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Abstract

Gyárfás et al. and Zaker have proven that the Grundy number of a
graph G satisfies Γ(G) ≥ t if and only if G contains an induced subgraph
called a t-atom. The family of t-atoms has bounded order and contains
a finite number of graphs. In this article, we introduce equivalents of t-
atoms for b-coloring and partial Grundy coloring. This concept is used to
prove that determining if ϕ(G) ≥ t and ∂Γ(G) ≥ t (under conditions for
the b-coloring), for a graph G, is in XP with parameter t. We illustrate
the utility of the concept of t-atoms by giving results on b-critical vertices
and edges, on b-perfect graphs and on graphs of girth at least 7.

1 Introduction

Given a graph G, a proper k-coloring of G is a surjective function c : V (G) →
{1, . . . , k} such that c(u) 6= c(v) for any uv ∈ E(G); the color class Vi is the
set {u ∈ V |c(u) = i} and a vertex v has color i if v ∈ Vi. A vertex v of color
i is a Grundy vertex if it is adjacent to at least one vertex colored j, for every
j < i. A Grundy k-coloring is a proper k-coloring such that every vertex is a
Grundy vertex. The Grundy number of a graph G, denoted by Γ(G), is the
largest integer k such that there exists a Grundy k-coloring of G [11]. A partial
Grundy k-coloring is a proper k-coloring such that every color class contains at
least one Grundy vertex. The partial Grundy number of a graph G, denoted by
∂Γ(G), is the largest integer k such that there exists a partial Grundy k-coloring
of G. Let G and G′ be two graphs. By G∪G′ we denote the graph with vertex
set V (G) ∪ V (G′) and edge set E(G) ∪E(G′). Let m(G) be the largest integer
m such that G has at least m vertices of degree at least m − 1. A graph G is
tight if it has exactly m(G) vertices of degree m(G)− 1.
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Figure 1: The graph K−
3,3 with ϕ(K−

3,3) = 2 (on the left) and ϕr(K
−
3,3) = 3 (on

the right).

Another coloring parameter with domination constraints on the colors is the
b-chromatic number. In a proper-k-coloring, a vertex v of color i is a b-vertex if
v is adjacent to at least one vertex colored j, 1 ≤ j 6= i ≤ k. A b-k-coloring, also
called b-coloring when k is not specified, is a proper k-coloring such that every
color class contains at least one b-vertex. The b-chromatic number of a graph
G, denoted by ϕ(G), is the largest integer k such that there exists a b-k-coloring
of G. In this paper, we introduce the concept of b-relaxed number, denoted by
ϕr(G). A b-k-relaxed coloring of G is a b-k-coloring of a subgraph of G. The
b-relaxed number of G is ϕr(G) = maxH⊆G(ϕ(H)), for H an induced subgraph
of G. Note that we have ϕ(G) ≤ ϕr(G) ≤ ∂Γ(G). The difference between ϕ(G)
and ϕr(G) can be arbitrary large. Let K−

n,n denotes the complete bipartite
graph Kn,n in which we remove n − 1 pairwise non incident edges (or n − 1
edges of a perfect matching in Kn,n) [1]. For this graph we have ϕ(K−

n,n) = 2
and ϕr(K

−
n,n) = n as Figure 1 illustrates it (for n = 3).

The concept of b-coloring has been introduced by Irving and Manlove [17],
and a large number of papers was published (see e.g. [8, 20]). The b-chromatic
number of regular graphs has been investigated in a serie of papers ([6, 18, 21,
23]). Determining the b-chromatic number of a tight graph is NP-hard even for
a connected bipartite graph [19] and a tight chordal graph [13].

In this paper, we study the decision problems b-COL, b-r-COL and pG-COL
with parameter t from Table 1.

b-COL b-r-COL G-COL pG-COL
Question Does ϕ(G) ≥ t? Does ϕr(G) ≥ t? Does Γ(G) ≥ t? Does ∂Γ(G) ≥ t?

Complexity undetermined XP XP [24] XP
class

Table 1: The different decision problems with input a graph G and parameter
t and their complexity class.

A decision problem is in FPT with parameter t if there exists an algorithm which
resolves the problem in time O(f(t) nc), for an instance of size n, a computable
function f and a constant c. A decision problem is in XP with parameter t if
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there exists an algorithm which resolves the problem in time O(f(t) ng(t)), for
an instance of size n and two computable functions f and g.

The concept of t-atom was introduced independently by Gyárfás et al. [12]
and by Zaker [24]. The family of t-atoms is finite and the presence of a t-atom
can be determined in polynomial time for a fixed t. The following definition is
slightly different from the definitions of Gyárfás et al. or Zaker, insisting more
on the construction of every t-atom (some t-atoms can not be obtained with the
initial construction of Zaker).

Definition 1.1 ([24]). The family of t-atoms is denoted by A Γ
t , for t ≥ 1, and

is defined by induction. The family A Γ
1 only contains K1. A graph G is in A Γ

t+1

if there exists a graph G′ in A Γ
t and an integer m, m ≤ |V (G′)|, such that G is

composed of G′ and an independent set Im of order m, adding edges between G′

and Im such that every vertex in G′ is connected to at least one vertex in Im.

Moreover, in the following sections, we say that a graph G in a family of
graphs F is minimal, if no graphs of F is a proper induced subgraph of G. For
example, a minimal t-atom A is a t-atom for which there are no t-atoms which
are induced in A other than itself.

Theorem 1 ([12, 24]). For a given graph G, Γ(G) ≥ t if and only if G contains
an induced minimal t-atom.

In this paper we prove equivalent theorems for b-relaxed number and partial
Grundy number. In contrast with the minimal t-atoms, we can not define
the minimal t-atoms for b-coloring as the smallest graphs such that G satisfies
ϕ(G) = t (also called b-critical graphs).

The paper is organized as follows: Section 2 is devoted to the definition of t-
atoms for the partial Grundy coloring. This concept allows us to prove that the
partial Grundy coloring problem is in XP with parameter t. Section 3 is similar
to Section 2 but for b-relaxed-coloring. Section 4 is devoted to the concept of b-
critical vertices and edges. Section 5 is about b-perfect graphs. Finally, Section
6 deals with graphs for which the b-relaxed and the b-chromatic numbers are
equal.

2 Partial-Grundy-t-atoms: t-atoms for partial Grundy

coloring

We start this section with the definition of t-atoms for partial Grundy coloring.

Definition 2.1. Let t be an integer with t ≥ 2. The family A ∂Γ(t) of partial-
Grundy-t-atoms (pG-t-atoms, for short) is obtained as follows: we begin by
taking an independent set of t vertices, denoted by C(t), called the center of
the pG-t-atom and associating a different integer of {1, . . . , t} to each vertex of
C(t). Let ck be the vertex of C(t) with associated integer k, 1 ≤ k ≤ t. Let
k be an integer with 1 ≤ k ≤ t. A ∂-k-dominating operation, on a graph G
containing C(t), consists in adding a set D of ℓ vertices, with 0 ≤ ℓ ≤ t− k and
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Figure 2: The minimal pG-2-atom (on the left) and the three minimal pG-3-
atoms (the numbers are the colors of the vertices and the surrounded vertices
form the centers).

associated integer k and adding edges between G− {ck} and D ∪ {ck} such that
every vertex of {ck+1, . . . , ct} is adjacent to a vertex of D ∪ {ck} and D ∪ {ck}
remains independent . Let G1 = {C(t)}. The family of graphs Gi, for 2 ≤ i ≤ t,
is obtained from the graphs in Gi−1 by doing a ∂-i-dominating operation on these
graphs. Finally, set A ∂Γ(t) = Gt.

Note that the associated integers induce a partial Grundy coloring of the
pG-t-atom. These associated integers of the pG-t-atoms are not considered
anymore when we use the notion of induced subgraph. Figure 2 illustrates
several pG-t-atoms obtained using the previous construction.

Observation 2.2. For every graph G in A ∂Γ(t), we have |V (G)| ≤ t(t−1)
2 .

Lemma 2.3. Let t and t′ be two integers such that 1 ≤ t′ < t. Every graph in
A ∂Γ(t) contains a graph in A ∂Γ(t′) as induced subgraph.

Proof. Every graph G in A ∂Γ(t) contains a graph G′ of A ∂Γ(t′): we can obtain
G′ by removing every vertex with an associated integer k in G, for t′ < k ≤ t,
and by removing, afterwards, the vertices of G′ not adjacent to the centers.

Note that the only minimal pG-2-atom is P2. The minimal pG-3-atoms are
C3, P4 and P2 ∪ P3. These graphs are illustrated in Figure 2.

Theorem 2. Let G be a graph. For a graph G, we have ∂Γ(G) ≥ t if and only
if G contains an induced minimal pG-t-atom.

Proof. Suppose that ∂Γ(G) = t′ with t′ ≥ t. Thus, there exists a partial Grundy
coloring of G with t′ colors. Let u1, . . ., ut′ be a set of Grundy vertices, each in a
different color class of V (G). The graph induced by N [u1]∪ . . .∪N [ut′ ] contains
a pG-t′-atom. Hence, by Lemma 2.3, since G contains an induced pG-t′-atom,
then it also contains an induced minimal pG-t-atom.
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Suppose G contains an induced minimal pG-t-atom. Thus, the integers
associated to the vertices correspond to a partial-Grundy coloring of this pG-t-
atom. We can extend this coloring to a partial Grundy coloring of G with at
least t colors, using a greedy algorithm [9] for the remaining vertices.

Proposition 2.4. Let G be a graph of order n and let t be an integer. There

exists an algorithm in time O(n
t(t−1)

2 ) to determine if ∂Γ(G) ≥ t. Hence, the
problem pG-COL with parameter t is in XP.

Proof. By Theorem 2, it suffices to verify that G contains an induced minimal
pG-t-atom to have ∂Γ(G) ≥ t. Since the size of a minimal pG-t-atom is bounded

by t(t−1)
2 , we obtain an algorithm in time O(n

t(t−1)
2 ).

We finish this section by determining every graph G with ∂Γ(G) = 2.

Proposition 2.5. For a graph G, we have ∂Γ(G) = 2 if and only if G = Kn,m,
for some n ≥ 1 and m ≥ 1.

Proof. Zaker [24] has proven that Γ(G) = 2 if and only if G is the disjoint union
of copies of some Kn,m, for n ≥ 1 and m ≥ 1. Let n and m be positive integers.
We can note that a graph containing two disjoint copies of Kn,m contains an
induced P2 ∪ P3, hence a pG-3-atom. Hence, if ∂Γ(G) = 2, then G = Kn,m.

Moreover, Kn,m does not contain induced C3, P4 and P3 ∪ P2. Hence,
∂Γ(Kn,m) = 2.

3 b-t-atoms: t-atoms for b-coloring

As in the previous section, we start this section with the definition of b-t-atoms
(the notion of t-atom for b-coloring).

Definition 3.1. Let t be an integer with t ≥ 2. The family of b-t-atoms A ϕ(t) is
obtained as follows: we begin by taking an independent set of t vertices, denoted
by C(t), called the center of the b-t-atom and associating a different integer of
{1, . . . , t} to each vertex of C(t). Let ck be the vertex of C(t) with associated
integer k, 1 ≤ k ≤ t. Let k be an integer with 1 ≤ k ≤ t. A k-dominating
operation on a graph G containing C(t), consists in adding a set D of ℓ vertices,
with 0 ≤ ℓ ≤ t− 1 and associated integer k and adding edges between G− {ck}
and D ∪ {ck} such that every vertex of C(t) − {ck} is adjacent to a vertex of
D ∪ {ck} and D ∪ {ck} remains independent. Let G1 = {C(t)}. The family
of graphs Gi, for 2 ≤ i ≤ t, is obtained from the graphs in Gi−1 by doing an
i-dominating operation on these graphs. Finally, set A ϕ(t) = Gt.

For a fixed b-t-atom, the set of possible associated integers is called the set
of b-t-atom colorings.

Note that the associated integers induce a b-coloring of the b-t-atom. These
associated integers of the b-t-atom are not considered anymore when we use
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Figure 3: The minimal b-2-atom (on the left) and the five minimal b-3-atoms.

the notion of induced subgraph. Figure 3 illustrates several b-t-atoms obtained
using the previous construction.

Observation 3.2. For every graph G in A ϕ(t), we have |V (G)| ≤ t2.

Lemma 3.3. Let t and t′ be two integers such that 1 ≤ t′ < t. Every graph in
A ϕ(t) contains a graph in A ϕ(t′) as induced subgraph.

Proof. Every graph G in A ϕ(t) contains a graph G′ in A ϕ(t′): we can obtain
G′ by removing every vertex with an associated integer k in G, for t′ < k ≤ t,
and by removing, afterwards, the vertices not adjacent to the centers.

Note that the only minimal b-2-atom is P2. The minimal b-3-atoms are C3,
P5, C5, P3 ∪ P4 and P3 ∪ P3 ∪ P3. These graphs are illustrated in Figure 3.

Observation 3.4. Every minimal pG-t-atom is an induced subgraph of a min-
imal b-t-atom or a minimal t-atom (an atom for the Grundy number).

Proposition 3.5. Let G be a graph. If ϕ(G) ≥ t, then G contains an induced
minimal b-t-atom.

Proof. Suppose that ϕ(G) = t′, with t′ ≥ t. Thus, there exists a b-coloring of G
with t′ colors. Let u1, . . ., ut′ be a set of b-vertices, each in a different color class
of V (G). The graph induced by N [u1]∪ . . .∪N [ut′ ] contains a b-t′-atom. Hence,
by Lemma 3.3, since G contains an induced b-t′-atom, then it also contains an
induced minimal b-t-atom.

Theorem 3. For a graph G, we have ϕr(G) ≥ t if and only if G contains an
induced minimal b-t-atom.

Proof. Suppose that the graph G contains an induced b-t-atom A. Since A
admits, by definition, a b-t-coloring, we have ϕr(G) ≥ t. Using Proposition 3.5,
we obtain the reciprocal.

6



Definition 3.6. Let G be a graph. For an induced subgraph A of G, let N(A) =
{v ∈ V (G) \ V (A)| uv ∈ E(G), u ∈ V (A)}. A b-t-atom A is feasible in G if
there exists a b-t-coloring of V (A) that can be extended to the vertices of N(A)
without using new colors.

Proposition 3.7. Let G be a graph. If G contains an induced feasible minimal
b-t-atom and no induced feasible minimal b-t′-atom, for t′ > t, then ϕ(G) = t.

Proof. If G contains no induced minimal b-t-atom, then by Proposition 3.5, we
have ϕ(G) < t. Suppose that G contains an induced feasible minimal b-t-atom
A and no b-t-coloring of G exists. We begin by considering that the vertices of
A∪N(A) are already colored with t colors. We can note that, by assumption, no
coloring of A ∪N(A) (from the definition) can be extended to the whole graph
using only t colors. Let t′ be the largest integer such that the coloring can not
be extended to a b-t′-coloring of the whole graph and let v be a vertex that can
not be given a color among {1, . . . , t′}. Thus, we suppose that the coloring can
be extended to a b-(t′+1)-coloring where v is colored by t′+1. Since A∪N(A)
is already colored, we have v ∈ V (G) \ (A ∪ N(A)). The vertex v should be
adjacent to vertices of every color, otherwise it could be colored. One vertex of
each color class in N(v) should be adjacent to vertices of each color class (except
its color). Otherwise, the colors of the vertices of N(v) could be changed in order
v be colored. Let N2[v] be the set of vertices at distance at most 2 from v. The
set N2[v] induces a graph containing a b-t′-atom where N [v] contains the center
of this b-(t′ + 1)-atom. Moreover, this b-(t′ + 1)-atom is feasible as the whole
graph is b-(t′ + 1)-colorable, contradicting the hypothesis.

Proposition 3.8. Let G be a graph. If ϕ(G) = t, then G contains an induced
feasible minimal b-t-atom and no induced feasible minimal b-t′-atom, for t′ > t.

Proof. Suppose ϕ(G) = t. By Proposition 3.5, G contains an induced minimal
b-t-atom. If no induced minimal b-t-atom is feasible, then there exists no b-t-
coloring of G, a contradiction.

A direct consequence of Proposition 3.7 and Proposition 3.8 is the following.

Theorem 4. For a graph G, we have ϕ(G) = t if and only if G contains an
induced feasible minimal b-t-atom and no induced feasible minimal b-t′-atom,
for t′ > t.

Note that the problem of determining if a graph has a b-t-coloring is NP-
complete even if t is fixed [22]. However, it does not imply that determining
if ϕ(G) ≥ t for a graph G is NP-complete. In contrast with the b-chromatic
number, determining if a graph has b-relaxed number at least t is in XP.

Proposition 3.9. Let G be a graph of order n and let t be an integer. There
exists an algorithm in time O(nt2) to determine if ϕr(G) ≥ t. In particular, the
problem b-r-COL with parameter t is in XP.
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Proof. It suffices to verify that G contains an induced minimal b-t-atom to
determine if ϕr(G) ≥ t. By Observation 3.2, the size of a minimal b-t-atom is

bounded by t2. Thus, we obtain an algorithm in time O(nt2 ).

Another NP-complete problem for a graph G is to determine its b-spectrum
[2], i.e. the set of integers k such that G is b-k-colorable. For a graph G satisfying
ϕ(G) = ϕr(G), our algorithm can be used as the two concepts became the same.

Corollary 3.10. Let G be a graph of order n and t be an integer. There exists
an algorithm in time O(nt2) to determine if ϕ(G) ≥ t for a graph G satisfying
ϕ(G) = ϕr(G).

4 b-critical vertices and edges

The concept of b-critical vertices and b-critical edges has been introduced re-
cently and since five years a large number of articles are considering this subject
[1, 4, 5, 10, 25]. In this section, we illustrate how this notion is strongly con-
nected with the concept of b-t-atom.

Definition 4.1 ([4, 10]). Let G be a graph. A vertex v of G is b-critical if
ϕ(G− v) < ϕ(G). An edge e is b-critical if ϕ(G− e) < ϕ(G). A vertex v (edge
e, respectively) in a graph G is a b-t-trap, if there exists a b-t-atom of G that
becomes feasible by removing v (e, respectively).

Proposition 4.2. Let G be a graph. A vertex v is b-critical if and only if it is
in every feasible minimal b-ϕ(G)-atom and v is not a b-ϕ(G)-trap.

Proof. Let t = ϕ(G). First, if v is not in a feasible minimal b-t-atom, then
ϕ(G − v) = t and v is not b-critical. If v is a b-t-trap, then, by definition,
ϕ(G − v) = t. Second, suppose v is not a b-t-trap. If v is in every feasible
minimal b-t-atom, then, since every minimal b-t-atom in G does not contain any
other feasible minimal b-t-atom as induced subgraph, G− v does not contain a
feasible minimal b-t-atom. Thus, v is b-critical.

Corollary 4.3. If a graph G contains two induced feasible minimal b-ϕ(G)-
atoms with disjoint set of vertices, then it contains no b-critical vertex.

Corollary 4.4. Let G be a graph and v be a vertex of V (G). If ϕ(G−v) > ϕ(G),
then G contains a minimal b-t-atom which is not feasible, for some t > ϕ(G).
If ϕ(G− v) < ϕ(G) − 1, then G− v contains no feasible minimal b-t-atom, for
ϕ(G− v) < t ≤ ϕ(G).

In [1], Balakrishnan and Raj have proved the following theorem.

Theorem 5 ([1]). Let G be a graph and v be a vertex of V (G). We have

ϕ(G)− ⌊ |V (G)|
2 ⌋+ 2 ≤ ϕ(G − v) ≤ ϕ(G) + ⌊ |V (G)|

2 ⌋ − 2.
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Moreover, some families of graphs which satitisfy properties from Theorem
5 are determined. More precisely, they have determined the families of graphs

for which there exists a vertex v such that ϕ(G − v) = ϕ(G) − ⌊ |V (G)|
2 ⌋ + 2 or

ϕ(G− v) = ϕ(G) + ⌊ |V (G)|
2 ⌋ − 2. In contrast with the b-chromatic number, we

have the following property about the b-relaxed number.

Proposition 4.5. Let G be a graph. If a vertex v is b-critical, then ϕr(G−v) =
ϕr(G)− 1.

Proof. By Proposition 4.2, v is in every b-ϕ(G)-atom. Let i be the integer
associated to v in the construction of this b-ϕ(G)-atom. By removing the
vertices with associated integer i, we obtain a b-(ϕ(G) − 1)-atom and thus
ϕr(G− v) = ϕr(G)− 1.

Note that this proposition was already proved for trees [4] (a tree T satisfies
ϕ(T ) = ϕr(T ), since every b-coloring of a subtree can be extended to the whole
tree).

Lemma 4.6. Let G be a graph with 4 ≤ |V (G)| ≤ 5 and E(G) 6= ∅. We have

ϕr(G− v) = ϕr(G) + ⌊ |V (G)|
2 ⌋ − 2, for every vertex v of V (G), if and only if G

contains two disjoint edges but no induced minimal b-3-atom.

Proof. We can note that we have ϕr(G− v) = ϕr(G) + ⌊ |V (G)|
2 ⌋ − 2 if and only

if ϕr(G− v) = ϕr(G).
First, if G contains no minimal b-3-atom and contains an edge, then ϕr(G) =

2. Moreover, if G contains two disjoint edges, then for any vertex v, G − v
contains P2 and ϕr(G− v) = 2.

Second, suppose that for every vertex v, ϕr(G−v) = ϕr(G). The only mini-
mal b-3-atoms that contains at most five vertices are K3, C5 and P5. Moreover,
the only minimal b-4-atoms and b-5-atoms that contain at most five vertices
are K4 and K5. We are going to show that G is not one of these graphs

Case 1: ϕr(G) = 5. If G is a K5, then, by removing any vertex v, we obtain
ϕr(G− v) = 4.

Case 2: ϕr(G) = 4. If G is a K4, then, by removing any vertex v, we obtain
ϕr(G − v) = 3. If G contains an induced K4, |V (G)| = 5 and G is
not K5, then there exists a vertex v such G − v has no induced K4 and
ϕr(G− v) = 3.

Case 3: ϕr(G) = 3. If G contains an induced K3 and no induced K4, then,
since the induced K3 in G have a common vertex v, we obtain ϕr(G−v) =
2. Moreover, if G is P5 or C5, then, by removing any vertex v, we obtain
ϕr(G− v) = 2.

Thus, we can suppose that ϕr(G) = 2. If G contains only edges with a common
vertex v, then ϕr(G − v) = 1. Hence, G contains no b-3-atom and contain two
disjoint edges.
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The following theorem is a generalization of a conjecture of Blidia et al. [3]
for the parameter ϕr. Note that the graphs P4, C4 and P2 ∪ P2 do not contain
any induced minimal b-3-atom and contain two disjoint edges.

Theorem 6. Let G be a graph. We have ϕr(G− v) = ϕr(G)+ ⌊ |V (G)|
2 ⌋− 2, for

every vertex v of V (G), if and only one of these conditions is true about G:

i) G is P2 or C3.

ii) E(G) = ∅ and 4 ≤ |V (G)| ≤ 5.

iii) 4 ≤ |V (G)| ≤ 5 and G contains two disjoint edges but no b-3-atom.

Proof. Note that if if |V (G)| ≥ 6, then, by Proposition 4.5, we can not have
ϕr(G − v) < ϕr(G) + ⌊|V (G)|/2⌋ − 2. Note also that if G contains only one
vertex, then it can not satisfy ϕr(G− v) < ϕr(G) + ⌊|V (G)|/2⌋ − 2.

First, if 2 ≤ |V (G)| ≤ 3, then we have ϕr(G − v) = ϕr(G) − 1 if and only
if G is a minimal b-t-atom. Hence, if and only if G is P2 or C3. Second, if G
contains no edges, then ϕr(G) = 1 and for any vertex v, ϕr(G − v) = 1. The
third condition is obtained by Lemma 4.6.

Definition 4.7. Let t be a positive integer and A be a b-t-atom. An edge e is
b-atom-critical in A if A− e is not a b-t-atom.

Proposition 4.8. Let G be a graph. An edge e is b-critical if and only if it is
b-atom-critical in every feasible minimal b-ϕ(G)-atom and e is not a b-ϕ(G)-
trap.

Proof. Let t = ϕ(G). First, if e is not b-atom-critical in a feasible minimal
b-t-atom, then G − e contains a feasible minimal b-t-atom and ϕ(G − e) = t.
If e is a b-t-trap, then, by definition, ϕ(G − e) = t. Second, suppose that e is
not a b-t-trap. If e is b-atom-critical in every feasible minimal b-t-atom, then,
since every feasible minimal b-t-atom in G does not contain any other feasible
minimal b-t-atom as subgraph in G − e, the graph G − e does not contain a
feasible minimal b-t-atom. Thus, e is b-critical.

Corollary 4.9. If a graph G contains two induced feasible minimal b-ϕ(G)-
atoms with disjoint sets of b-atom-critical edges, then G contains no b-critical
edge.

5 b-perfect graphs

A b-perfect graph is a graph for which every induced subgraph satisfies that
its b-chromatic number is equal to its chromatic number. More generally, we
present the following definitions.

Definition 5.1 ([14]). A graph G is b-χ-k-bounded, for k a positive integer, if
ϕ(G′)−χ(G′) ≤ k, for every induced subgraph G′ of G. A b-χ-0-bounded graph
is called a b-perfect graph. A χ-k-unbounded b-atom, for k a positive integer,
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F1 F2 F3 F4 F5

F6 F7 F8 F9 F10

F11 F12 F13 F14 F15

F16 F17 F18 F19 F20

F21 F22

Figure 4: The family F : the imperfect b-atoms [15].

is a b-atom which is not b-χ-k-bounded and which does not contain any b-χ-k-
bounded induced minimal b-atom other than itself. An imperfect b-atom is a
b-atom which is not b-perfect and which does not contain any induced minimal
b-atom which is not b-perfect other than itself.

Hoang et al. [15] characterized b-perfect graphs by giving the family F

of forbidden induced subgraphs depicted in Figure 4. We recall the following
theorem:

Theorem 7 ([15]). A graph is b-perfect if and only if it contains no graph from
F as induced subgraph.

Note that every graph in the family F is a b-t-atom for some t. More pre-
cisely, F1, F2 and F3 are the only minimal bipartite b-3-atoms. The remaining
graphs are minimal b-4-atoms that do not contain F1, F2 and F3 as induced
subgraph and which admit a proper coloring with three colors (as mentioned in
[16]). We can state the following property about b-t-atoms.

Observation 5.2. Let t and t′ be two integers with t′ < t. If a minimal b-t-atom
A contains an induced χ-k-unbounded b-t′-atom, then A is not b-χ-k-bounded.
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Theorem 8. Let k be a positive integer. A graph G is not b-χ-k-bounded if and
only if it contains a χ-k-unbounded b-atom.

Proof. First, if G contains a χ-k-unbounded b-atom, then, by definition, G is
not χ-k-bounded.

Second, suppose G is not b-χ-k-bounded. Then, there exists an induced
subgraph A of G of minimal order which is not b-χ-k-bounded. By removing
vertices of A we can only decrease the chromatic number. Thus, by removing
vertices we can obtain a b-ϕ(A)-atom which is χ-k-unbounded.

Corollary 5.3. The graphs with b-chromatic number t which are b-χ-k-bounded„
for fixed integers k and t, can be defined by forbidding a finite family of induced
subgraphs: the χ-k-unbounded b-atoms. Hence, a graph G is b-perfect if and
only if it does not contain imperfect b-atoms.

Let b-χ-BOUNDED be the following decision problem with parameter ϕ(G)
and let k be an integer, with 0 ≤ k < ϕ(G).

b-χ-k-BOUNDED

Instance : A graph G.

Parameter : ϕ(G).

Question: Does ϕ(G)− χ(G) ≥ k?

By Corollary 5.3, we obtain the following corollary:

Corollary 5.4. Let G be a graph and k be an integer, with 0 ≤ k < ϕ(G).

There exists an algorithm in time O(nϕ(G)2) to solve b-χ-k-BOUNDED.

Since a graph G is b-perfect if and only if it does not contain imperfect
b-atoms, we have the following theorem:

Theorem 9. The number of imperfect b-atoms is finite. A graph is an imperfect
b-atom if and only if it is in the family F ( Figure 4).

The previous theorem is a consequence of Theorem 7. By proving that every
b-4-atom except K4 contains an induced subgraph of the family F and by using
Proposition 5.2, we can possibly obtain another proof of Theorem 7.

6 b-chromatic and b-relaxed chromatic numbers

In this section we consider the b-relaxed number relatively to the b-chromatic
number. About the relation between these parameters we can state the following
properties.

Proposition 6.1. For a graph G satisfying ϕ(G) = ∆(G)+ 1, we have ϕ(G) =
ϕr(G).

Proof. Since every vertex is adjacent to at most ∆(G) neighbors, it is always
possible to extend a (∆ + 1)-coloring to a new vertex.
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Proposition 6.2. For a tree T , we have ϕ(T ) = ϕr(T ).

Proof. It is always possible to extend a k-coloring to a new vertex in a tree.

We finish this paper by proving that when a graph G has sufficiently large
girth, we have ϕ(G) = ϕr(G).

Theorem 10. Let G be a graph with girth g and ϕr(G) ≥ 3. If g ≥ 7, then
ϕ(G) = ϕr(G).

Proof. Suppose that ϕr(G) = t. Let At be a colored b-t-atom of G and let c1,
. . . , ct be the vertices of the center of this b-t-atom. Moreover, we suppose that
ci is colored by i. If At is not feasible, then there exists a subset of vertices
in N(At) such that this coloring can not be extended to these vertices. By
assumption, we suppose that At is not feasible. For a vertex u ∈ N(At), we
denote by Nc(u) the set {i ∈ {1, . . . , t}| ∃v ∈ N(u) ∩ N [ci]}. We denote by
N [At], the set of vertices At ∪N(At). In order to have a contradiction we begin
by proving the following properties:

i) if u ∈ N(At), then u is not adjacent to two vertices of N [ci], for 1 ≤ i ≤ t;

ii) if u, v ∈ N(At) and Nc(u) ∩ Nc(v) 6= ∅, then u and v are at distance at
least 3;

iii) if u, v ∈ N [ci] and u′, v′ ∈ N [ci] for some i, 1 ≤ i ≤ t, then no two pairs
of vertices among {u, v, u′, v′} are adjacent.

i) If u is adjacent to two vertices of N [ci], for some i, 1 ≤ i ≤ t, then u is in a
cycle of length at most 4.

ii) If two vertices u and v from N(At) are at distance at most 2 and are both
adjacent to vertices of N [ci], for 1 ≤ i ≤ t, then u and v are in a cycle of
length at most 6.

iii) If two pairs of vertices among {u, v, u′, v′} are adjacent then there is a cycle
of length at most 6 in G.

We are going to prove that either each vertex u ∈ N(At) can be given a
color from {1, . . . , t} or the graph contains a b-(t+ 1)-atom (which contradicts
ϕr(G) = t). First, we will consider the vertices from N(At) which are not
only adjacent to centers. Afterward, we will consider the remaining vertices of
N(At).

Case 1: u has at least one neighbor in At which is not a center.
By properties i) and ii), u has at most t neighbors in N [At]. If u has less
than t neighbors in N [At], then it can be given a color, hence assume u
has exactly t neighbors in N [At]. If u has less than t neighbors in At, then
there exists a neighbor w of u in N(At). By property ii), |Nc(w)| = 1, i.e.
, w has two neighbors in N [At] and thus can be recolored in order to give
its original color to u. If u has exactly t neighbors in At, let v1, . . . , vℓ be
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the neighbors of u in At which are not in the center. Let c′ be the color
of v1 and let c′′ be the color of v2 if it exists. Moreover, let i1 and i2 be
two integers such that v1 ∈ N(ci1) and v2 ∈ N(ci2) (if ℓ ≥ 2).

Subcase 1.a: suppose that ℓ = 1, i.e., u is adjacent to t− 1 vertices from the
center and to one vertex in At which is not a center.
We can note that no vertex from N [ci1 ] can have a neighbor in At, since it
would create a cycle of length at most 6. Consequently, we can exchange
the color of v1 with the color of one vertex from N(ci1) and color u by c′.

Subcase 1.b: suppose that ℓ ≥ 2, i.e., u is adjacent to at most t − 2 vertices
from the center and to at least two vertices in At which are not centers.
The vertex v1 has no neighbor in At − N [ci1 ] and v2 has no neighbor in
At−N [ci2 ] since it would create a cycle of length at most 6. If a vertex of
N(ci1)−{v1} has no neighbor of color c′, then we exchange the color of v1
with the color of this vertex and color u by c′. If a vertex of N(ci2)−{v2}
does not have a neighbor of color c′′, then we exchange the color of v2
with the color of this vertex and color u by c′′. Thus, we suppose that
every vertex of N(ci1)− {v1} has a neighbor of color c′ and every vertex
of N(ci2)− {v2} has a neighbor of color c′′.

In the case c′′ = i1 and c′ = i2, by property iii), no vertex of N [ci1 ]∪N [ci2 ]
has a neighbor in At −N [ci1 ]∪N [ci2 ] other than these vertices of color c′

and c′′. However, there could exist two adjacent vertices w and w′ with
w ∈ N [ci1 ] and w′ ∈ N [ci2 ]. If t = 3, then w and w′ are colored by the
same color and thus can not be adjacent. Consequently, we can exchange
the color of v1 with the color of v2, the color of ci1 with the color of ci2 and
afterward we can exchange the color of one vertex from N(ci1) − {w, v1}
(if t = 3, then we take w) with the color of v1 and color u by c′′.

In the case c′′ 6= i1 (or c′ 6= i2, respectively), we suppose, without loss of
generality, that c′ = i2 (or c′′ = i1, respectively). In this case, we exchange
the color of ci1 with the color of ci2 and the color of v1 with the color of a
vertex w of color i1 in N(ci2) (the color of v2 with the color of a vertex w of
color i2 in N(ci1), respectively) and color u by c′ (by c′′, respectively). We
can note that the vertex w in N(ci2) (the vertex w in N(ci1), respectively)
can be adjacent to a vertex of color c′ (of color c′′, respectively). However,
if w is adjacent to a vertex of color c′ (of color c′′, respectively), then no
vertex of N(ci2)−{w, v2} (of N(ci1)−{w, v1}, respectively) is adjacent to
a vertex of color c′ (of color c′′, respectively). If w is adjacent to a vertex
of this color, then we exchange the color of w with the color of a vertex of
N(ci2) − {w, v2} (of N(ci1)− {w, v1}, respectively). We can remark that
if t = 3, then w can not be adjacent to a vertex of color c′ (of color c′′,
respectively) and the previous case never happen.

Case 2: every neighbor of u is in the center.
If u does not have neighbors in each color class, then we can give a color
to u. The vertices from N(u) ∩ At are centers, and thus these vertices
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have neighbors from each color class. If every vertex v in N(u) ∩ N(At)
colored by a given color c does not have neighbors from each color class,
then we recolor these vertices and give the color c to u. If u remains
uncolorable, the set N2[u] induces a graph containing a b-(t + 1)-atom,
which contradicts ϕr(G) = t.

We think that the previous theorem can be used to determine the family of
graphs of girth at least 7 satisfying ϕ(G) = m(G). It has already been proven
that graphs of girth at least 7 have b-chromatic number at least m(G) − 1 [7].

Corollary 6.3. Let G be a graph of girth at least 7 and of order n and let t be
an integer. There exists an algorithm in time O(nt2 ) to determine if ϕ(G) ≥ t.

7 Open questions

We conclude this article by listing few open questions.

1. For which family of graphs are the b-relaxed number and the b-chromatic
number equal?

2. Does there exists an easy characterization of feasible b-t-atoms?

3. Does there exists an FPT algorithm, with parameter t, to determine if
ϕ(G) ≥ t?
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