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A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

Gyárfás et al. and Zaker have proven that the Grundy number of a graph G satisfies Γ(G) ≥ t if and only if G contains an induced subgraph called a t-atom. The family of t-atoms has bounded order and contains a finite number of graphs. In this article, we introduce equivalents of tatoms for b-coloring and partial Grundy coloring. This concept is used to prove that determining if ϕ(G) ≥ t and ∂Γ(G) ≥ t (under conditions for the b-coloring), for a graph G, is in XP with parameter t. We illustrate the utility of the concept of t-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 7.

Introduction

Given a graph G, a proper k-coloring of G is a surjective function c : V (G) → {1, . . . , k} such that c(u) = c(v) for any uv ∈ E(G); the color class V i is the set {u ∈ V |c(u) = i} and a vertex v has color i if v ∈ V i . We denote by N (u) the set of neighbors of a vertex u and by N [u] the set N (u) ∪ {u}. A vertex v of color i is a Grundy vertex if it is adjacent to at least one vertex colored j, for every j < i. A Grundy k-coloring is a proper k-coloring such that every vertex is a Grundy vertex. The Grundy number of a graph G, denoted by Γ(G), is the largest integer k such that there exists a Grundy k-coloring of G [START_REF] Grundy | Mathematics and games[END_REF]. A partial Grundy k-coloring is a proper k-coloring such that every color class contains at least one Grundy vertex. The partial Grundy number of a graph G, denoted by ∂Γ(G), is the largest integer k such that there exists a partial Grundy k-coloring of G. Let G and G ′ be two graphs. By G ∪ G ′ we denote the graph with vertex set V (G) ∪ V (G ′ ) and edge set E(G) ∪ E(G ′ ). Let m(G) be the largest integer m such that G has at least m vertices of degree at least m -1. A graph G is tight if it has exactly m(G) vertices of degree m(G) -1.

Another coloring parameter with domination constraints on the colors is the b-chromatic number. In a proper-k-coloring, a vertex v of color i is a b-vertex if v is adjacent to at least one vertex colored j, 1 ≤ j = i ≤ k. A b-k-coloring, also called b-coloring when k is not specified, is a proper k-coloring such that every color class contains at least one b-vertex. The b-chromatic number of a graph G, denoted by ϕ(G), is the largest integer k such that there exists a b-k-coloring of G. In this paper, we introduce the concept of b-relaxed number, denoted by ϕ r (G). A b-k-relaxed coloring of G is a b-k-coloring of a subgraph of G. The b-relaxed number of G is ϕ r (G) = max H⊆G (ϕ(H)), for H an induced subgraph of G. Note that we have ϕ(G) ≤ ϕ r (G) ≤ ∂Γ(G). The difference between ϕ(G) and ϕ r (G) can be arbitrary large. Let K - n,n denotes the complete bipartite graph K n,n in which we remove n -1 pairwise non incident edges (or n -1 edges of a perfect matching in K n,n ) [START_REF] Balakrishnan | Bounds for the b-chromatic number of Gv[END_REF]. For this graph we have ϕ(K - n,n ) = 2 and ϕ r (K - n,n ) = n as Figure 1 illustrates it (for n = 3). The concept of b-coloring has been introduced by Irving and Manlove [START_REF] Irving | The b-chromatic number of a graph[END_REF], and a large number of papers was published (see e.g. [START_REF] Effantin | The b-chromatic number of some power graphs[END_REF][START_REF] Maffray | b-colouring the cartesian product of trees and some other graphs[END_REF]). The b-chromatic number of regular graphs has been investigated in a serie of papers ([6, 17, 20, 22]). Determining the b-chromatic number of a tight graph is NP-hard even for a connected bipartite graph [START_REF] Kratochvil | On the b-chromatic number of graphs[END_REF] and a tight chordal graph [START_REF] Havet | b-coloring of tight graphs[END_REF].

In this paper, we study the decision problems b-COL, b-r-COL and pG-COL with parameter t from Table A decision problem is in FPT with parameter t if there exists an algorithm which resolves the problem in time O(f (t) n c ), for an instance of size n, a computable function f and a constant c. A decision problem is in XP with parameter t if there exists an algorithm which resolves the problem in time O(f (t) n g(t) ), for an instance of size n and two computable functions f and g.

The concept of t-atom was introduced independently by Gyárfás et al. [START_REF] Gyárfás | On-line 3-chromatic graphs -ii critical graphs[END_REF] and by Zaker [START_REF] Zaker | Results on the Grundy chromatic number of graphs[END_REF]. The family of t-atoms is finite and the presence of a t-atom can be determined in polynomial time for a fixed t. The following definition is slightly different from the definitions of Gyárfás et al. or Zaker, insisting more on the construction of every t-atom (some t-atoms can not be obtained with the initial construction of Zaker).

Definition 1.1 ([23]

). The family of t-atoms is denoted by A Γ t , for t ≥ 1, and is defined by induction. The family

A Γ 1 only contains K 1 . A graph G is in A Γ t+1 if there exists a graph G ′ in A Γ t and an integer m, m ≤ |V (G ′ )|, such that G is composed of G ′
and an independent set I m of order m, adding edges between G ′ and I m such that every vertex in G ′ is adjacent to at least one vertex in I m .

Moreover, in the following sections, we say that a graph G in a family of graphs F is minimal, if no graphs of F is a proper induced subgraph of G. For example, a minimal t-atom A is a t-atom for which there are no t-atoms which are induced in A other than itself.

Theorem 1.1 ( [START_REF] Gyárfás | On-line 3-chromatic graphs -ii critical graphs[END_REF][START_REF] Zaker | Results on the Grundy chromatic number of graphs[END_REF]). A graph G satisfies Γ(G) ≥ t if and only if it contains an induced minimal t-atom.

In this paper we prove equivalent theorems for b-relaxed number and partial Grundy number. In contrast with the minimal t-atoms, we can not define the minimal t-atoms for b-coloring as the smallest graphs such that G satisfies ϕ(G) = t (also called b-critical graphs).

The paper is organized as follows: Section 2 is devoted to the definition of tatoms for the partial Grundy coloring. This concept allows us to prove that the partial Grundy coloring problem is in XP with parameter t. Section 3 is similar to Section 2 but for b-relaxed-coloring. Section 4 is devoted to the concept of bcritical vertices and edges. Section 5 is about b-perfect graphs. Finally, Section 6 deals with graphs for which the b-relaxed and the b-chromatic numbers are equal.

2 Partial-Grundy-t-atoms: t-atoms for partial Grundy coloring We start this section with the definition of t-atoms for partial Grundy coloring. • For all i ∈ {1, . . . , t}, D i is an independent set and |D i | ≤ ti + 1; • For all i ∈ {2, . . . , t}, c i has a neighbor in each of D 1 , . . ., D i-1 .

The set {c 1 , . . . , c t } is called the center of A and denoted by C(A).

Note that the sets D 1 , . . ., D t induce a partial Grundy coloring of the pGt-atom. Figure 2 illustrates several pG-t-atoms (and their induced colorings) obtained using the previous definition.

Observation 2.1. For every pG-t-atom G, we have

|V (G)| ≤ t(t+1)
2 . Lemma 2.2. Let t and t ′ be two integers such that 1 ≤ t ′ < t. Every pG-t-atom contains a pG-t ′ -atom as induced subgraph.

Proof. Every pG-t-atom G contains a pG-t ′ -atom G ′ : we can obtain G ′ by removing every vertex in D k , for t ′ < k ≤ t, and by removing, afterwards, the vertices of G ′ not adjacent to any vertex in {c 1 , . . . , c t ′ }.

Note that the only minimal pG-2-atom is P 2 . The minimal pG-3-atoms are C 3 , P 4 and P 2 ∪ P 3 . These graphs are illustrated in Figure 2.

Theorem 2.3. For a graph G, we have ∂Γ(G) ≥ t if and only if G contains an induced minimal pG-t-atom.

Proof. Suppose that ∂Γ(G) = t ′ with t ′ ≥ t. By definition, there exists a partial Grundy coloring of G with t ′ colors. Let u 1 , . . ., u t ′ be a set of Grundy vertices, each in a different color class of V (G). The graph induced by N [u 1 ]∪. . .∪N [u t ′ ] contains a pG-t ′ -atom. Hence, by Lemma 2.2, since G contains an induced pGt ′ -atom, then it also contains an induced minimal pG-t-atom.

Suppose G contains an induced minimal pG-t-atom. Thus, the sets D 1 , . . . , D t induce a partial-Grundy coloring of this pG-t-atom. We can extend this coloring to a partial Grundy coloring of G with at least t colors in a greedy way by coloring the remaining vertices in any order, assigning to each of them the smallest color not used by its neighbors. Proposition 2.4. Let G be a graph of order n and let t be an integer. There exists an algorithm in time O(n t(t+1) 2

) to determine if ∂Γ(G) ≥ t. Hence, the problem pG-COL with parameter t is in XP.

Proof. By Theorem 2.3, it suffices to verify that G contains an induced minimal pG-t-atom to have ∂Γ(G) ≥ t. Since the order of a minimal pG-t-atom is bounded by t(t+1) 2 , we obtain an algorithm in time O(n

t(t+1) 2 
).

We finish this section by determining every graph G with ∂Γ(G) = 2.

Proposition 2.5. For a graph G without isolated vertices, we have

∂Γ(G) = 2 if and only if G = K n,m , for n ≥ 2 and m ≥ 1 or G only contains isolated edges.
Proof. Zaker [START_REF] Zaker | Results on the Grundy chromatic number of graphs[END_REF] has proven that Γ(G) = 2 if and only if G is the disjoint union of copies of some K n,m , for n ≥ 1 and m ≥ 1. Let n and m be positive integers.

We can note that a graph containing a copy of K n,m , for n ≥ 2 and m ≥ 1 and a copy of K n,m , for n ≥ 1 and m ≥ 1 contains an induced 

P 3 ∪ P 2 , hence a pG-3-atom. Hence, if ∂Γ(G) = 2, then G = K n,m ,
P 3 ∪ P 2 . Hence, ∂Γ(K n,m ) = 2.

b-t-atoms: t-atoms for b-coloring

As in the previous section, we start this section with the definition of b-t-atoms (the notion of t-atom for b-coloring). Definition 3.1. Given an integer t, a b-t-atom is a graph A whose vertex-set can be partitioned into t sets D 1 , . . . , D t , where D i contains a special vertex c i for each i ∈ {1, . . . , t} such that the following holds:

• For each i ∈ {1, . . . , t}, D i is an independent set and |D i | ≤ t;

• For all i, j ∈ {1, . . . t}, with i = j, c i has a neighbor in D j .

The set {c 1 , . . . , c t } is called the center of A and denoted by C(A).

Note that the sets D 1 , . . ., D t induce a b-coloring of the b-t-atom. Figure 3 illustrates several b-t-atoms (and their induced coloring) obtained using the previous definition.

Observation 3.1. For every b-t-atom G, we have |V (G)| ≤ t 2 . Lemma 3.2. Let t and t ′ be two integers such that 1 ≤ t ′ < t. Every b-t-atom contains a b-t ′ -atom as induced subgraph.
Proof. Every b-t-atom G contains a b-t ′ -atom G ′ : we can obtain G ′ by removing every vertex in D k , for t ′ < k ≤ t, and by removing, afterwards, the vertices not adjacent to any vertex in {c 1 , . . . , c t ′ }. Note that the only minimal b-2-atom is P 2 . The minimal b-3-atoms are C 3 , P 5 , C 5 , P 3 ∪ P 4 and P 3 ∪ P 3 ∪ P 3 . These graphs are illustrated in Figure 3. Proof. Suppose that the graph G contains an induced b-t-atom A. Since A admits, by definition, a b-t-coloring, we have ϕ r (G) ≥ t. Using Proposition 3.4, we obtain the converse.

Observation 3.3. Every minimal pG-t-atom is an induced subgraph of a minimal b-t-atom or a minimal t-atom (an atom for the Grundy number).

Proposition 3.4. Let G be a graph. If ϕ(G) ≥ t, then G contains an induced minimal b-t-atom. Proof. Suppose that ϕ(G) = t ′ , with t ′ ≥ t. Thus, there exists a b-coloring of G with t ′ colors. Let u 1 , . . ., u t ′ be a set of b-vertices, each in a different color class of V (G). The graph induced by N [u 1 ]∪. . .∪N [u t ′ ] contains a b-t ′ -atom.

Definition 3.2. Let G be a graph. For an induced subgraph

A of G, let N (A) = {v ∈ V (G) \ V (A)| uv ∈ E(G), u ∈ V (A)}. A b-t-atom A is feasible in G if
there exists a b-t-coloring of V (A) that can be extended to the vertices of N (A) without using new colors. Proposition 3.6. Let G be a graph. If G contains an induced feasible minimal b-t-atom and no induced feasible minimal b-t ′ -atom, for t ′ > t, then ϕ(G) = t.

Proof. Suppose that G contains an induced feasible minimal b-t-atom A and no b-t-coloring of G exists. We begin by considering that the vertices of A ∪ N (A) are already colored with t colors. We can note that, by assumption, no coloring of A∪N (A) (from the definition) can be extended to the whole graph using only t colors. Let t ′ be the largest integer such that the coloring can not be extended to a b-t ′ -coloring of the whole graph and let v be a vertex that can not be given a color among {1, . . . , t ′ }. Thus, we suppose that the coloring can be extended to a b-(t ′ + 1)-coloring where v is colored by t

′ + 1. Since A ∪ N (A) is already colored, we have v ∈ V (G) \ (A ∪ N (A)).
The vertex v should be adjacent to vertices of every color, otherwise it could be colored. One vertex of each color class in N (v) should be adjacent to vertices of each color class (except its color). Otherwise, the colors of the vertices of N (v) could be changed in order that some color c no longer appear in N (v), and consequently v can be recolored with color c. Then, the graph induced by the vertices at distance at most 2 from v contains a b-(t ′ + 1)-atom where N [v] contains the center of this b-(t ′ + 1)-atom. Moreover, this b-(t ′ + 1)-atom is feasible as the whole graph is b-(t ′ + 1)-colorable, contradicting the hypothesis. The following proposition will be useful in the last section. Proposition 3.9. Let G be a graph and let t = ϕ r (G). If every minimal b-tatom is feasible in G, then ϕ(G) = ϕ r (G).

Proof. Since t = ϕ r (G), G does not contain a b-(t + 1)-atom. Thus, by Proposition 3.6, we obtain ϕ(G) = t.

Note that the problem of determining if a graph has a b-t-coloring is NPcomplete even if t is fixed [START_REF] Sampaio | Algorithmic aspects of graph colouring heuristics[END_REF]. However, it does not imply that determining if ϕ(G) ≥ t for a graph G is NP-complete. In contrast with the b-chromatic number, determining if a graph has b-relaxed number at least t is in XP. Proposition 3.10. Let G be a graph of order n and let t be an integer. There exists an algorithm in time O(n t 2 ) to determine if ϕ r (G) ≥ t. In particular, the problem b-r-COL with parameter t is in XP.

Proof. By Theorem 3.5, it suffices to verify that G contains an induced minimal b-t-atom to determine if ϕ r (G) ≥ t. By Observation 3.1, the order of a minimal b-t-atom is bounded by t 2 . Thus, we obtain an algorithm in time O(n t 2 ).

Another NP-complete problem is to determine the b-spectrum of a graph G [2], i.e. the set of integers k such that G is b-k-colorable. For a graph G satisfying ϕ(G) = ϕ r (G), our algorithm can be used. Thus, proving that for a class of graphs, every graph G satisfies ϕ(G) = ϕ r (G), implies that the problem b-COL with parameter t is in XP for this class of graphs.

b-critical vertices and edges

The concept of b-critical vertices and b-critical edges has been introduced recently and since five years a large number of articles are considering this subject [START_REF] Balakrishnan | Bounds for the b-chromatic number of Gv[END_REF][START_REF] Blidia | On vertex b-critical tree[END_REF][START_REF] Blidia | On edge b-critical graphs[END_REF][START_REF] Eschouf | Characterization of some b-chromatic edge critical graphs[END_REF][START_REF] Zamime | On the b-coloring of G-e[END_REF]. In this section, we illustrate how this notion is strongly connected with the concept of b-t-atom.

Definition 4.1 ([4, 9]). Let G be a graph. A vertex v of G is b-critical if ϕ(G -v) < ϕ(G). An edge e is b-critical if ϕ(G -e) < ϕ(G). A vertex v (edge e, respectively) in a graph G is a b-t-trap, if
there exists a b-t-atom of G that becomes feasible by removing v (e, respectively). 

Proposition 4.1. Let G be a graph. A vertex v is b-critical if and only if it is in every feasible minimal b-ϕ(G)-atom and v is not a b-ϕ(G)-trap. Proof. Let t = ϕ(G). First, if v is not in a feasible minimal b-t-atom, then ϕ(G -v) = t and v is not b-critical. If v is a b-t-trap, then, by definition, ϕ(G -v) = t. Second, suppose v is not a b-t-trap. If v is in
(G). If ϕ(G -v) > ϕ(G), then G contains a minimal b-ϕ(G -v)-atom which is not feasible. If ϕ(G -v) < ϕ(G) -1, then G -v contains no feasible minimal b-t-atom, for ϕ(G -v) < t ≤ ϕ(G).
Proof. Note that every b-t-atom contained in Gv is also contained in G, for any integer t. Thus, if ϕ(Gv) > ϕ(G), then G contains a b-ϕ(Gv)-trap and consequently a minimal b-ϕ(Gv)-atom which is not feasible. Moreover,

if ϕ(G -v) < ϕ(G) -1 and G -v contains a feasible b-t-atom for ϕ(G -v) < t ≤ ϕ(G), then ϕ(G -v) ≥ t.
In [START_REF] Balakrishnan | Bounds for the b-chromatic number of Gv[END_REF], Balakrishnan and Raj have proved the following theorem.

Theorem 4.4 ([1]

). Let G be a graph and v be a vertex of V (G). We have

ϕ(G) -⌊ |V (G)| 2 ⌋ + 2 ≤ ϕ(G -v) ≤ ϕ(G) + ⌊ |V (G)| 2 ⌋ -2.
Moreover, they have determined the families of graphs for which there exists

a vertex v such that ϕ(G -v) = ϕ(G) -⌊ |V (G)| 2 ⌋ + 2 or ϕ(G -v) = ϕ(G) + ⌊ |V (G)| 2 ⌋ -2.
In contrast with the b-chromatic number, we have the following property about the b-relaxed number.

Proposition 4.5. Let G be a graph. If a vertex v is b-critical, then ϕ r (G-v) = ϕ r (G) -1.
Proof. By Proposition 4.1, v is in every b-ϕ(G)-atom. Let i be the integer associated to v in the construction of this b-ϕ(G)-atom. By removing the vertices with associated integer i, we obtain a b-(ϕ(G) -1)-atom and thus ϕ r (Gv) = ϕ r (G) -1.

Note that this proposition was already proved for trees [START_REF] Blidia | On vertex b-critical tree[END_REF]. 

(G) = ∅. We have ϕ r (G -v) = ϕ r (G) + ⌊ |V (G)| 2 ⌋ -2, for every vertex v of V (G), if

and only if G contains two disjoint edges but no induced minimal b-3-atom.

Proof. We can note that we have

ϕ r (G -v) = ϕ r (G) + ⌊ |V (G)| 2 ⌋ -2 if and only if ϕ r (G -v) = ϕ r (G).
First, if G contains no minimal b-3-atom and contains an edge, then ϕ r (G) = 2. Moreover, if G contains two disjoint edges, then for any vertex v, Gv contains P 2 and ϕ r (Gv) = 2.

Second, suppose that for every vertex v, ϕ r (Gv) = ϕ r (G). The only minimal b-3-atoms that contains at most five vertices are K 3 , C 5 and P 5 . Moreover, the only minimal b-4-atoms and b-5-atoms that contain at most five vertices are K 4 and K 5 . We are going to show that G is not one of these graphs Thus, we can suppose that ϕ r (G) = 2. If G contains only edges with a common vertex v, then ϕ r (Gv) = 1. Hence, G contains no b-3-atom and contain two disjoint edges.

Case 1: ϕ r (G) = 5. If G is a K 5 , then, by removing any vertex v, we obtain ϕ r (G -v) = 4. Case 2: ϕ r (G) = 4. If G is a K 4 ,
The following theorem is a generalization of a conjecture of Blidia et al. [START_REF] Blidia | b-coloring of some bipartite graphs[END_REF] for the parameter ϕ r . Note that the graphs P 4 , C 4 and P 2 ∪ P 2 do not contain any induced minimal b-3-atom and contain two disjoint edges. 

Theorem 4.7. Let G be a graph. We have ϕ r (G -v) = ϕ r (G) + ⌊ |V (G)| 2 ⌋ -2, for every vertex v of V (G), if

and only one of these conditions is true about

G: i) G is P 2 or C 3 . ii) E(G) = ∅ and 4 ≤ |V (G)| ≤ 5.
ϕ r (G -v) = ϕ r (G) + ⌊|V (G)|/2⌋ -2. Note also that if G contains only one vertex, then it can not satisfy ϕ r (G -v) = ϕ r (G) + ⌊|V (G)|/2⌋ -2. First, if 2 ≤ |V (G)| ≤ 3, then we have ϕ r (G -v) = ϕ r (G) -1 if

b-perfect graphs

A b-perfect graph is a graph for which every induced subgraph satisfies that its b-chromatic number is equal to its chromatic number. More generally, we present the following definitions.

Definition 5.1 ([13]). A graph G is b-χ-k-bounded, for k a positive integer, if ϕ(G ′ ) -χ(G ′ ) ≤ k, for every induced subgraph G ′ of G. A graph G is a χ-k-unbounded b-atom, for k a positive integer, if ϕ(G) -χ(G) > k and G is a b-t-atom for some integer t. A graph G is an imperfect b-atom, for k a positive integer, if ϕ(G) > χ(G)
and G is a b-t-atom for some integer t.

Hoang et al. [START_REF] Hoàng | A characterization of bperfect graphs[END_REF] characterized b-perfect graphs by giving the family F of forbidden induced subgraphs depicted in Figure 4. We recall the following theorem:

Theorem 5.1 ([14]). A graph is b-perfect if and only if it contains no graph from F as induced subgraph.

Note that every graph in the family F is a b-t-atom for some t. More precisely, F 1 , F 2 and F 3 are the only minimal bipartite b-3-atoms. The remaining graphs are minimal b-4-atoms that do not contain F 1 , F 2 and F 3 as induced subgraph and which admit a proper coloring with three colors (as mentioned in [START_REF] Hoàng | On minimally b-imperfect graphs[END_REF]). We can state the following property about b-t-atoms.

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16 F 17 F 18 F 19 F 20 F 21 F 22
Theorem 5.2. Let k be a positive integer. A graph G is not b-χ-k-bounded if and only if it contains a minimal χ-k-unbounded b-atom. Proof. First, if G contains a minimal χ-k-unbounded b-atom, then, by defini- tion, G is not χ-k-bounded.
Second, suppose G is not b-χ-k-bounded. Then, there exists an induced subgraph A of G of minimal order which is not b-χ-k-bounded. By removing vertices of A we can only decrease the chromatic number. Thus, by removing vertices we can obtain a b-ϕ(A)-atom which is χ-k-unbounded. 

There exists an algorithm in time

O(n ϕ(G) 2 ) to solve b-χ-k-BOUNDED.
Since a graph G is b-perfect if and only if it does not contain imperfect b-atoms, we have the following theorem: Theorem 5.5. The number of imperfect b-atoms is finite. A graph is an imperfect b-atom if and only if it is in the family F ( Figure 4).

The previous theorem is a consequence of Theorem 5.1. Remark that if we can prove that every minimal b-4-atom except K 4 contains an induced subgraph of the family F , then, using Theorem 5.2, we obtain another proof of Theorem 5.1.

b-chromatic and b-relaxed chromatic numbers

In this section we consider the b-relaxed number relatively to the b-chromatic number and prove equality for trees and graphs of girth ar least 7.

Lemma 6.1. A minimal b-t-atom has at most t connected components.

Proof. Suppose that a minimal b-t-atom G has more than t connected component. By definition, at least one connected component A of G does not contain a vertex of C(G). Since G -A is also a b-t-atom, G is not minimal.

Note that a minimal b-t-atom G contains a center C(G) and the remaining vertices of G are neighbors of vertices of C(G). Proposition 6.2. For a tree T , we have ϕ(T ) = ϕ r (T ).

Proof. Let t = ϕ r (T ). By Proposition 3.9, it suffices to prove that every minimal b-t-atom is feasible to have ϕ(T ) = ϕ r (T ). Let T ′ be a minimal b-t-atom and let N [T ′ ] = V (T ′ )∪N (T ′ ). By Lemma 6.1, T ′ has at most t connected components. Let u be a vertex of N (T ′ ) with a maximal number of neighbors in N [T ′ ]. Since T ′ has at most t connected components and T is a tree, u has at most t neighbors in N [T ′ ].

Our proof consists in extending the coloring of T ′ induced by D 1 , . . . , D t to N (T ′ ) using colors from {1, . . . t}. For t = 2, the proof is trivial since the only minimal b-2-atom is P 2 and we can easily extend the coloring to N (P 2 ). Thus we can suppose that t ≥ 3. If u has at most t -1 neighbors in N [T ′ ],

then we can extend the coloring. Thus, we suppose that u has t neighbors in N [T ′ ]. In this case, T ′ has t connected components which are all stars. Each vertex of N (u) ∩ N [T ′ ] is either a vertex of a connected component of T ′ or a vertex in N (T ′ ) which is adjacent to one vertex of V (T ′ ). In these two cases the vertices of N (u) ∩ N [T ′ ] should be in or be adjacent to vertices of disjoint connected components of T ′ . Thus the vertices of N (u) ∩ N (T ′ ) have at most two neighbors in N [T ′ ]: the vertex u and another vertex of T ′ (otherwise, there is a cycle in T ) . We begin by giving a color from {1, . . . , t} to the vertices of N (T ′ ) \ {u}. The vertex u can not be adjacent to all vertices of C(T ′ ) since otherwise it would contradict t = ϕ r (T ). Let v ∈ N [T ′ ] \ C(T ′ ) be a neighbor of u. If v ∈ N (T ′ ), then v has at most two neighbors in N [T ′ ] and v can be recolored in order to color u. If all neighbors of u are in T ′ , then v ∈ N (c i ), for i ∈ {1, . . . , t} and we can exchange the color of v with the color of a vertex w ∈ N (c i ) \ {v} in order to color u (since t ≥ 3, N (c i ) \ {v} is not empty). Finally, the vertices of N (w) ∩ N (T ′ ) can be recolored if we have obtained an improper coloring by recoloring w.

The girth of a graph G is the length of a smallest cycle in G. We finish this paper by proving that when a graph G has sufficiently large girth, we have ϕ(G) = ϕ r (G), thus extending Proposition 6.2. Theorem 6.3. Let G be a graph with girth g and ϕ r (G) ≥ 3.

If g ≥ 7, then ϕ(G) = ϕ r (G).
Proof. Let t = ϕ r (G). By Proposition 3.9, it suffices to prove that every minimal b-t-atom is feasible to have ϕ(G) = ϕ r (G). Let A t be a minimal b-t-atom. Our proof consists in extending the coloring of A t induced by D 1 , . . . , D t to N (A t ) using colors from {1, . . . t}. Thus, we consider that the vertices of A t are already colored.

For a vertex u ∈ N (A t ), we denote by I c (u) the set {i ∈ {1, . . . , t}| ∃v ∈ N (u)∩N [c i ]}. For a vertex u ∈ V (A t ), we denote by c u a neighbor of u in C(A t ) if u / ∈ C(A t ) or the vertex u itself if u ∈ C(A t ). Finally, we denote by N [A t ], the set of vertices V (A t ) ∪ N (A t ). In the different cases, when we describe a cycle of length at most k by u 1 -. . .-u k , it is assumed that, depending the configuration, consecutive symbols can denote the same vertex. In this proof, any considered vertex is supposed to be in N [A t ]. We begin by proving the following properties:

i) No vertex of N (A t ) is adjacent to two vertices of N [c i ], for 1 ≤ i ≤ t; ii) If u, v ∈ N (A t ) and i ∈ I c (u) ∩ I c (v), then u and v are not adjacent and have no common neighbor in N (A t ) -c i ; iii) If u, v ∈ N [c i ] and u ′ , v ′ ∈ N [c j ], u = v, u ′ = v ′ , for some i and j, 1 ≤ i < j ≤ t, then the subgraph induced by {u, v, u ′ , v ′ } contains at most one edge. i) If u is adjacent to two vertices of N [c i ],
for some i, 1 ≤ i ≤ t, then u is in a cycle of length at most 4. This cycle contains u, c i and one or two vertices of N [c i ].

ii) If u and v are adjacent or have a common neighbor, then u and v belong to a cycle of length at most 6. This cycle contains u, v, vertices of N [c i ] and possibly the common neighbor of u and v in N (A t )c i , for i an integer such that i ∈ I c (u) ∩ I c (v).

iii) If the subgraph induced by {u, v, u ′ , v ′ } contains at least 2 edges, then there is a cycle of length at most 6 in G. This cycle is u-v-c i if u and v are adjacent, u ′ -v ′ -c j if u ′ and v ′ are adjacent or the cycle u-c i -v-u ′ -v ′ -c j , otherwise.

We are going to prove that either each vertex u ∈ N (A t ) can be colored with colors from {1, . . . , t} or the graph G contains a b-(t + 1)-atom (which contradicts ϕ r (G) = t). By properties i) and ii), any vertex of We define the following three sets:

• N 1 = {u ∈ N (A t )| N (u) ∩ (V (A t ) \ C(A t )) = ∅, N (u) ∩ N (A t ) = ∅}; • N 2 = {u ∈ N (A t )| N (u) ∩ (V (A t ) \ C(A t )) = ∅, N (u) ∩ N (A t ) = ∅}; • N 3 = {u ∈ N (A t )| N (u) ∩ (V (A t ) \ C(A t )) = ∅}.
We can remark that

N 1 ∪ N 2 ∪ N 3 = N (A t ).
In the remainder of the proof we will first consider the vertices of N 1 ; secondly the vertices of N 2 ; and finally the vertices of N 3 .

Case 1: vertices of N 1 .

Let u be a vertex of N 1 . We recall that, by the above assumption, u has exactly t neighbors in A t . Moreover, by Property i), |I c (u)| = t. Let c i ∈ C(A t ). We denote by A i * the vertices of N (c i ) which have a neighbor in N * (A t ). Notice that a vertex v ∈ A i * can not have a neighbor x in V (A t ) \ {c i } since otherwise it would create a cycle v-x-c x -v ′ -u, for u the neighbor of v in N 1 ∩ N * (A t ) and v ′ the neighbor of u in N [c x ]. This cycle has length at most 5, contradicting g ≥ 7. If for a vertex c i ∈ C(A t ) we have |A i * | ≥ 2, we exchange the colors of the vertices of A i * by doing a cyclic permutation of their colors. Afterwards, we obtain that some vertices of N 1 ∩ N * (A t ) have now an available color and we recolor them by any available color. Finally, we color the vertices of N 1 , when possible, by any available color. Let N * * (A t ) be the set of the remaining uncolored vertices of N 1 . In the following subcases, we recolor at most once the vertices of N [c i ], for i ∈ {1, . . . t}, since any two vertices of N * * (A t ) can not both have neighbors in N (c i ). Notice that, by definition, a vertex of C(A t ) has no available color. Let u ∈ N 3 . We begin by coloring u with any available color if it has some. If u has no available color, there could exist a color i such that every vertex of N (u) with color i has an available color (these vertices should be in N (A t )). If such color i exists, we recolor these vertices of color i by any available color and give color i to u. If such color i does not exist, then the set of vertices at distance at most 2 from u induces a b-(t + 1)-atom with center N [u]. It can be noted that the recolored vertices are in N (A t ) since N (u) ∩ V (A t ) ⊆ C(A t ).

We finish this proof by illustrating that the obtained coloring is a b-t-coloring of N [A t ]. In case 1, we have modified the coloring of A t . However, since we have exchanged the colors of well-chosen vertices in order that every vertex of C(A t ) still has neighbor of every color from {1, . . . , t} except its own color, this coloring remains a b-t-coloring. In case 3, we have only changed the color of vertices from N (A t ).

We think that the previous theorem can be useful to determine the family of graphs of girth at least 7 satisfying ϕ(G) = m(G). It has already been proven that graphs of girth at least 7 have b-chromatic number at least m(G) -1 [START_REF] Campos | Graphs of girth at least 7 have high bchromatic number[END_REF]. Corollary 6.4. Let G be a graph of girth at least 7 and of order n and let t be an integer. There exists an algorithm in time O(n t 2 ) to determine if ϕ(G) ≥ t.

Open questions

We conclude this article by listing few open questions.

1. For which family of graphs are the b-relaxed number and the b-chromatic number equal?

2. Does there exist an easy characterization of feasible b-t-atoms?

3. Does there exist an FPT algorithm, with parameter t, to determine if ϕ(G) ≥ t?

Figure 1 :

 1 Figure 1: The graph K - 3,3 with ϕ(K - 3,3 ) = 2 (on the left) and ϕ r (K - 3,3 ) = 3 (on the right).

Figure 2 :

 2 Figure 2: The minimal pG-2-atom (on the left) and the three minimal pG-3atoms (the numbers are the colors of the vertices and the surrounded vertices form the centers).

Figure 3 :

 3 Figure 3: The minimal b-2-atom (on the left) and the five minimal b-3-atoms.

  Hence, by Lemma 3.2, since G contains an induced b-t ′ -atom, then it also contains an induced minimal b-t-atom. Theorem 3.5. For a graph G, we have ϕ r (G) ≥ t if and only if G contains an induced minimal b-t-atom.

Proposition 3 . 7 .

 37 Let G be a graph. If ϕ(G) = t, then G contains an induced feasible minimal b-t-atom and no induced feasible minimal b-t ′ -atom, for t ′ > t.Proof. Suppose ϕ(G) = t. By Proposition 3.4, G contains an induced minimal b-t-atom. If no induced minimal b-t-atom is feasible, then there exists no b-tcoloring of G, a contradiction.A direct consequence of Proposition 3.6 and Proposition 3.7 is the following. Theorem 3.8. For a graph G, we have ϕ(G) = t if and only if G contains an induced feasible minimal b-t-atom and no induced feasible minimal b-t ′ -atom, for t ′ > t.

  every feasible minimal b-t-atom, then, since every minimal b-t-atom in G does not contain any other feasible minimal b-t-atom as induced subgraph, Gv does not contain a feasible minimal b-t-atom. Thus, v is b-critical.

Corollary 4 . 2 .

 42 If a graph G contains two induced feasible minimal b-ϕ(G)atoms with disjoint set of vertices, then it contains no b-critical vertex.Proposition 4.3. Let G be a graph and v be a vertex of V

Lemma 4 . 6 .

 46 Let G be a graph with 4 ≤ |V (G)| ≤ 5 and E

  then, by removing any vertex v, we obtainϕ r (Gv) = 3. If G contains an induced K 4 , |V (G)| = 5 and G is not K 5 , then there exists a vertex v such Gv has no induced K 4 and ϕ r (Gv) = 3.Case 3: ϕ r (G) = 3. If G contains an induced K 3 and no induced K 4 , then, since the induced K 3 in G have a common vertex v, we obtain ϕ r (G-v) = 2. Moreover, if G is P 5 or C 5 , then, by removing any vertex v, we obtain ϕ r (Gv) = 2.

iii) 4 ≤

 4 |V (G)| ≤ 5 and G contains two disjoint edges but no b-3-atom. Proof. Note that if |V (G)| ≥ 6, then, by Proposition 4.5, we can not have

6 . 4 . 2 .

 642 and only if G is a minimal b-t-atom. Hence, if and only if G is P 2 or C 3 . Second, if G contains no edges, then ϕ r (G) = 1 and for any vertex v, ϕ r (Gv) = 1. The third condition is obtained by Lemma 4.Definition Let t be a positive integer and A be a b-t-atom. An edge e is b-atom-critical inA if Ae is not a b-t-atom.Proposition 4.8. Let G be a graph. An edge e is b-critical if and only if it is b-atom-critical in every feasible minimal b-ϕ(G)-atom and e is not a b-ϕ(G)trap. Proof. Let t = ϕ(G). First, if e is not b-atom-critical in a feasible minimal b-t-atom, then Ge contains a feasible minimal b-t-atom and ϕ(Ge) = t. If e is a b-t-trap, then, by definition, ϕ(Ge) = t. Second, suppose that e is not a b-t-trap. If e is b-atom-critical in every feasible minimal b-t-atom, then, since every feasible minimal b-t-atom in G does not contain any other feasible minimal b-t-atom as subgraph in Ge, the graph Ge does not contain a feasible minimal b-t-atom. Thus, e is b-critical.

Corollary 4 . 9 .

 49 If a graph G contains two induced feasible minimal b-ϕ(G)atoms with disjoint sets of b-atom-critical edges, then G contains no b-critical edge.

Figure 4 :

 4 Figure 4: The family F : the imperfect b-atoms [14].

Corollary 5 . 3 .

 53 The graphs with b-chromatic number t which are b-χ-k-bounded" for fixed integers k and t, can be defined by forbidding a finite family of induced subgraphs: the χ-k-unbounded b-atoms. Hence, a graph G is b-perfect if and only if it does not contain imperfect b-atoms. Let b-χ-BOUNDED be the following decision problem and let k be an integer, with 0 ≤ k < ϕ(G). b-χ-k-BOUNDED Instance : A graph G. Question: Does ϕ(G)χ(G) ≥ k? By Corollary 5.3, we obtain the following corollary: Corollary 5.4. Let G be a graph and k be an integer, with 0 ≤ k < ϕ(G).

Case 3 :

 3 vertices of N 3 .

Table 1 :

 1 The different decision problems with input a graph G and parameter t and their complexity class.

		1.			
		b-COL	b-r-COL	G-COL	pG-COL
	Complexity	undetermined	XP	XP [23]	XP
	class				

Question Does ϕ(G) ≥ t? Does ϕ r (G) ≥ t? Does Γ(G) ≥ t? Does ∂Γ(G) ≥ t?

  N (A t ) has at most t neighbors in N [A t ]. Hence we may suppose that any vertex u ∈ N (A t ) with less than t neighbors in N [A t ] is already colored and only consider vertices of N (A t ) with t neighbors in N [A t ]. For a vertex u ∈ N [A t ], a color i is said to be available for u if no vertex has color i in N (u) ∩ N [A t ] (and therefore, u has no available color if the colors 1, . . . , t are not available for u). Let N * (A t ) be the set of vertices in N (A t ) with no available colors.

By considering that N * * (A t ) = ∅ (or else we have nothing more to do in Case 1)), we can suppose that for every two integers i, j,

Thus, we obtain that if N * * (A t ) = ∅, then every vertex c i ∈ C(A t ) has only one neighbor of color j, for 1 ≤ i = j ≤ t, since otherwise it would contradict the minimality of A t (by removing one vertex of color j).

We then consider the two following subcases, for u ∈ N * * (A t ).

Subcase 1.1: u has exactly one neighbor in

since otherwise it would create a cycle u-v ′ -c v ′ -x-y-c y of length at most 6.

Consequently, we can exchange the color of v ′ with the color of one vertex from N (c v ′ ) and color u by c ′ .

Subcase 1.2: u has more than one neighbor in

then there is a cycle of length at most 5 in G. Consequently, we can suppose that v 1 has no neighbor in

If there exists a vertex of N (c v1 ) \ {v 1 } with no neighbor of color c ′ , then we exchange the color of v 1 with the color of this vertex and color u by c ′ . If there exists a vertex of N (c v2 ) \ {v 2 } with no neighbor of color c ′′ , then we exchange the color of v 2 with the color of this vertex and color u by c ′′ . Thus, we may suppose that every vertex w of N (c v1 ) \ {v 1 } (of N (c v2 ) \ {v 2 }, respectively) has a neighbor w of color c ′ (c ′′ , respectively) in V (A t ). We consider three subscases in order to color to u. 

, since there exists a vertex y ∈ N (c w ) with neighbor y ∈ N (c x ).

There could exist two adjacent vertices w and w ′ with w ∈ N (c v1 ) and w ′ ∈ N (c v2 ). However, the vertex w ′ has no neighbor of color c ′′ in A t since w ′ and v 2 can not be adjacent and there does not exist a second vertex of color c ′′ in N (c v2 ). Consequently, we can exchange the color of v 1 with the color of v 2 , the color of c v1 with the color of c v2 and afterward we can exchange the color of one vertex from N (c v1 ) \ {v 1 } with the color of v 1 and color u by c ′′ . The top of Figure 5 illustrates this recoloring process on a minimal b-4-atom fulfilling the hypothesis of Subcase 1.2.1.

Subcase 1.2.2: the vertices v 1 and c v2 do not have the same color.

Let i be the color of c v1 and j be the color of c v2 . In this case, we exchange the color of c v1 with the color of c v2 and the color of the vertex w of color j in N (c v1 ) with the color of the vertex w ′ of color i in N (c v2 ).

For this, we have to suppose that w is not adjacent to a vertex of color i and that w ′ is not adjacent to a vertex of color j. For t ≥ 4, such vertices w and w ′ exist since at most one vertex of N (c v1 ) has a neighbor of color j (otherwise, it would contradict Property iii) since every vertex of N (c v1 ) \ {v 1 } has already a neighbor in V (A t ) of color c ′ ) and at most one vertex of N (c v2 ) has a neighbor of color i. If t = 3, then the only (up to isomorphism) b-3-atom with a coloring fulfilling all these hypothesis (up to color permutation) is illustrated at the bottom of Figure 5, along with the recoloring process. In this b-3-atom, no more edge can be added (otherwise, it would create a cycle of length at most 6).

Subcase 1.2.3: the vertices v 2 and c v1 do not have the same color. We proceed as for the previous subcase by considering v 2 instead of v 1 and c v1 instead of c v2 .

Case 2: vertices of N 2 .

Since each pair of adjacent vertices u, v ∈ N (A t ) satisfies Property ii), we obtain that I c (u) ∩ I c (v) = ∅. We color each vertex u ∈ N 2 by a color i ∈ I c (u) such that u and c i are not adjacent.