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A Hardware-based Smart Camera for recovering High Dynamic

Range video from multiple exposures

Pierre-Jean Lapraya, Barthélémy Heyrmana and Dominique Ginhaca

aUniversity of Burgundy, Le2i UMR 6306, Dijon, France

Abstract. In many applications such as video surveillance or defect detection, the perception of information related

to a scene is limited in areas with strong contrasts. The high dynamic range (HDR) capture technique can deal with

these limitations. The proposed method has the advantage of automatically selecting multiple exposure times to make

outputs more visible than fixed exposure ones. A real-time hardware implementation of HDR technique that shows

more details both in dark and bright areas of a scene is an important line of research. For this purpose, we built a

dedicated smart camera which performs both capturing and HDR video processing from three exposures. What is new

in our work is shown through the following points: HDR video capture through an Multiple Exposure Control, HDR

memory management, HDR frame generation and representation under a hardware context. Our camera achieves a

realtime HDR video output at 60 fps at 1.3 MegaPixels and demonstrates the efficiency of our technique through an

experimental result. Applications of this HDR smart camera include the movie industry, the mass-consumer market,

military, automotive, and surveillance.
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1 Introduction

Standard cameras have a limited dynamic range. In many video and imaging systems, we have

saturated zones in the dark and illuminated areas of the captured image. These limitations are due

to large variations of the scene radiance, with over and under-exposed areas in the single image.

The sequential capture of several images with different exposure times can deal with the lack of

information in extreme lightning conditions.

According to Krawczyk et al.,1 there are two types of devices that can be used to capture the

entire dynamic of a scene: the HDR sensors and standard sensors. The HDR sensors are, by design,

able to capture a wide dynamic range with a single capture. However, these sensors are still under

development and are not suitable for embedded and low cost applications. Another technique is to

use a standard LDR (Low Dynamic Range) sensor. This technique derives several ways to proceed:
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• changing the exposure time by multiple captures which is the most common method ;

• spatial exposition: capture simple, with a mask in front of the sensor ;

• multiple sensors with a shared light beam.

According to A. E. Gamal,2 the multiple capture technique is the most efficient method, widely

used in recent works.3–5 Create an HDR image is done in three steps:

• recover the response curve of the system ;

• blend pixels into radiance values ;

• perform Tone Mapping to match the dynamic range of the scene to that of the display device.

This technique is designed to calculate the light intensities of real scenes, where each pixel is stored

on a very large dynamic range (up to 32-bits wide and more). It is therefore necessary to have a

large range of memory to store images, and to reconstruct the HDR image.

The three most popular algorithms for HDR reconstruction are those of Debevec and Malik6 ,

Mitsunaga et al.7 and Robertson et al.8 A technical paper by Yourganov9 compares the first two

algorithms implemented in C/C++ in real time on PC. The results of computation time for an

image are substantially the same. Mitsunaga algorithm calculates the benefit of the response curve

without knowing the exposure times of the different images to merge. They perform automatic

rejection of the image parts with significant effects of vignetting, or temporal variations. Originally,

the Debevec method has been developed for photography. However, according to the research

conducted by Yourganov,9 this method can be easily applied to digital video, both for static and

dynamic scenes, if captures are fast enough that light changes between two consecutive frames
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can be safely ignored. Consequently, such a method is widely used to produce HDR video, by

capturing frames with alternating bright and dark exposures, as pointed by Tocci10

HDR creating is followed by the tone mapping operation.11 It is used to render the HDR data

to match the dynamic range of conventional hardware displays. For example, it converts 32-bit

wide pixels to 8-bit wide pixels ([0,255]). There are two types of tone mapping operators (TMO):

spatially uniform (global TMO) and spatially non-uniform (local TMO). In our case, several algo-

rithms seem to be implementable in real-time due to fast computation capabilities, whether global

or local. Following is a list of methods known for their efficiency and simplicity. These methods

are ordered from the fastest algorithm to the slowest algorithm implemented in software:

• Durand et al.12 (Fast Bilateral Filtering for the Display of High-Dynamic-Range Images) ;

• Duan et al.13 (Tone-mapping high dynamic range images by histogram novel Adjustment) ;

• Fattal et al.14 (Gradient Domain High Dynamic Range Compression) ;

• Reinhard et al.15 (Photographic Tone Reproduction for Digital Images) ;

• Tumblin et al.16 (Time-dependent visual adaptation for fast realistic image display) ;

• Drago et al.17 (Adaptive Logarithmic Mapping For Displaying High Contrast Scenes).

Representing as closely as possible the reality is a crucial aspect to be considered for any

HDR system. Several publications have been made concerning the evaluation of tone mapping

methods.18 A study by Akyz et al.19 shows that the method by Reinhard et al.15 photographic

tone mapping gives the best results in terms of natural appearance in the image. Another study by

Drago et al.20 reaches the same conclusion. Moreover, Cadik21 shows very good results for the
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operator to Reinhard. There is a surprising aspect in this article: the global part of the methods of

tone mapping is critical to achieve good visual results for real-world scenes.

In this paper, we propose a HDR smart camera based on a parallel hardware architecture ded-

icated to the production of real-time HDR video content from a set of different exposures. From

an end-user point of view, the HDR video must be built and delivered at full resolution and at the

sensor framerate with no detectable latency from each new capture and frames previously stored.

Moreover, this HDR platform embeds all the necessary algorithms to automatically evaluate the

best exposure times from any visual scene in order to provide the best HDR content. What is new

in this paper is shown through four steps. First, we capture images from the sensor with alternat-

ing three exposure times, selected automatically by our Multiple Exposure Control (MEC). Then,

we manage reading and writing operations in memory in order to have several video streams in

parallel, corresponding to the different exposure times. Under a highly parallel context, we blend

the three video streams together with a modified version of a standard HDR technique. Finally,

an hardware implementation of a global tone mapping technique is performed. We will begin this

paper by describing existing works about HDR video technique in Section 2. Then, in Section

3, we will describe our system in detail. Finally, some experiments and results will follow this

discussion in Section 4. Concluding remarks are then presented.

2 Related work

We detail here the existing hardware architectures. We limit ourselves to recent systems which

can operate in real-time, whether they are focused exclusively on capture, HDR creating or tone

mapping. Table 1 summarizes these methods.

In 2012, Akyüz et al.28 developed a complete system on a GPU (”Graphics Processing Unit”)
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Table 1 Summary of the main embedded real-time architectures dedicated to HDR.

Method Hardware Capture Fusion Frames Tone Resolution FPS

HDR used Mapping

Akyüz et al.22 GPU no yes 9 yes - 65

Mann et al.23 FPGA yes yes 3 yes 1, 280× 720 120

Ureña et al.24 GPU/FPGA no no - yes 640× 480 30/60

Guthier et al.25 CPU+GPU yes no - no 640× 480 25

Ching-Te et al.26 ARM SOC no no 3 yes 1, 024× 768 60

Bachoo et al.27 CPU+GPU no yes 3 - 1, 600× 1, 200 20

platform. The tasks are performed in parallel with a pipelined structure. Generating HDR and the

tone mapping are done without knowing the response curve of the camera. They use the algorithm

originally proposed by Debevec et al.6 to estimate the radiance values. Regarding to the operation

of the tone mapping, the Reinhard et al.15 algorithm has been chosen and implemented. Some

results are identical compared to other methods implemented on CPU. They reach a framerate of

65 fps for producing HDR images, and 103 frames per second for performing the tone mapping.

However, they do not have time to load textures on the GPU. The majority of time is spent in

sending pixels to the GPU. Radiance computations and weighting have little impact on the speed

calculation, and the framerate of the final system.

The most popular complete HDR vision project is based on the Mann23 system. In 2012, a

welding helmet composed of two computer-controlled video cameras has been presented. The data

received by these cameras are recorded line by line in an external memory. Several FIFOs store the

pixels and read them simultaneously line by line. The number of FIFOs depends on the number of

images used by the HDR reconstruction module. A LUT containing precomputed values is used

to combine multiple exposures. This LUT is inspired of the work by Ali et al.29 , the estimation of
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radiances is done with a CCRF (”Comparametric Camera Response Function”). With this method,

they are able to obtain a video with a fixed latency, and a controlled time calculation on a Xilinx

Spartan-6 LX45 FPGA.

Ureña et al.24 published in 2012 two tone mapping architectures, described both on GPU and

FPGA. The implementations were done on a battery portable operating circuit. A new generation

of tone mapping is presented in this article. The tone mapping operator includes both local and

global calculation. Typically, for the overall look, it highlights areas containing low contrasts,

but can also protect areas where the contrast is well. Locally, it reduces the areas that are too

bright in order to improve the image details. The overall improvement is based on the brightness

histogram adaptation of each channel in the HSV colour space. On the other hand, the local en-

hancement is based on the retina-like technique. To summarize, the Gaussian filters, the weighting

and the human visual system consideration are the main advantages of the operator. The FPGA

implementation produced a video with a high frame rate, consuming little electric power, while the

GPU implementation provides greater precision in the calculation of HDR pixels, but uses a lot of

resources.

In 2012 Guthier et al.30 introduced an algorithm with a good HDR quality, that can be imple-

mented with the same number of LDR (Low Dynamic Range) captures. The choice of exposures

is performed optimally by selecting the better shutter speeds that will add the more useful infor-

mation to contribute to the final HDR image. The context can be real-time, by minimizing the

number of images. Basically, the exposure times are wisely chosen so that at least one LDR image

has a well exposed pixel at one position (i, j). First, a good approximation of the radiance value E

is calculated taking into account the response function of the camera and a contributing function.

A useful relationship is made between the radiance histogram vector and the contribution of each
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images that indicate potentially changes in the scene. A stability criterion is also introduced to the

sequence which allows each frame to be adjusted until a stable shutter sequence is found. Finally,

with this algorithm, it saves capturing time and reduces the number of LDR exposures without loss

of quality at the end of the computation.

Ching-Te et al.26 suggests a methodology to develop a tone mapping processor optimized

using an ARM SOC platform (System On Chip). Their processor evaluates both photographic

compression method by Reinhard et al.,15 and the gradient compression method by Fattal et al.,14

for different applications. The new processor can compress 1, 024 × 768 HDR images at 60 fps.

The core needs 8, 1mm2 of physical area with 0.13m TSMC technology.

Bachoo27 developed a dedicated technical application of exposure fusion (initiated by Mertens

et al.31), to merge a real-time 1600 × 1200 video at 20 fps using three black and white videos.

They are able to control the speed of image generation, to have a constant frame rate, relative

to the defined processing block size. They perform an alternative Goshtasby32 algorithm. The

implementation is done on CPU and GPU. The algorithm is divided into two parts so that the

power of the CPU processing and GPU is used wisely. The CPU perform massively sequential

operations such as calculating entropy blocks. The GPU is used to merge the blocks together,

operation which can be parallelized to increase execution speed of the fusing process. The speed

can be increased if the video resolution is reduced or if the size of processing blocks increases. As

this, a compromise between calculation speed and quality can be chosen. Nothing is said about the

choice of exposure time and no method is proposed to estimate exposures. It is recorded that the

use of additional exposures may produce a bottleneck in the fusing process.
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3 A dedicated HDR Smart Camera

The dedicated hardware platform is a smart camera built around a Xilinx ML605 board, equipped

with a Xilinx Virtex-6 XC6VLX240T (see Figure 1(a)). The motherboard includes a 512 MB

DDR3 SDRAM memory used to buffer the multiple frames captured by the sensor. Several

industry-standard peripheral interfaces are also provided to connect the system to the external

world. Among these interfaces, our vision system implements a DVI controller to display the

HDR video on an LCD monitor. It also implements an Ethernet controller to store frames on a host

computer. A custom-made PCB extension board has been designed and plugged into the FPGA

board to support the Ev76c560 image sensor, a 1280 x 1024-pixel CMOS sensor from e2v. It

offers a 10-bit digital readout speed at 60 fps in full resolution. It also embeds some basic image

processing functions such as image histograms, evaluation of the number of low and high satu-

rated pixels. Each frame can be delivered with results of these functions encoded in the video data

stream header

Insert Figure 1 here

Fig 1 Overview of our HDR smart camera.

The parallel architecture presented in this paper operates in several stages. At the first stage,

an FPGA input interface receives sequentially three pixel streams (produced by the e2v sensor

EV76C560), and stores them to a memory as mosaiced colour images. No demosaicing is per-

formed at this time. A Multiple Exposure Control (MEC) based on the histogram computation

also operates in parallel to select the proper exposure times. It changes the sensor configuration

each time an image is captured. The second stage is based on a memory management core which
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reads the previous frames stored into the SDRAM, and delivers it as a synchronized parallel video

outputs. At the third stage, the different pixel streams are combined into an HDR frame, knowing

the response curve of the imaging system and the exposure times of images. This stage produces

a complete radiance map of the captured scene. Finally, the High Dynamic Range frame is tone

mapped and can be displayed on a standard LCD monitor via a DVI controller. This full process is

continuously updated in order to perform a real-time HDR live video at 60 fps with a 1280× 1024

pixel resolution. Our real-time constraint is that the availability of a new HDR data from the LDR

captures must not exceed a fixed latency of 1ms, guaranteeing that the HDR process is impercep-

tible to the viewer.

Our camera must be automatically adapted to the illumination level, just as the human eyes

do. The best set of exposures has to be evaluated in order to capture the adequate dynamic range

of the scene. But, when we perform HDR stitching, traditional auto exposure algorithms fail. We

present a similar approach of a previous state of the art algorithm by Gelfand et al.33 , adapted to

our real-time hardware requirement. Our sensor is able to send us the complete image histogram.

Using the histogram of each image will allow to have a preview of the total range of brightness that

is being recorded. We require that fewer than 10% of the pixels are saturated in white for the short

exposure, and require that fewer than 10% of pixels are saturated in dark for the long exposure, as

illustrated in Fig. 2.

Insert Figure 2 here

Fig 2 From left to right, the first image shows 15.3% of pixels saturated at high level for the short exposure before

MEC, whereas the second image has only 5.4% of these pixels after MEC. In the same manner, the third image shows

38.3% of pixels saturated in black before MEC and the fourth image only includes 0.2%. after MEC.

However, the method developed by Gelfand for the evaluation of the exposure times has been
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specifically designed for HDR photography on smartphone. Their approach is optimal to capture

a single HDR image but cannot be considered for an HDR video. In our approach, we decide to

continuously update the set of exposure times from frame to frame to minimize the number of sat-

urated pixels by instantaneously handling any change of the light conditions. The estimation of the

best exposure times is computed from the 64-level histogram provided automatically by the sensor

in the data-stream header of each frame. Let’s call ∆tL, ∆tM and ∆tH the three exposure times

related to our scene. Image histograms provided by the sensor are encoded with 64 categories, with

16 bits by category. According to the captured images with low exposure IL and high exposure IH

times, we apply these functions:

QL =
∑h=4

h=1
q(h)
N

QH =
∑h=64

h=60
q(h)
N

, (1)

where QL and QH are the proportion of pixels on a specific part of the histogram, among N pixels

that compose an image. qh is the number of pixels in each bin h. The calculation is done with the

first four and the last four categories in the images IH or IL. The output pixels are encoded with

10-bit (between 0 and 1023), four categories correspond to a range of 64 pixel values. Then we

calculate one parameter for both extreme exposure times like this:

δQL/H = |QL/H −QL/H,req| , (2)

where QL/H,req is the required pixel quantity for a specific part of the histogram (10% among

N ). δQL/H evaluates how far is the amount of current pixels with the desired quantity. Once we
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have these parameters, the system takes a series of decisions to the next image captures at t+ 1:

∆tL/M/H,t+1 ← MEC(∆tL/H,t) , (3)

∆tL,t+1 =



















∆tL,t ± 1x for δQL > thrLm

∆tL,t ± 10x for δQL > thrLp

(4)

∆tH,t+1 =



















∆tH,t ± 1x for δQH > thrHm

∆tH,t ± 10x for δQH > thrHp

(5)

∆tM,t+1 =
√

∆tL,t∆tH,t , (6)

where ∆tL/M/H,I are the values of exposure time of the current images IL, IM and IH .

To obtain a correct convergence time, the exposure time is automatically adjusted using two

different levels of thresholds: one for a small variation of illumination, and one for greater range of

illumination changes. thrm (minus) and thrp (plus) are the two threshold values that correspond

to two different levels of action on the adjustment of exposure time. These thresholds will directly

affect the transition speed to a stable state. For example, when you have a sudden increase in light

in a short space of time, we affect the sensor exposure time according to thrp. x determines how

we change exposures. Here it corresponds to the sensor time line, x = 15.72us.
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4 Implementation

4.1 Specific HDR Memory Management Core

The use of external off-chip memories is judicious for our application that processes large amount

of data and high data rates. For our case, video processing requires two frames of data to be stored.

In practice, this storage is implemented using DDR3 SDRAM chip which is a part of our hardware

development platform. It requires fast and efficient direct memory access logic to achieve high

dynamic range video in real-time.

Insert Figure 3 here

Fig 3 Memory Management Core Initialization. The sensor sends sequentially low (I1) and middle (I2) exposure

times. Writing operations into memory of each rows Λ indexed by λ of the first two frames.

Insert Figure 4 here

Fig 4 Memory Management Core. Performing three parallel streaming videos with low (I1), middle (I2) and high (I3)

exposure times. The delayed HDR row output is shown after HDR and tone mapping computations (related to Section

4.2 and 4.3).

The sensor is able to send full-resolution images at 60 frames/s. Initialization of our specific

HDR Memory Management Core is shown in Fig. 3. I1 and I2 are first stored in DDR3 memory.

The first frame (I1) is stored row by row with the function WΛλI1, where λ indexes row number

(1 <= λ <= 1024). For example WΛ1I1 means ”writing of the first row Λ1 of I1 into memory”.

Each row write operation is followed by inter-row delay, due to horizontal sensor synchronization.

For the second frame I2, the image is also stored row by row (WΛλI2). This initialization step is

required before the generation of the first HDR frame. We can’t avoid waiting for these two first

exposures. After this step, the Memory Management Core can start (see Fig. 4).

12



During the capture of the last frame (I3), rows of the two previous frames stored are syn-

chronously read from the memory during inter-frame (RΛλI1, RΛλI2) and buffered into Block

RAMs (BRAMs) while each new captured row (WΛλI3) is stored in memory. It’s important to no-

tice that the design is a pure-hardware system which is processor-free and must be able to absorb a

continuous pixel flow of about 80 MegaPixels per second from the sensor (called ”Memory In” in

Fig. 3 and in Fig. 4) while reading two other pixel flows corresponding to the two stored images

(respectively called ”Memory Out 1” and ”Memory Out 2” in Fig. 4).

The HDR content is computed with the methods described in Sections 4.2 and 4.3. The HDR

process needs a continuous stream of pixels of three images and then can only be performed while

receiving the third frame I3. Then, the process can iterate throughout the capture of the fourth

frame (low exposure I4) and the readout of the second and third frame (I5 and I6). Finally, our

memory management system is able to deliver two parallel pixel streams that have been acquired

and stored into the memory and a third pixel stream directly from the sensor. With this technique,

each HDR pixel only requires three memory accesses (one write and two read operations during

one row interval), saving many memory access operations. The main advantages of such a tech-

nique are (1) to store only two images in memory, and (2) to avoid the waiting for the three images

to compute an HDR image. A latency corresponding to 136 clock rising-edges (i.e. 1.2us for a

114MHz system clock) is required by the system to create HDR tone mapped data (grey part of

HDR output in Fig. 4) from the three captured lines. And then, it delivers an HDR video stream at

60 fps directly updated at each time the sensor sends an image.
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4.2 HDR creating

The evaluation of the response curve of the system g only requires the evaluation of a finite num-

ber of values between Zmin and Zmax (typically 1,024 values for a 10-bit precision sensor), as

depicted in the paper of Debevec and Malik.6 This evaluation is not required if the camera has a

linear response. However, for the major parts of image sensors, including the sensor used in our

hardware platform, the response is not linear. The most significant nonlinearity in the response

curve is around the saturation points (i.e. very dark pixels and very bright pixels), where any dark

(respectively bright) pixel with a radiance below (respectively above) a certain level is mapped to

the to the same minimum (respectively maximum) image value. The evaluation of the response

curve has not been implemented on the hardware platform because it needs to be computed only

once for a given sensor. So, these values are preliminarily evaluated by a dedicated PC software

(Matlab code provided with the Debevec paper) from a sequence of representative images, and

then stored into a Look-Up Table (LUT, 1,024-word memory) on the FPGA, for further reuse to

convert pixel values. For recovering the HDR luminance value Eij of a particular pixel, all the

available exposures of this pixel are combined using the following equation:

lnEij =

∑p=3
p=1 ω(Zp,ij)[g(Zp,ij)− ln∆tp]

∑p=3
p=1 ω(Zp,ij)

, (7)

where p indexes image number, i and j indexes pixel position, ∆t is the exposure time and ω(z) is

a weighting function giving higher weight to values closer to the middle of the function:

ω(z) =



















z − Zmin for z ≤ 1
2
(Zmin + Zmax)

Zmax − z for z > 1
2
(Zmin + Zmax)

(8)
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where Zmin and Zmax values depend on the sensor output dynamic (typically 1, 024 values for a

10-bit precision sensor).

Insert Figure 5 here

Fig 5 HDR creating and tone mapping hardware pipeline using three different pixel streams. Frame enable is active

when a new HDR frame is coming. It is important to note that we use IEEE754 32-bit floating-point arithmetic

operators.

Considering Z1,ij , Z2,ij and Z3,ij as ZL,ij , ZM,ij and ZH,ij , the overall scheme is visible in a

pipeline architecture in Fig. 5. Computation of luminance values requires the use of 32-bit arith-

metic operators (subtractors, multipliers etc.) and transition from 10-bit to IEEE754 32-bit wide

(called ”Fixed-to-Float” in Fig. 5). LUTs are used to store response curve g and make the tran-

sition from exposure time values ∆tL/M/H to neperian logarithm field. These LUTs are used to

avoid too much large hardware utilization. Floating-point operators with a large data bus have been

chosen according to a detailed study on arithmetic operators on FPGA,34 focusing on estimation

surface and time for floating and fixed operators. They note that the surface increases exponentially

with the accuracy (number of bits of representation). In addition, output delays increase linearly

with precision. In view of these results, it was particularly interesting to consider implementations

provided by Xilinx, including floating-point operators. The choice of using floating algorithms be-

came spontaneously, given the huge dynamic computations for radiances. Moreover, as indicated

in Table 2, floating architecture does not consume significantly more resources than the fixed-point

architecture.
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Operator Fixed point Floating point

LUTs DSPs LUTs DSPs

Add/Sub 75 0 477 0

0 1 287 2

Multiplicator 696 0 659 0

132 1 107 3

Dividor 1 Cycle 1377 (Radix-2) 0 780 0

Dividor 25 Cycles - - 187 0

Root mean square 1 Cycle 1550 0 533 1

Root mean square 25 Cycles - - 170 1

Table 2 Resource comparison of fixed and floating point arithmetic operators on Virtex 6

4.3 Tone Mapping

Once the radiance map is recovered, image pixels have to be mapped to the display range of a

selected material. In our case, the displayable range is 28 values. Reinhard et al.15 require one

global computation: the log average luminance found in the image, calculated as

Ēij = exp

(

1

N

∑

i,j

lnEij

)

, (9)

where Eij is the scene radiance for pixel (i,j), N is the total number of pixels in the image. Then,

we want to map the middle-gray scene luminance to the middle-gray of the displayable image. For

the photographic tone reproduction operator, an approach is to scale the input data such that the

log average luminance is mapped to the estimated key of the scene:

Dij = 255 ·
a
Eij

Ēij

1+a
Eij

Ēij

= 255 · 1

1+
Ēij

a·Eij

,

(10)
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where a is a scaling constant appropriate to the illumination range of the image scene. We chose

0.18 empirically in our case.

5 Results and discussion

5.1 Hardware implementation

Our work has been implemented on a Virtex-6 platform. We show the hardware implementation

results in Table 3. Usually, FPGA-based image processing requires many specific devices such as

SRAM memory, multi-port memory, video direct memory access, dedicated processors, and con-

sequently, consumes many DSP blocks. This is not the case for our implementation. It consumes

relatively low hardware complexity since the number of occupied slices is 6, 692 (about 17% of the

device) and the number of LUTs is 16, 880 (i.e. 11% of the device). These results highlight several

interesting points. First of all, since the hardware utilization is limited with the Virtex-6 platform, it

let us the opportunity to implement the full HDR pipeline onto a less powerful FPGA like a Xilinx

Spartan-6 LX45, providing a more low-cost HDR smart camera. Secondly, our technique can be

extended to more complex processing architectures. Among them, we can cite more complex tone

mapping operators and specifically local operators, known to give enhanced visual performance.

We can also mention HDR pipeline using more than three LDR exposures in order to capture more

details in the scene.

Two series of captures of digital still images from the different video LDR streams are shown

in Fig. 6. For the two sets, you can see from left to right the contributions from the different LDRs

frames (low, medium and high exposures) and the HDR image. As an example, for the first series,

we can distinguish the word ”HDR” inside the lamp (high brightness), and the word ”HDR” inside

the tube (low brightness).
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Table 3 Summary of hardware implementation results on the Virtex-6 platform.

Metric Utilization/Availability %

Estimated supply power 6.039 W

Maximum frequency 126.733 MHz

Number of occupied Slices 6,692 out of 37,680 17%

LUTs 16,880 out of 150,720 11%

Registers 20,192 out of 301,440 6%

Number of bonded IOBs 196 out of 600 32%

36K BRAMs 17 4%

Insert Figure 6 here

Fig 6 Results of the complete system. Our Multiple Exposure Control can select the three proper exposures, and the

specific memory management core permits us to display the 3 bracketed images. The HDR image is in the right of

each image set.

Our design has an horizontal blanking period of 307 pixels, and a vertical blanking period

of 20 rows. The entire design contains hardware and algorithm latencies. The efficient latency

at the end of each row is 127 extra-clock ticks (whether 1.11µs for a clock pixel of 114MHz).

This constant latency appears but not alters the frame rate. Indeed, we use the horizontal blanking

periods delivered by our sensor to compensate the latency. With a video frame rate of 60 frames

per second, our system is able to process 60× (1280 + 307)× (1024 + 20) = 99.40 Mega pixels

per second. The hardware system has a maximum operating frequency of 126.733 MHz. Since the

video input and video output interfaces are running at 114 MHz, is it acceptable to have a lower

system clock? The answer is yes because during active video, we will support the back-pressure

Insert Figure 7 here

Video 7 Output video (MPEG, 3 MB).
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on the slower clock using the BRAMs. During blanking periods, the BRAMs will empty, and the

interface will catch up. Finally, our architecture embeds all the algorithmic operators to produce a

single tone-mapped output pixel in real-time.

5.2 Visual quality

HDR image quality metrics require the availability of a reference image with which the images

using the different tone mapping operators is to be compared. In this paper, the reference image

is the Paul Debevec’s HDR photo of Stanford memorial church used historically in the seminal

works on HDR.6 This reference image has been built from the original LDR exposures series of the

church, and tone-mapped with the adaptive logarithmic mapping of Drago et al.17 This technique is

described as the most natural method and also the most detailed method in dark region.35 A specific

test software implementing the different tone mapping operators has been developed in Matlab and

used to evaluate precisely the quality of each tone mapper. Since our hardware implementation

relies on 3 exposures, we used the three LDR images of Figure 8, in order to compare the different

methods. The exposure time for these three images are respectively 32s, 1s and 31ms from left to

right.

Insert Figure 8 here

Fig 8 The three low dynamic range images used for quality comparison.

Image quality metrics can be divided into two main categories. The first category are difference

based metrics. Among them, the most widely used quality metrics are mean square error (MSE)

and peak signal-to-noise ratio (PSNR) because they are simple mathematical measures evaluating

the distortion between the image and the reference. However, they are not well matched to per-
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ceived visual quality because they do not take the characteristics of the human visual system into

account.36 For the performance evaluation of different tone mapping operators, subjective criteria

as the human perception is of crucial importance. So, the second category of quality metrics in-

clude only human visual system based metrics. Among them, Universal Quality Index (UQI37) and

Structural SIMilarity (SSIM36) are used for measuring the perceptual similarity of the tone mapped

images. UQI is an image quality index that models the image distortion as a combination of three

factors: loss of correlation, luminance distortion, and contrast distortion. In UQI, local statistics

are computed to estimate a similarity between all corresponding 8×8 blocks across input and ref-

erence images. The SSIM index is a generalized form of UQI for measuring the similarity between

two images. In the SSIM metric, the image structure is represented by statistical measures (mean

and variance), and image quality is measured based on the similarity between the structure of the

reference and the test image. So, a high-quality test image has a structure that closely matches

the structure of the reference. SSIM is based on a specific measure of spatial correlation between

the structure of the images to quantify the degradation of the image structure.38 This metric imi-

tates the human perception on image structure and returns results that are more consistent with the

human visual system than MSE and PSNR.

Table 4 summarizes the comparison results in terms of image quality of the tone mapped im-

ages produced by our technique and by other methods using the above mentioned metrics: Uni-

versal Quality Index (UQI), Structural SIMilarity (SSIM), mean square error (MSE), normalized

root mean square error (NRMSE), and computation times. In terms of visual quality, our method

outclasses all the other methods (Drago et al., Schlick et al., and Tumblin et al.) with the highest

values both for UQI (0.89) and SSIM (0.8), while having similar computation times. Moreover,

our method gives better performance than the high-complexity local method proposed by Rein-
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hard et al. because we obtain identical performance in terms of UQI and SSIM but with a 50% less

processing time. In terms of MSE and NRMSE, the performance evaluation gives opposite results,

with lower performance compared to Drago et al., Schlick et al., and Tumblin et al. but higher than

Reinhard et al. Such results are in line with those obtained by Ponomarenko et al.,39 showing that

the widely used metrics such as MSE have very low correlation with human perception.

TMO UQI SSIM MSE NRMSE Time(s)

This work (Reinhard et al. (global)15) 0.89 0.8 79.86 0.32 5.52

Drago et al.17 0.54 0.58 20.91 0.1 5.43

Reinhard et al. (local)15 0.93 0.81 174.13 0.68 10.45

Schlick et al.40 0.43 0.56 5.53 0.03 5.50

Tumblin et al.16 0.14 0.29 4.09 0.02 5.59

Table 4 Comparison metrics derived from our test software for TMOs algorithms applied to an HDR image constructed

from three exposures.

The major problem and well known of HDR technique by multiple exposures, is the difficulty

to remove unwanted motion artifacts occurring during the reconstruction of the radiance map.

Ghost detection and ghost removal is under research to provide better HDR video quality. The

current system is limited by the bracketing spatio-temporal dissimilarities that may occur during

image capture. These artifacts, can be global or local. The global ghost occurs when LDRs are

misaligned during camera movement, when shooting with a hand-held camera for example. The

other type of ghost comes from movement of an object in the scene during acquisition. This

anomaly may render inoperative HDR imaging in some application areas. In our case, we have not

implemented motion correction, but due to high framerate, the effect is only noticeable with high

dynamic motions.
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6 Conclusion

An HDR camera, with a complete system from capture to display, has been designed for rendering

HDR content at full resolution and framerate. We show that HDR video with the original HDR

technique at an high frame rate is feasible. Some effort has to be done in standardization, compres-

sion and sharing HDR datas. The multiple exposure technique can cause problems due to scene

motion, but our application is not affected by this to any significant amount, as such extremely

rapid scene motion does not happen in our captured scenes. This is partly due to the fact that we

used a dedicated memory management core which delivers multiple videos in parallel at 60 frames

per second. For extremely rapid scene motion, our HDR system may be prone to ghosting artifacts.

So, we plan to study and implement onto the FPGA dedicated ghost detection techniques in order

to provide a real-time ghost-free HDR live video.
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6 Results of the complete system. Our Multiple Exposure Control can select the
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