex among u and v is adjacent
in T to two inner vertices (if not T would be not connected). Suppose, without
loss of generality, that u is adjacent in T to two inner vertices. Then u is
adjacent in T to at most r − 1 vertices in V (Ki). Thus, at least r − 1 ≥ 5
vertices are not adjacent in T to u. Therefore, at least 5 vertices are adjacent
in T to vertices of Vi−1(T )∪ Vi+1(T ) and consequently ni−1(T ) + ni+1(T ) ≥ 7.
Hence, we have ni−1(T ) ≥ 4 or ni+1(T ) ≥ 4, contradicting Property ii).

Proposition 3.6. Let n, r be integers, with 4 ≤ r ≤ 5 and n ≥ r+1. There do
not exist r completely independent spanning trees in K2r−1�Cn.

Proof. The proof is by contradiction, using Properties i)-v) of Lemma 3.3. Sup-
pose that there exist r completely independent spanning trees in K2r−1�Cn

and let T be the tree from Proposition 2.2. If a K-copy Ki, 0 ≤ i ≤ n − 1,
contains no inner vertex, then ni−1(T ) + ni+1(T ) ≥ 7. Consequently, we have
ni−1(T ) ≥ 4 or ni+1(T ) ≥ 4, contradicting Property ii). Hence a0(T ) = 0.
By Property v), a1(T ) ≥ ⌈n/r⌉ ≥ 2. Thus, there exist two integers i and j,
0 ≤ i ≤ j ≤ n− 1, such that ni(T ) = nj(T ) = 1, with u ∈ Vi(T ) and v ∈ Vj(T ).

First, suppose that i = j − 1. Each of u and v has degree at most r + 1 in
T and u (v, respectively) is adjacent in T to a vertex of Vi−1(T ) ∪ Vi+1(T ) (of
Vj−1(T ) ∪ Vj+1(T ), respectively).

If u and v are adjacent in T , then one vertex among u and v is adjacent in
T to a vertex of Vi−1(T )∪Vj+1(T ) (if not T would be not connected). Suppose,
without loss of generality, that u is adjacent to two inner vertices. Then, at
least r − 1 ≥ 3 vertices of V (Ki) are not adjacent in T to u. Consequently,
ni−1(T ) ≥ 4 and we have a contradiction with Property ii).

Else if u and v are not adjacent in T , then both u and v are adjacent in T to
vertices of Vi−1(T ) ∪ Vj+1(T ) (if not, T would be not connected). The vertices
u and v are each adjacent in T to at most r vertices in V (Ki)∪ V (Kj). Hence,
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there remain at least 4r − 2 − 2r − 2 = 2r − 4 ≥ 4 vertices in V (Ki) ∪ V (Kj)
that must be adjacent in T to vertices of Vi−1(T ) ∪ Vj+1(T ) other than the
neighbors of u and of v. Consequently ni−1(T ) + nj+1(T ) ≥ 6. Hence, we have
ni−1(T ) ≥ 3 and nj+1(T ) ≥ 3, contradicting Property iii) or ni−1(T ) ≥ 4 or
nj+1(T ) ≥ 4, contradicting Property ii).

Second, if |i − j| > 1, then one vertex among u and v is adjacent in T to
two inner vertices (if not T would be not connected). Suppose, without loss
of generality, that u is adjacent to two inner vertices. At least r − 1 vertices
of V (Ki) are not adjacent in T to u. Hence, if r = 5, we have ni−1(T ) ≥ 3
and ni+1(T ) ≥ 3, contradicting Property iii) or ni−1(T ) ≥ 4 or ni+1(T ) ≥ 4,
contradicting Property ii). Consequently, we suppose that r = 4. Then, at least
r − 1 ≥ 3 vertices of V (Ki) are not adjacent in T to u. Therefore, we have
ni−1(T ) ≥ 3 or ni+1(T ) ≥ 3.

Assume, without loss of generality, that ni+1(T ) ≥ 3. By Property ii),
ni+1(T ) = 3 and by Property iii), a3(T ) = 1, i.e., nj(T ) < 3 for any j 6= i. But,
as n > r and by Property v), a1 ≥ 3. Let i′ be such that ni′(T ) = 1, with i′ 6= i
and i′ 6= i. If |i′ − i| = 1 or |i′ − j| = 1, we have a contradiction, using the first
point. Two vertices among u, v and u′ should be adjacent to two inner vertices.
Suppose it is the vertices u and v. Using a similar argument than above, we
obtain that nj−1(T ) ≥ 3 or nj+1(T ) ≥ 3. But, as a3(T ) = 1, the only possibility
is to have j = i + 2, i.e. both K-copies with one internal vertices are adjacent
to the same K-copy with three internal vertices.

In this case, as r = 4, then four vertices are not inner vertices in V (Ki+1),
at least three vertices of V (Ki) are not adjacent in T to u and at least three
vertices of V (Kj) are not adjacent in T to v. Moreover, we have ni−1(T ) ≤ 2
and nj+1(T ) ≤ 2. Figure 1 illustrates this configuration. Thus, four vertices of
V (Ki+1) are adjacent in T to vertices of Vi+1(T ) and four vertices of V (Ki) ∪
V (Kj) are adjacent in T to vertices of Vi+1(T ). However, by Observation 2.9,
the vertices of Vi+1(T ) can be adjacent to at most seven leaves in T . Hence, we
have a contradiction.

Proposition 3.7. There do not exist five completely independent spanning trees
in K9�C3.

Proof. Suppose that there exist five completely independent spanning trees in
K9�C3 and let T be the tree from Proposition 2.2. We recall that |V (K9�C3)| =
27 and |IN(T )| ≤ 6 − ⌈3/4⌉ = 5. If a K-copy Ki, 0 ≤ i ≤ n − 1, contains no
inner vertex, then ni−1(T ) ≥ 5 or ni+1(T ) ≥ 5. Thus, we have a contradiction
with Property ii). By property iv), as n 6≡ 0 (mod r), we have a3(T ) = 0. Thus,
the only possible distribution of inner vertices of T is a1(T ) = 1 and a2(T ) = 2.
Without loss of generality, suppose that n0(T ) = 1, n1(T ) = 2 and n2(T ) = 2,
with u ∈ V1(T ).

Let the position of a vertex uj
i be i. As T should be connected, two pairs

of inner vertices in different K-copies should be adjacent in T among these five
inner vertices. Thus, these five vertices have only three different positions. The
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Figure 2: A pattern to have three completely independent spanning trees in
K5�Cn, for n ≡ 0 (mod 3).

vertex u has degree at most 6 in T . Hence, there are r−2 ≥ 3 vertices of V (K1)
not adjacent in T to u. As the inner vertices have only two positions different
from the position of u, it is impossible that every vertex is adjacent in T to an
inner vertex of T .

We now show positive results for the remaining values of r and n. Some of
the spanning trees were found using a computer to solve an ILP formulation of
the problem.

Proposition 3.8. Let n ≥ 3 be an integer such that n ≡ 0 (mod 3). There
exist three completely independent spanning trees in K5�Cn.

Proof. We construct three completely independent spanning trees T1, T2 and T3

using repeatedly the pattern illustrated in Figure 2 on each three consecutive
K-copies:
E(T1) = {u3j

0 u1+3j
0 , u1+3j

0 u2+3j
0 , u2+3j

0 u3+3j
0 , u3j

0 u3j
2 , u3j

0 u3j
3 ,

u3j
3 u3j

1 , u3j
3 u3j

4 , u3j
3 u1+3j

3 , u1+3j
0 u1+3j

1 , u1+3j
0 u1+3j

4 , u1+3j
2 u2+3j

2 ,

u2+3j
0 u2+3j

2 , u2+3j
0 u2+3j

1 , u2+3j
2 u2+3j

3 , u2+3j
2 u2+3j

4 |j ∈ {0, . . . , n/3−1}}−{u0
0, u

1
0};

E(T2) = {u3j
1 u1+3j

1 , u1+3j
1 u2+3j

1 , u2+3j
1 u3+3j

1 , u3j
1 u3j

0 , u3j
1 u3j

4 ,

u3j
2 u1+3j

2 , u1+3j
1 u1+3j

2 , u1+3j
1 u1+3j

4 , u1+3j
2 u1+3j

0 , u1+3j
2 u1+3j

3 , u2+3j
1 u2+3j

3 ,

u2+3j
1 u2+3j

2 , u2+3j
3 u2+3j

0 , u2+3j
3 u2+3j

4 , u2+3j
3 u3+3j

3 |j ∈ {0, . . . , n/3−1}}−{u0
1, u

1
1};

E(T3) = {u3j
4 u1+3j

4 , u1+3j
4 u2+3j

4 , u2+3j
4 u3+3j

4 , u3j
2 u3j

4 , u3j
2 u3j

1 ,

u3j
2 u3j

3 , u3j
4 u3j

0 , u1+3j
3 u1+3j

4 , u1+3j
3 u1+3j

0 , u1+3j
3 u1+3j

1 , u1+3j
4 u1+3j

2 ,

u1+3j
3 u2+3j

3 , u2+3j
4 u2+3j

0 , u2+3j
4 u2+3j

1 , u2+3j
2 u3+3j

2 |j ∈ {0, . . . , n/3−1}}−{u0
4, u

1
4}.

Proposition 3.9. Let n ≥ 3 be an integer. There exist three completely inde-
pendent spanning trees in K5�Cn.

Proof. By Proposition 3.8, there exist three completely independent spanning
trees in K5�Cn, for n ≡ 0 (mod 3). For n ≡ 1 (mod 3), we use the pattern from
Proposition 3.8 for K4∪ . . .∪Kn−1, completed by the pieces of three completely
independent spanning trees of K0∪K1∪K2∪K3 depicted in Figure 3 and whose
edge sets are given in Appendix A.1. For n ≡ 2 (mod 3), we use the pattern
from Proposition 3.8 for K5 ∪ . . . ∪ Kn−1, completed by the pieces of three

9



Figure 3: The three completely independent spanning trees in K5�Cn, for K0∪
K1 ∪K2 ∪K3 and n ≡ 1 (mod 3).

Figure 4: The three completely independent spanning trees in K5�Cn, for K0∪
K1 ∪K2 ∪K3 ∪K4 and for n ≡ 2 (mod 3).

completely independent spanning trees of K0 ∪K1 ∪K2 ∪K3 ∪K4 depicted in
Figure 4 and whose edge sets are given in Appendix A.2. Note that Figures 3
and 4 depicte also three completely independent spanning trees in K5�C4 and
K5�C5.

Proposition 3.10. There exist four completely independent spanning trees in
K7�C3.

Proof. The four completely independent spanning trees in K7�C3 are depicted
in Figure 5 and their edge sets are given in Appendix A.3.

Proposition 3.11. There exist four completely independent spanning trees in
K7�C4.

Proof. The four completely independent spanning trees in K7�C4 are depicted
in Figure 6 and their edge sets are given in Appendix A.4.

Proposition 3.12. There exist five completely independent spanning trees in
K9�C4.

Proof. The five completely independent spanning trees in K9�C4 are depicted
in Figure 7 and their edge sets are given in Appendix A.5.

Proposition 3.13. There exist five completely independent spanning trees in
K9�C5.

10



Figure 5: Four completely independent spanning trees in K7�C3.

Figure 6: Four completely independent spanning trees in K7�C4.

Proof. The five completely independent spanning trees in K9�C5 are depicted
in Figure 8 and their edge sets are given in Appendix A.6.

We end this section with a theorem summarizing the results for Km�Cn.
Given a graph G, let mcist(G) be the maximum integer k such that there exist
k completely independent spanning trees in G.

Theorem 3.14. Let m ≥ 3 and n ≥ 3 be integers. We have:

mcist(Km�Cn) =

{

⌈m/2⌉, if (m = 3, 5 ∨ (m = 7 ∧ n = 3, 4) ∨ (m = 9 ∧ n = 4, 5));
⌊m/2⌋, otherwise.

Proof. For every even m, by Corollary 3.2, there exist m/2 completely indepen-
dent spanning trees. Suppose m is odd. For m = 3, Hasunuma and Morisaka
[7] has proven that in any Cartesian product of 2-connected graphs, there are
two completely independent spanning trees. By Propositions 3.12, 3.13, 3.10,
3.11 and 3.9, we obtain that there exist ⌈m/2⌉ completely independent spanning
trees for m = 5 or (m = 7 ∧ n = 3, 4) or (m = 9 ∧ n = 4, 5).

In the other cases, by Propositions 3.5, 3.6, 3.7, there do not exist ⌈m/2⌉
completely independent spanning trees in these graphs. By Corollary 3.2, there
exist ⌊m/2⌋ completely independent spanning trees in Km−1�Cn. From these
⌊m/2⌋ completely independent spanning trees in Km−1�Cn, we can construct
⌊m/2⌋ completely independent spanning trees in Km�Cn. The graph Km�Cn

contains n vertices u0, . . . , un−1 not in Km−1�Cn, with uj ∈ V (Kj) for j =

11



Figure 7: Five completely independent spanning trees in K9�C4.

1
2



Figure 8: Five completely independent spanning trees in K9�C5.

1
3



Figure 9: The pattern for the three completely independent spanning trees of
TM(3, 3, 3q), with q ≥ 2.

0, . . . , n − 1. For each 1 ≤ i ≤ ⌊m/2⌋, it suffices to add an edge between uj ,
1 ≤ j ≤ n, and a vertex of Vj(Ti) to obtain ⌊m/2⌋ completely independent
spanning trees in Km�Cn.

4 3-dimensional toroidal grids

Hasunuma and Morisaka [7] have shown that there are two completely inde-
pendent spanning trees in any 2-dimensional toroidal grid and left as an open
problem the question of whether there are n completely independent spanning
trees in any n-dimensional toroidal grid, for n ≥ 3. In this section we give a
partial answer for n = 3 by finding three completely independent spanning trees
in some 3-dimensional toroidal grids.

Let n1, n2 and n3 be positive integers, 3 ≤ n1 ≤ n2 ≤ n3. The 3-
dimensional toroidal grid TM(n1, n2, n3) is the Cartesian product of three cy-
cles: Cn1

�Cn2
�Cn3

. We let V (TM(n1, n2, n3)) = {(i, j, k)|0 ≤ i < n1, 0 ≤
j < n2, 0 ≤ k < n3} and E(TM(n1, n2, n3)) = {(i, j, k) (i′, j′, k′)|i ≡ i′ ± 1
(mod n1), j = j′, k = k′ ∨ i = i′, j ≡ j′ ± 1 (mod n2), k = k′ ∨ i = i′, j = j′, k ≡
k′ ± 1 (mod n3)}. In the remainder of the section, the integers i, j and k in a
vertex (i, j, k) are considered modulo n1, n2 and n3, respectively.

By a level of TM(3, 3, q) we mean a subgraph of it induced by the vertices
with the same third coordinate.

Proposition 4.1. Let p, p′ and q be positive integers such that gcd(p, p′, q) = 1.
There exist three completely independent spanning trees in TM(3p, 3p′, 3q).

Proof. We define three completely independent spanning trees T1, T2 and T3 in
TM(3p, 3p′, 3q) as follows: for j ∈ {0, 1, 2},
E(Tj−1) = {(i+ j, j− i, i)(1+ i+ j,−i+ j, i), (i+ j, j− i, i)(i+ j, 1− i+ j, i), (i+
j, j−i, i)(i+j, j−i, 1+i), (i+j, j−i, i)(i+j,−1−i+j, i), (1+i+j, j−i, i)(2+i+
j, j−i, i), (1+i+j, j−i, i)(1+i+j, j−i, 1+i), (1+i+j, j−i, i)(1+i, j−i−1, i),
(i+ j, 1− i+ j, i)(1+ i+ j, 1− i+ j, i), (i+ j, 1− i+ j, i)(i+ j, 1− i+ j, 1+ i)|i ∈
{0, . . . , pp′q − 1} − (j, j + 1, 0)(j, j + 1,−1).
We require gcd(p, p′, q) = 1, in order that T1, T2, T3 contain every vertex of

14



Figure 10: The three completely independent spanning trees on the last four
levels of TM(3, 3, q), for q ≡ 1 (mod 3) and q > 2.

TM(3p, 3p′, 3q), i.e. every edge is different for each value of i, 0 ≤ i ≤ pp′q − 1.
Figure 9 describes the pattern on three levels for these three spanning trees for
p = 1 and p′ = 1.

Proposition 4.2. For any integer q ≥ 3, there exists three completely indepen-
dent spanning trees in TM(3, 3, q).

Proof. First, if q ≡ 0 (mod 3), then Proposition 4.1 allows us to conclude.
For q ≡ 1 (mod 3) (q ≡ 2 (mod 3), respectively), we define three completely
independent spanning trees by using the pattern of Proposition 4.1 for every
level except the last four (five, respectively) ones. If q ≡ 1 (mod 3), the trees
are completed on the last four levels as depicted in Figure 10 (the corresponding
edge sets are given in Appendix B.1). If q ≡ 2 (mod 3), the trees are completed
on the last five levels as depicted in Figure 11 (the corresponding edge sets are
given in Appendix B.2).

5 Conclusion

We conclude this paper by listing a few open problems:

1. Determine conditions which ensure that there exist r completely indepen-
dent spanning trees in a graph.

2. Does any 2r-connected graph with sufficiently large girth admit r com-
pletely independent spanning trees?

15



Figure 11: The three completely independent spanning trees on the last five
levels of TM(3, 3, q), for q ≡ 2 (mod 3) and q > 2.

3. Is it true that in every 4-regular graph which is 4-connected, there exist 2
completely independent spanning trees?

4. Does the 6-dimensional hypercube Q6 = C4�C4�C4 admit 3 completely
independent spanning trees?
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A Edge sets of the trees from Section 3

A.1 Three completely independent spanning trees in K5�C4

E(T1) = {u0
0u

0
3, u

0
0u

0
2, u

0
3u

0
1, u

0
3u

0
4, u

1
3u

1
1, u

1
3u

1
4, u

2
2u

2
1, u

2
2u

2
4, u

3
0u

3
2, u

3
0u

3
3, u

3
2u

3
1, u

3
2u

3
4,

u0
0u

1
0, u

0
3u

1
3, u

1
2u

2
2, u

1
3u

2
3, u

2
0u

3
0, u

2
2u

3
2, u

3
0u

4
0};

E(T2) = {u0
1u

0
0, u

0
1u

0
2, u

1
0u

1
4, u

1
0u

1
2, u

1
0u

1
3, u

1
4u

1
1, u

2
3u

2
4, u

2
3u

2
1, u

2
3u

2
2, u

2
4u

2
0, u

3
1u

3
3, u

3
1u

3
0,

u3
1u

3
4, u

3
3u

3
2, u

0
4u

1
4, u

1
4u

2
4, u

2
3u

3
3, u

3
1u

4
1, u

3
3u

4
3};

E(T3) = {u0
2u

0
4, u

0
2u

0
3, u

0
4u

0
0, u

0
4u

0
1, u

1
1u

1
2, u

1
1u

1
0, u

1
2u

1
3, u

1
2u

1
4, u

2
0u

2
1, u

2
0u

2
2, u

2
0u

2
3, u

2
1u

2
4,

u3
4u

3
0, u

3
4u

3
3, u

0
2u

1
2, u

1
1u

2
1, u

2
1u

3
1, u

3
2u

4
2, u

3
4u

4
4}.

A.2 Three completely independent spanning trees in K5�C5

E(T1) = {u0
0u

0
3, u

0
0u

0
2, u

0
3u

0
1, u

0
3u

0
4, u

1
0u

1
3, u

1
0u

1
2, u

1
0u

1
4, u

1
3u

1
1, u

2
2u

2
0, u

2
2u

2
1, u

3
2u

3
4, u

3
2u

3
0,

u3
4u

3
1, u

3
4u

3
3, u

4
0u

4
2, u

4
0u

4
1, u

4
2u

4
3, u

4
2u

4
4, u

0
0u

1
0, u

1
3u

2
3, u

2
2u

3
2, u

2
4u

3
4, u

3
2u

4
2, u

4
0u

5
0};

E(T2) = {u0
1u

0
0, u

0
1u

0
2, u

1
4u

1
2, u

1
4u

1
3, u

2
0u

2
4, u

2
0u

2
3, u

2
4u

2
1, u

2
4u

2
2, u

3
0u

3
3, u

3
0u

3
4, u

3
3u

3
1, u

3
3u

3
2,

u4
1u

4
3, u

4
1u

4
2, u

4
1u

4
4, u

4
3u

4
0, u

0
1u

1
1, u

0
4u

1
4, u

1
0u

2
0, u

1
4u

2
4, u

2
0u

3
0, u

3
3u

4
3, u

4
1u

5
1, u

4
3u

5
3};

E(T3) = {u0
2u

0
4, u

0
2u

0
3, u

0
4u

0
0, u

0
4u

0
1, u

1
1u

1
2, u

1
1u

1
0, u

1
1u

1
4, u

1
2u

1
3, u

2
1u

2
3, u

2
1u

2
0, u

2
3u

2
2, u

2
3u

2
4,

u3
1u

3
0, u

3
1u

3
2, u

4
4u

4
0, u

4
4u

4
3, u

0
2u

1
2, u

1
1u

2
1, u

2
1u

3
1, u

2
3u

3
3, u

3
1u

4
1, u

3
4u

4
4, u

4
2u

5
2, u

4
4u

5
4}.

A.3 Four completely independent spanning trees in K7�C3

E(T1) = {u0
0u

0
1, u

0
0u

0
3, u

0
0u

0
5, u

0
0u

0
6, u

1
0u

1
2, u

1
0u

1
4, u

1
0u

1
5, u

1
2u

1
1, u

1
2u

1
3, u

1
2u

1
6, u

2
2u

2
4, u

2
2u

2
5,

u2
2u

2
6, u

2
4u

2
0, u

2
4u

2
1, u

2
4u

2
3, u

0
0u

1
0, u

1
2u

2
2, u

0
2u

2
2, u

0
4u

2
4};

E(T2) = {u0
1u

0
2, u

0
1u

0
3, u

0
1u

0
5, u

0
2u

0
0, u

0
2u

0
4, u

0
2u

0
6, u

1
6u

1
0, u

1
6u

1
3, u

1
6u

1
4, u

1
6u

1
5, u

2
1u

2
0, u

2
1u

2
2,

u2
1u

2
3, u

2
1u

2
6, u

2
6u

2
4, u

2
6u

2
5, u

0
1u

1
1, u

0
2u

1
2, u

1
6u

2
6, u

0
1u

2
1};

E(T3) = {u0
3u

0
2, u

0
3u

0
4, u

0
3u

0
5, u

0
4u

0
0, u

0
4u

0
1, u

0
4u

0
6, u

1
1u

1
0, u

1
1u

1
3, u

1
1u

1
4, u

1
1u

1
6, u

1
4u

1
2, u

1
4u

1
5,

u2
3u

2
0, u

2
3u

2
2, u

2
3u

2
5, u

2
3u

2
6, u

0
4u

1
4, u

1
1u

2
1, u

1
4u

2
4, u

0
3u

2
3};

E(T4) = {u0
5u

0
2, u

0
5u

0
4, u

0
5u

0
6, u

0
6u

0
1, u

0
6u

0
3, u

1
3u

1
0, u

1
3u

1
4, u

1
3u

1
5, u

1
5u

1
1, u

1
5u

1
2, u

2
0u

2
2, u

2
0u

2
5,

u2
0u

2
6, u

2
5u

2
1, u

2
5u

2
4, u

0
5u

1
5, u

0
6u

1
6, u

1
3u

2
3, u

1
5u

2
5, u

0
0u

2
0}.

A.4 Four completely independent spanning trees in K7�C4

E(T1) = {u0
0u

0
1, u

0
0u

0
3, u

0
0u

0
5, u

0
0u

0
6, u

1
0u

1
1, u

1
0u

1
1, u

1
0u

1
2, u

1
0u

1
3, u

1
2u

1
5, u

1
2u

1
6, u

2
2u

2
3, u

2
2u

2
5, u

2
2u

2
6,

u2
5u

2
0, u

2
5u

2
1, u

2
5u

2
4, u

3
4u

3
3, u

3
4u

3
5, u

3
4u

3
6, u

3
5u

3
0, u

3
5u

3
1, u

0
0u

1
0, u

0
2u

1
2, u

1
2u

2
2, u

2
2u

3
2, u

2
5u

3
5, u

0
4u

3
4}

E(T2) = {u0
1u

0
2, u

0
1u

0
4, u

0
1u

0
5, u

0
2u

0
0, u

0
2u

0
3, u

0
2u

0
6, u

1
1u

1
2, u

1
1u

1
4, u

1
1u

1
6, u

1
6u

1
0, u

1
6u

1
3, u

1
6u

1
5, u

2
4u

2
2,

u2
4u

2
3, u

2
4u

2
6, u

2
6u

2
0, u

2
6u

2
5, u

3
2u

3
0, u

3
2u

3
3, u

3
2u

3
4, u

3
2u

3
5, u

0
1u

1
1, u

1
1u

2
1, u

1
6u

2
6, u

2
6u

3
6, u

0
1u

3
1, u

0
2u

3
2}

E(T3) = {u0
3u

0
4, u

0
3u

0
1, u

0
3u

0
5, u

0
4u

0
0, u

0
4u

0
2, u

0
4u

0
6, u

1
4u

1
2, u

1
4u

1
5, u

1
4u

1
6, u

1
5u

1
0, u

1
5u

1
1, u

2
1u

2
0, u

2
1u

2
2,

u2
1u

2
4, u

2
1u

2
6, u

3
1u

3
0, u

3
1u

3
2, u

3
1u

3
3, u

3
1u

3
4, u

3
3u

3
5, u

3
3u

3
7, u

0
3u

1
3, u

0
4u

1
4, u

1
5u

2
5, u

2
1u

3
1, u

2
3u

3
3, u

0
3u

3
3}

E(T4) = {u0
5u

0
2, u

0
5u

0
4, u

0
5u

0
6, u

0
6u

0
1, u

0
6u

0
3, u

1
3u

1
1, u

1
3u

1
2, u

1
3u

1
4, u

1
3u

1
5, u

2
0u

2
2, u

2
0u

2
3, u

2
0u

2
4, u

2
3u

2
1,

u2
3u

2
5, u

2
3u

2
6, u

3
0u

3
3, u

3
0u

3
4, u

3
0u

3
6, u

3
6u

3
1, u

3
6u

3
2, u

3
6u

3
5, u

0
6u

1
6, u

1
0u

2
0, u

1
3u

2
3, u

2
0u

3
0, u

0
0u

3
0, u

0
6u

3
6}.

A.5 Five completely independent spanning trees in K9�C4

E(T1) = {u0
0u

0
2, u

0
0u

0
4, u

0
0u

0
5, u

0
0u

0
8, u

0
5u

0
1, u

0
5u

0
3, u

0
5u

0
6, u

0
5u

0
7, u

1
0u

1
2, u

1
0u

1
4, u

1
0u

1
6, u

1
0u

1
7, u

1
4u

1
1,

u1
4u

1
3, u

1
4u

1
5, u

1
4u

1
8, u

2
0u

2
3, u

2
0u

2
4, u

2
0u

2
6, u

2
4u

2
1, u

2
4u

2
8, u

2
8u

2
2, u

2
8u

2
5, u

2
8u

2
7, u

3
8u

3
1, u

3
8u

3
2, u

3
8u

3
3, u

3
8u

3
6,

u3
8u

3
7, u

0
0u

1
0, u

1
0u

2
0, u

2
4u

3
4, u

2
8u

3
8, u

0
0u

3
0, u

0
5u

3
5};
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E(T2) = {u0
3u

0
0, u

0
3u

0
4, u

0
3u

0
7, u

0
3u

0
8, u

0
4u

0
1, u

0
4u

0
2, u

0
4u

0
5, u

0
4u

0
6, u

1
1u

1
0, u

1
1u

1
2, u

1
1u

1
6, u

1
1u

1
7, u

1
1u

1
8,

u2
1u

2
0, u

2
1u

2
2, u

2
1u

2
5, u

2
1u

2
7, u

2
1u

2
8, u

2
5u

2
4, u

2
5u

2
6, u

3
3u

3
2, u

3
3u

3
5, u

3
3u

3
6, u

3
3u

3
7, u

3
5u

3
0, u

3
5u

3
1, u

3
5u

3
4, u

3
5u

3
8,

u0
3u

1
3, u

0
4u

1
4, u

1
1u

2
1, u

1
5u

2
5, u

2
3u

3
3, u

2
5u

3
5, u

0
3u

3
3};

E(T3) = {u0
2u

0
1, u

0
2u

0
3, u

0
2u

0
5, u

0
2u

0
7, u

0
7u

0
0, u

0
7u

0
4, u

0
7u

0
6, u

0
7u

0
8, u

1
2u

1
3, u

1
2u

1
4, u

1
2u

1
5, u

1
2u

1
6, u

1
3u

1
0,

u1
3u

1
1, u

1
3u

1
7, u

1
3u

1
8, u

2
3u

2
1, u

2
3u

2
4, u

2
3u

2
5, u

2
3u

2
6, u

2
6u

2
8, u

3
0u

3
2, u

3
0u

3
3, u

3
0u

3
4, u

3
0u

3
7, u

3
0u

3
8, u

3
7u

3
1, u

3
7u

3
5,

u3
7u

3
6, u

0
2u

1
2, u

1
2u

2
2, u

1
3u

2
3, u

2
0u

3
0, u

2
7u

3
7, u

0
7u

3
7};

E(T4) = {u0
6u

0
0, u

0
6u

0
1, u

0
6u

0
2, u

0
6u

0
3, u

0
6u

0
8, u

1
5u

1
0, u

1
5u

1
1, u

1
5u

1
3, u

1
5u

1
7, u

1
5u

1
8, u

1
7u

1
2, u

1
7u

1
4, u

1
7u

1
6,

u2
6u

2
1, u

2
6u

2
2, u

2
6u

2
4, u

2
6u

2
7, u

2
6u

2
8, u

2
7u

2
0, u

2
7u

2
3, u

2
7u

2
5, u

3
4u

3
2, u

3
4u

3
3, u

3
4u

3
6, u

3
4u

3
7, u

3
4u

3
8, u

3
6u

3
0, u

3
6u

3
1,

u3
6u

3
5, u

0
5u

1
5, u

0
7u

1
7, u

1
7u

2
7, u

2
6u

3
6, u

0
4u

3
4, u

0
6u

3
6};

E(T5) = {u0
1u

0
0, u

0
1u

0
3, u

0
1u

0
7, u

0
1u

0
8, u

0
8u

0
2, u

0
8u

0
4, u

0
8u

0
5, u

1
6u

1
3, u

1
6u

1
4, u

1
6u

1
5, u

1
6u

1
8, u

1
8u

1
0, u

1
8u

1
2,

u1
8u

1
7, u

2
2u

2
0, u

2
2u

2
3, u

2
2u

2
4, u

2
2u

2
5, u

2
2u

2
7, u

3
1u

3
0, u

3
1u

3
2, u

3
1u

3
3, u

3
1u

3
4, u

3
2u

3
5, u

3
2u

3
6, u

3
2u

3
7, u

0
1u

1
1, u

0
6u

1
6,

u0
8u

1
8, u

1
6u

2
6, u

1
8u

2
8, u

2
1u

3
1, u

2
2u

3
2, u

0
1u

3
1, u

0
8u

3
8}.

A.6 Five completely independent spanning trees in K9�C4

E(T1) = {u0
0u

0
2, u

0
0u

0
3, u

0
0u

0
5, u

0
0u

0
6, u

0
0u

0
7, u

0
6u

0
1, u

0
6u

0
4, u

0
6u

0
8, u

1
6u

1
1, u

1
6u

1
2, u

1
6u

1
5, u

1
6u

1
7, u

1
6u

1
8,

u2
3u

2
0, u

2
3u

2
1, u

2
3u

2
4, u

2
3u

2
6, u

2
3u

2
8, u

2
4u

2
2, u

2
4u

2
5, u

2
4u

2
7, u

3
4u

3
0, u

3
4u

3
2, u

3
4u

3
3, u

3
4u

3
7, u

3
7u

3
1, u

3
7u

3
5, u

3
7u

3
8,

u4
4u

4
0, u

4
4u

4
2, u

4
4u

4
6, u

4
4u

4
8, u

4
6u

4
1, u

4
6u

4
3, u

4
6u

4
5, u

0
0u

1
0, u

0
6u

1
6, u

1
3u

2
3, u

1
4u

2
4, u

2
4u

3
4, u

3
4u

4
4, u

3
6u

4
6, u

3
7u

4
7, u

0
6u

4
6};

E(T2) = {u0
7u

0
1, u

0
7u

0
2, u

0
7u

0
4, u

0
7u

0
6, u

0
7u

0
8, u

1
3u

1
1, u

1
3u

1
4, u

1
3u

1
6, u

1
3u

1
7, u

1
3u

1
8, u

1
7u

1
0, u

1
7u

1
2, u

1
7u

1
6,

u2
0u

2
1, u

2
0u

2
4, u

2
0u

2
5, u

2
0u

2
7, u

2
0u

2
8, u

2
7u

2
2, u

2
7u

2
3, u

2
7u

2
6, u

3
0u

3
1, u

3
0u

3
5, u

3
0u

3
8, u

3
1u

3
2, u

3
1u

3
3, u

3
1u

3
4, u

3
1u

3
6,

u4
0u

4
1, u

4
0u

4
5, u

4
0u

4
6, u

4
0u

4
7, u

4
5u

4
2, u

4
5u

4
3, u

4
5u

4
4, u

4
5u

4
8, u

0
3u

1
3, u

0
7u

1
7, u

1
7u

2
7, u

2
0u

3
0, u

2
7u

3
7, u

3
0u

4
0, u

0
0u

4
0, u

0
5u

4
5};

E(T3) = {u0
4u

0
0, u

0
4u

0
3, u

0
4u

0
7, u

0
4u

0
8, u

0
7u

0
1, u

0
7u

0
2, u

0
7u

0
5, u

0
7u

0
6, u

1
2u

1
1, u

1
2u

1
3, u

1
2u

1
4, u

1
2u

1
5, u

1
2u

1
8,

u1
4u

1
0, u

1
4u

1
6, u

1
4u

1
7, u

2
1u

2
2, u

2
1u

2
4, u

2
1u

2
5, u

2
1u

2
7, u

2
1u

2
8, u

2
2u

2
0, u

2
2u

2
3, u

2
2u

2
6, u

3
2u

3
0, u

3
2u

3
3, u

3
2u

3
5, u

3
2u

3
7,

u3
5u

3
1, u

3
5u

3
4, u

3
5u

3
6, u

3
5u

3
8, u

4
2u

4
0, u

4
2u

4
1, u

4
2u

4
3, u

4
2u

4
6, u

4
2u

4
8, u

0
4u

1
4, u

1
2u

2
2, u

2
2u

3
2, u

3
2u

4
2, u

3
5u

4
5, u

0
4u

4
4, u

0
7u

4
7};

E(T4) = {u0
1u

0
0, u

0
1u

0
3, u

0
1u

0
4, u

0
1u

0
8, u

0
3u

0
2, u

0
3u

0
5, u

0
3u

0
6, u

0
3u

0
7, u

1
0u

1
1, u

1
0u

1
2, u

1
0u

1
3, u

1
0u

1
5, u

1
0u

1
6,

u1
1u

1
4, u

1
1u

1
7, u

1
1u

1
8, u

2
8u

2
2, u

2
8u

2
4, u

2
8u

2
5, u

2
8u

2
6, u

2
8u

2
7, u

3
3u

3
0, u

3
3u

3
5, u

3
3u

3
7, u

3
3u

3
8, u

3
8u

3
1, u

3
8u

3
2, u

3
8u

3
4,

u3
8u

3
6, u

4
3u

4
0, u

4
3u

4
4, u

4
3u

4
7, u

4
3u

4
8, u

4
7u

4
2, u

4
7u

4
5, u

4
7u

4
6, u

0
1u

1
1, u

1
0u

2
0, u

1
1u

2
1, u

2
3u

3
3, u

2
8u

3
8, u

3
3u

4
3, u

0
1u

4
1, u

0
3u

4
3};

E(T5) = {u0
2u

0
1, u

0
2u

0
4, u

0
2u

0
6, u

0
2u

0
8, u

0
8u

0
0, u

0
8u

0
3, u

0
8u

0
7, u

1
5u

1
1, u

1
5u

1
3, u

1
5u

1
4, u

1
5u

1
8, u

1
8u

1
0, u

1
8u

1
7,

u2
5u

2
2, u

2
5u

2
3, u

2
5u

2
6, u

2
5u

2
7, u

2
6u

2
0, u

2
6u

2
1, u

2
6u

2
4, u

3
6u

3
0, u

3
6u

3
2, u

3
6u

3
3, u

3
6u

3
4, u

3
6u

3
7, u

4
1u

4
3, u

4
1u

4
4, u

4
1u

4
5,

u4
1u

4
8, u

4
8u

4
0, u

4
8u

4
6, u

4
8u

4
7, u

0
2u

1
2, u

0
5u

1
5, u

0
8u

1
8, u

1
5u

2
5, u

1
6u

2
6, u

1
8u

2
8, u

2
5u

3
5, u

2
6u

3
6, u

3
1u

4
1, u

3
8u

4
8, u

0
2u

4
2, u

0
8u

4
8}.

B Edge sets of the trees from Section 4

B.1 Three completely independent spanning trees in the

last four levels of TM(3, 3, q)

E(T1) = {(0, 0, 0)(1, 0, 0), (0, 0, 0)(0, 1, 0), (0, 0, 0)(0, 2, 0), (0, 0, 0)(0, 0, 1),
(1, 0, 0)(1, 2, 0), (1, 0, 0)(2, 0, 0), (1, 0, 0)(1, 0, 1), (0, 1, 0)(1, 1, 0), (0, 1, 0)(0, 1, 1),
(0, 1, 1)(1, 1, 1), (0, 1, 1)(0, 2, 1), (0, 1, 1)(0, 1, 2), (0, 2, 1)(1, 2, 1), (0, 2, 1)(2, 2, 1),
(0, 2, 1)(0, 2, 2), (2, 2, 1)(2, 0, 1), (2, 2, 1)(2, 1, 1), (1, 0, 2)(0, 0, 2), (1, 0, 2)(2, 0, 2),
(1, 0, 2)(1, 2, 2), (1, 0, 2)(1, 0, 3), (1, 2, 2)(2, 2, 2), (1, 2, 2)(1, 1, 2), (1, 2, 2)(1, 2, 3),
(2, 2, 2)(2, 1, 2), (2, 2, 2)(2, 2, 3), (0, 1, 3)(1, 1, 3), (0, 1, 3)(0, 0, 3), (0, 1, 3)(2, 1, 3),
(0, 1, 3)(0, 1, 4), (2, 1, 3)(2, 0, 3), (2, 1, 3)(2, 2, 3), (2, 1, 3)(2, 1, 4), (2, 2, 3)(0, 2, 3),
(2, 2, 3)(2, 2, 4)};
E(T2) = {(1, 1, 0)(2, 1, 0), (1, 1, 0)(1, 0, 0), (1, 1, 0)(1, 2, 0), (1, 1, 0)(1, 1, 1),
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(2, 1, 0)(0, 1, 0), (2, 1, 0)(2, 0, 0), (2, 1, 0)(2, 1, 1), (1, 2, 0)(2, 2, 0), (1, 2, 0)(1, 2, 1),
(0, 0, 1)(1, 0, 1), (0, 0, 1)(0, 1, 1), (0, 0, 1)(0, 2, 1), (1, 0, 1)(2, 0, 1), (1, 0, 1)(1, 2, 1),
(1, 0, 1)(1, 0, 2), (1, 2, 1)(2, 2, 1), (1, 2, 1)(1, 2, 2), (0, 0, 2)(2, 0, 2), (0, 0, 2)(0, 2, 2),
(0, 0, 2)(0, 0, 3), (2, 0, 2)(2, 1, 2), (2, 0, 2)(2, 2, 2), (2, 0, 2)(2, 0, 3), (2, 1, 2)(0, 1, 2),
(2, 1, 2)(1, 1, 2), (2, 1, 2)(2, 1, 3), (0, 0, 3)(1, 0, 3), (0, 0, 3)(0, 2, 3), (0, 0, 3)(0, 0, 4),
(0, 2, 3)(1, 2, 3), (0, 2, 3)(0, 1, 3), (0, 2, 3)(0, 2, 4), (1, 2, 3)(2, 2, 3), (1, 2, 3)(1, 1, 3),
(1, 2, 3)(1, 2, 4)};
E(T3) = {(2, 0, 0)(0, 0, 0), (2, 0, 0)(2, 2, 0), (2, 0, 0)(2, 0, 1), (0, 2, 0)(1, 2, 0),
(0, 2, 0)(2, 2, 0), (0, 2, 0)(0, 1, 0), (0, 2, 0)(0, 2, 1), (2, 2, 0)(2, 1, 0), (2, 2, 0)(2, 2, 1),
(2, 0, 1)(0, 0, 1), (2, 0, 1)(2, 1, 1), (2, 0, 1)(2, 0, 2), (1, 1, 1)(2, 1, 1), (1, 1, 1)(1, 0, 1),
(1, 1, 1)(1, 2, 1), (2, 1, 1)(0, 1, 1), (2, 1, 1)(2, 1, 2), (0, 1, 2)(1, 1, 2), (0, 1, 2)(0, 0, 2),
(0, 1, 2)(0, 2, 2), (0, 1, 2)(0, 1, 3), (1, 1, 2)(1, 0, 2), (1, 1, 2)(1, 1, 3), (0, 2, 2)(1, 2, 2),
(0, 2, 2)(2, 2, 2), (0, 2, 2)(0, 2, 3), (1, 0, 3)(2, 0, 3), (1, 0, 3)(1, 1, 3), (1, 0, 3)(1, 2, 3),
(1, 0, 3)(1, 0, 4), (2, 0, 3)(0, 0, 3), (2, 0, 3)(2, 2, 3), (2, 0, 3)(2, 0, 4), (1, 1, 3)(2, 1, 3),
(1, 1, 3)(1, 1, 4)}.

B.2 Three completely independent spanning trees in the

last five levels of TM(3, 3, q)

E(T1) = {(0, 0, 0)(1, 0, 0), (0, 0, 0)(0, 1, 0), (0, 0, 0)(0, 2, 0), (0, 0, 0)(0, 0, 1),
(1, 0, 0)(1, 2, 0), (1, 0, 0)(2, 0, 0), (1, 0, 0)(1, 0, 1), (0, 1, 0)(1, 1, 0), (0, 1, 0)(0, 1, 1),
(1, 0, 1)(2, 0, 1), (1, 0, 1)(1, 2, 1), (1, 2, 1)(2, 2, 1), (1, 2, 1)(1, 1, 1), (1, 2, 1)(1, 2, 2),
(2, 2, 1)(0, 2, 1), (2, 2, 1)(2, 1, 1), (2, 2, 1)(2, 2, 2), (0, 0, 2)(1, 0, 2), (0, 0, 2)(2, 0, 2),
(0, 0, 2)(0, 1, 2), (0, 0, 2), (0, 0, 3), (1, 0, 2)(1, 1, 2), (1, 0, 2)(1, 0, 3), (0, 1, 2)(2, 1, 2),
(0, 1, 2)(0, 2, 2), (0, 1, 2)(0, 1, 3), (1, 0, 3)(2, 0, 3), (1, 0, 3)(1, 2, 3), (1, 0, 3)(1, 0, 4),
(1, 2, 3)(2, 2, 3), (1, 2, 3)(1, 1, 3), (1, 2, 3)(1, 2, 4), (2, 2, 3)(0, 2, 3), (2, 2, 3)(2, 1, 3),
(2, 2, 3)(2, 2, 4), (0, 1, 4)(1, 1, 4), (0, 1, 4)(0, 0, 4), (0, 1, 4)(2, 1, 4), (0, 1, 4)(0, 1, 5),
(2, 1, 4)(2, 0, 4), (2, 1, 4)(2, 2, 4), (2, 1, 4)(2, 1, 5), (2, 2, 4)(0, 2, 4), (2, 2, 4)(2, 2, 5)};
E(T2) = {(1, 1, 0)(2, 1, 0), (1, 1, 0)(1, 0, 0), (1, 1, 0)(1, 2, 0), (1, 1, 0)(1, 1, 1),
(2, 1, 0)(0, 1, 0), (2, 1, 0)(2, 0, 0), (2, 1, 0)(2, 1, 1), (1, 2, 0)(2, 2, 0), (1, 2, 0)(1, 2, 1),
(0, 0, 1)(1, 0, 1), (0, 0, 1)(2, 0, 1), (0, 0, 1)(0, 2, 1), (0, 0, 1)(0, 0, 2), (2, 0, 1)(2, 1, 1),
(2, 0, 1)(2, 2, 1), (2, 0, 1)(2, 0, 2), (2, 1, 1)(0, 1, 1), (1, 1, 2)(0, 1, 2), (1, 1, 2)(2, 1, 2),
(1, 1, 2)(1, 2, 2), (1, 1, 2)(1, 1, 3), (2, 1, 2)(2, 2, 2), (2, 1, 2)(2, 1, 3), (1, 2, 2)(0, 2, 2),
(1, 2, 2)(1, 0, 2), (1, 2, 2)(1, 2, 3), (0, 0, 3)(1, 0, 3), (0, 0, 3)(2, 0, 3), (0, 0, 3)(0, 2, 3),
(0, 0, 3)(0, 0, 4), (2, 0, 3)(2, 1, 3), (2, 0, 3)(2, 2, 3), (2, 0, 3)(2, 0, 4), (2, 1, 3)(0, 1, 3),
(2, 1, 3)(2, 1, 4), (0, 0, 4)(1, 0, 4), (0, 0, 4)(0, 2, 4), (0, 0, 4)(0, 0, 5), (0, 2, 4)(1, 2, 4),
(0, 2, 4)(0, 1, 4), (0, 2, 4)(0, 2, 5), (1, 2, 4)(2, 2, 4), (1, 2, 4)(1, 1, 4), (1, 2, 4)(1, 2, 5)};
E(T3) = {(2, 0, 0)(0, 0, 0), (2, 0, 0)(2, 2, 0), (2, 0, 0)(2, 0, 1), (0, 2, 0)(1, 2, 0),
(0, 2, 0)(2, 2, 0), (0, 2, 0)(0, 1, 0), (0, 2, 0)(0, 2, 1), (2, 2, 0)(2, 1, 0), (2, 2, 0)(2, 2, 1),
(0, 1, 1)(1, 1, 1), (0, 1, 1)(0, 0, 1), (0, 1, 1)(0, 2, 1), (0, 1, 1)(0, 1, 2), (1, 1, 1)(2, 1, 1),
(1, 1, 1)(1, 0, 1), (1, 1, 1)(1, 1, 2), (0, 2, 1)(1, 2, 1), (2, 0, 2)(1, 0, 2), (2, 0, 2)(2, 1, 2),
(2, 0, 2)(2, 2, 2), (2, 0, 2)(2, 0, 3), (0, 2, 2)(2, 2, 2), (0, 2, 2)(0, 0, 2), (0, 2, 2)(0, 2, 3),
(2, 2, 2)(1, 2, 2), (2, 2, 2)(2, 2, 3), (0, 1, 3)(1, 1, 3), (0, 1, 3)(0, 0, 3), (0, 1, 3)(0, 2, 3),
(0, 1, 3)(0, 1, 4), (1, 1, 3)(2, 1, 3), (1, 1, 3)(1, 0, 3), (1, 1, 3)(1, 1, 4), (0, 2, 3)(1, 2, 3),
(0, 2, 3)(0, 2, 4), (1, 0, 4)(2, 0, 4), (1, 0, 4)(1, 1, 4), (1, 0, 4)(1, 2, 4), (1, 0, 4)(1, 0, 5),
(2, 0, 4)(0, 0, 4), (2, 0, 4)(2, 2, 4), (2, 0, 4)(2, 0, 5), (1, 1, 4)(2, 1, 4), (1, 1, 4)(1, 1, 5)}.
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