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Abstract

Prostate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new

imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.

In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and

complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systems

have been designed to help radiologists in their clinical practice. Research on computer-aided systems

specifically focused for prostate cancer is a young technology and has been part of a dynamic field of

research for the last ten years. This survey aims to provide a comprehensive review of the state of the

art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aided

system. We also provide a comparison between studies and a discussion about the potential avenues for

future research. In addition, this paper presents a new public online dataset which is made available to the

research community with the aim of providing a common evaluation framework to overcome some of the

current limitations identified in this survey.

Keywords: computer-aided detection, computer-aided diagnosis, prostate cancer, magnetic resonance

imaging, magnetic resonance spectroscopy imaging, computer vision

1. Introduction

During the last century, physicists have focused on constantly innovating in terms of imaging techniques

assisting radiologists to improve cancer detection and diagnosis. However, human diagnosis still suffers

from low repeatability, synonymous with erroneous detection or interpretations of abnormalities through-

out clinical decisions [1, 2]. These errors are driven by two majors causes [1]: observer limitations (e.g.,
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jordif@eia.udg.edu (Jordi Freixenet), pwalker@u-bourgogne.fr (Paul M. Walker), fabrice.meriaudeau@u-bourgogne.fr
(Fabrice Meriaudeau)

Preprint submitted to Computers in Biology and Medicine November 30, 2015



constrained human visual perception, fatigue or distraction) and the complexity of the clinical cases them-

selves, for instance due to unbalanced data (number of healthy cases more abundant than malignant cases)

or overlapping structures.

Computer vision has given rise to many promising solutions, but, instead of focusing on fully auto-

matic computerized systems, researchers have aimed at providing computer image analysis techniques to

aid radiologists in their clinical decisions [1]. In fact, these investigations brought about both concepts of

Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) grouped under the acronym

CAD. Since those first steps, evidence has shown that CAD systems enhance the diagnosis performance of

radiologists. Chan et al. reported a significant 4 % improvement in breast cancer detection [3], which has

been confirmed in later studies [4]. Similar conclusions were drawn in the case of lung nodule detection [5],

colon cancer [6] and Prostate Cancer (CaP) as well [2]. Chan et al. also hypothesized that CAD systems

will be even more efficient assisting inexperienced radiologists than senior radiologists [3]. This hypothesis

was tested by Hambrock et al. [2] and was confirmed in the case of CaP detection. In this particular study,

inexperienced radiologists obtained equivalent performance to senior radiologists, both using CAD whereas

the accuracy of their diagnosis was significantly poorer without CAD’s help.

In contradiction with the aforementioned statement, CAD for CaP is a young technology due to the fact

that it is based on Magnetic Resonance Imaging (MRI) [7]. Four distinct MRI modalities are employed

in CaP diagnosis which were mainly developed after the mid-1990s: (i) T2 Weighted (T2-W) MRI [8], (ii)

Dynamic Contrast-Enhanced (DCE) MRI [9], (iii) Magnetic Resonance Spectroscopy Imaging (MRSI) [10]

and (iv) Diffusion Weighted (DW) MRI [11]. In addition, the increase of magnetic field strength (from 1.5

to 3 Tesla) and the development of endorectal coils, both improved image spatial resolution [12] needed to

perform more accurate diagnosis. It is for this matter that the development of CAD for CaP is still lagging

behind the other fields stated above.

The first study on CAD for MRI was published in 2003 by Chan et al. [13]. Despite this, no less than fifty

studies have been reviewed for this survey since that seminal work. To the best of our knowledge, there is no

fully detailed review in the literature regarding the advancement of CAD systems devoted specifically to CaP

detection and diagnosis. Only the recent work of [14] briefly covers a reduced number of current research

works on CAD for CaP (a total of 70 references), but it does not provide a detailed description of any of

the steps of a CAD system as it is done here with more than 200 references. Moreover, a new categorisation

is proposed in this work taking the clinical and technical aspects of a CAD system into account. Thus, the

aim of this survey is threefold: (i) provide an overview and categorisation of the developed CAD systems

for CaP detection and diagnosis based on MRI modalities (ii) assess the different works and (iii) point out

avenues for future directions.

We also would like to emphasize the fact that this study will review the details of the computer vision

aspects of the different studies. Thus, this survey is more intended for a medical imaging audience rather
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than a purely experimented clinical audience.

As discussed further in Sect. 2.2.3, we identified and characterized a common framework regarding the

CAD systems. Stages involved in CAD work-flow can be categorized into three distinctive processes: (i)

image regularization, (ii) CADe, (iii) CADx (see Fig. 1). Image regularisation focuses on formatting the

data while CADe and CADx allow to detect possible lesions and distinguish malignant from non-malignant

tumours, respectively.

This paper is organized as follows: Sect. 2 deals with general information about human prostate and

background about CaP. Methods regarding CaP screening and imaging techniques used are also presented

as well as an introduction to the CAD framework. Sect. 3 - 4 review techniques used in different steps

involved in a CAD work-flow which will be our main contribution. Image regularization framework including

pre-processing (Sect. 3.1), segmentation (Sect. 3.2) and registration (Sect. 3.3) will be covered as well as

CADe and CADx strategies (Sect. 4) identified. Results and discussion are reported in Sect. 5 followed by

a concluding section. Deriving from this discussion, we make available to the research community a public

online dataset aiming at overcoming some of the drawbacks found when evaluating research in this field.

2. Background

This section provides an overview of CaP as well as its detection and diagnosis. MRI plays an impor-

tant role in improving the current strategy and a more detailed description of MRI modalities is given.

Furthermore, a discussion regarding the aim of CAD systems is also given.

2.1. Prostate carcinoma

CaP has been reported on a worldwide scale to be the second most frequently diagnosed cancer of men

accounting for 13.6% [15]. Statistically, in 2008, the number of new diagnosed cases was estimated to be

899, 000 with no less than 258, 100 deaths [15]. In United States, aside from skin cancer, CaP was declared

to be the most commonly diagnosed cancer among men, implying that approximately one in six men will

be diagnosed with CaP during their lifetime and one in thirty-six will die from this disease causing CaP to

be the second most common cause of cancer death among men [16, 17].

Despite active research to determine the causes of prostate cancer, a fuzzy list of risk factors has been

established [18]. The etiology was linked to the following factors [18]: (i) family history [19, 20], (ii) genetic

factors [21, 22, 23], (iii) race-ethnicity [19, 24], (iv) diet [19, 25, 26], and (v) obesity [19, 27]. This list of

risk factors alone cannot be used to diagnose CaP and in this way, screening enables early detection and

treatment.

CaP growth is characterized by two main types of evolution [28]: slow and fast. The slow-growing

tumours, accounting for up to 85 % of all CaPs [29], progress slowly and usually stay confined to the
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prostate gland. For such cases, treatment can be substituted with active surveillance. In contrast, the

second variant of CaPs develops rapidly and metastasises from prostate gland to other organs, primarily

the bones [30]. Bone metastases, being an incurable disease, significantly affect the morbidity and mortality

rate [31]. Hence, the results of the surveillance have to be trustworthy in order to distinguish aggressive

from slow-growing CaP.

CaP is more likely to develop in specific regions of the prostate. In that respect, around 70-80 % of CaPs

originate in Peripheral Zone (PZ) whereas 10-20 % in Transitional Zone (TZ) [32, 33, 34]. Only about 5

% of CaPs occur in Central Zone (CZ) [33, 35]. However, those cancers appear to be more aggressive and

more likely to invade other organs due to their location [35].

2.2. CaP screening and imaging techniques

2.2.1. Current CaP screening

Current CaP screening consists of three different stages. First, Prostate-Specific Antigen (PSA) control

is performed to distinguish between low and high risk CaP. Then, for confirmation, samples are taken during

Transrectal UltraSound (TRUS) biopsy of the prostate and finally analysed to evaluate the prognosis and

the stage of CaP. Although PSA screening has been shown to improve early detection of CaP [36], its lack

of reliability motivates further investigations using MRI [37, 38, 39].

Hence, new screening methods should be developed with improved specificity of detection as well as more

accurate risk assessment (aggressiveness and progression). Current research is focused on identifying new

biological markers to replace PSA-based screening [40, 41, 42]. Until such research comes to fruition, these

needs can be met through active-surveillance strategy using multi-parametric MRI techniques [43, 44]. A

CAD system based on MRI, which is an area of active research and forms the focus of this paper, can be

incorporated into this screening strategy allowing a more systematic and rigorous follow-up.

Another weakness of the current screening strategy lies in the fact that TRUS biopsy does not provide

trustworthy results. Due to its “blind” nature imposed by the a random sampling strategy, there is a

chance of missing aggressive tumours or detecting microfocal “cancers”, which influences the aggressiveness-

assessment [45]. As a consequence, over-diagnosis is estimated at up to 30 % [46], while missing clinically

significant CaP is estimated at up to 35 % [47]. In an effort to solve both issues, alternative biopsy approaches

have been explored. MRI/UltraSound (US)-guided biopsy has been shown to outperform standard TRUS

biopsy [48]. There, multimodal MRI images are fused with US images in order to improve localization and

aggressiveness assessment to carry out biopsies. Human interaction plays a major role in biopsy sampling

which can lead to low repeatability; by reducing potential human errors at this stage, the CAD framework

can be used to improve repeatability of examination.

CaP detection and diagnosis benefit from the use of CAD and MRI techniques. In the following sections,

these techniques will be presented in addition to an overview of CAD for CaP.
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2.2.2. MRI imaging techniques

Unlike TRUS biopsy, 3.0 Tesla MRI examination is a non-invasive protocol and has been shown to

be the most accurate and harmless technique currently available [49]. In this section, we review different

MRI modalities developed for CaP detection and diagnosis. Features used by the radiologists in their daily

diagnosis task will receive particular attention together with their drawbacks. Moreover, these features

commonly form the basis for developing analytic tools and automatic algorithms. However, we refer the

reader to Sect. 4.2 for more details on automatic feature detection methods since they are part and parcel of

the CAD framework. An exhaustive review regarding the different modalities as well as the characteristic

of each of them is presented in [50].

T2-W MRI was the first MRI sequence used to perform CaP diagnosis using MRI [8]. Nowadays is

a common practice for CaP detection, localization and staging. This imaging technique is well suited to

render zonal anatomy of the prostate [50]. The features representative of CaP are indicated in Table 1.

PZ and Central Gland (CG) tissues are well perceptible in these images. The former is characterized by

an intermediate/high-Signal Intensity (SI) while the latter is depicted by a low-SI [51]. An example of a

healthy prostate is shown in Fig. 2(a). In PZ, round or ill-defined low-SI masses are synonymous with CaPs

[8] as shown in Fig. 2(b). Detecting CaP in CG is more challenging because both normal CG tissue and

malignant tissue, have a low-SI in T2-W MRI reinforcing difficulties to distinguish between them. However,

CaPs in CG appear often as homogeneous mass possessing ill-defined edges with lenticular or “water-drop”

shapes [52, 50] as depicted in Fig. 2(c). CaP aggressiveness was shown to be inversely correlated with SI.

Indeed, CaPs assessed with a Gleason Score (GS) of 4-5 implied lower SI than the one with a GS of 2-3

[53]. In spite of the usefulness of these features, the T2-W modality lacks reliability in some aspects [54, 43].

Sensitivity is affected by the difficulties in detecting cancers in CG [54] while specificity rate is highly affected

by outliers [51, 55, 11, 56, 50].

However, T2 values alone have been shown to be more discriminative [57] and highly correlated with

citrate concentration, a biological marker in CaP [58, 59]. The Fast Spin-Echo (FSE) sequence has been

shown to be particularly well suited in order to build a T2 map and obtain accurate T2 values [60]. Similar

to T2-W MRI, T2 values associated with CaP are significantly lower than those of healthy tissues [58, 61].

DCE MRI is an imaging technique which exploits the vascularity characteristic of tissues [62]. Contrast

media, usually gadolinium-based, is injected intravenously into the patient. The media extravasates from

vessels to the Extravascular-Extracellular Space (EES) and is then released back into the vasculature before

being eliminated by the kidneys [63]. Furthermore, the diffusion speed of the contrast agent may vary due

to several parameters: (i) the permeability of the micro-vessels, (ii) their surface area and (iii) the blood

flow [64]. DCE MRI is based on an acquisition of a set of T1 Weighted (T1-W) MRI images over time. The

Gadolinium-based contrast agent shortens T1 relaxation time enhancing contrast in T1-W MRI images. The
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aim is to post-analyse the pharmacokinetic behaviour of the contrast media concentration in prostate tissues

[62]. The image analysis is carried out in two dimensions: (i) in the spatial domain on a pixel-by-pixel basis

and (ii) in the time domain corresponding to the consecutive images acquired with the MRI. Thus, for each

spatial location, a signal linked to contrast media concentration is measured as shown in Fig. 3 [65]. As

depicted in Fig. 3(b), CaPs are characterized by a signal having an earlier and faster enhancement as well

as an earlier wash-out (cf., the rate of the contrast agent flowing out of the tissue) [62].

Three different approaches exist to analyse these signals with the aim of tagging them as corresponding to

either normal or malignant tissues: qualitative analysis is based on assessment of the signal shape [43]; quanti-

tative approaches consist of inferring pharmocokinetic parameter values [65]; and semi-quantitative methods

which rely on shape characterization using mathematical modelling to extract a set of parameters [43, 62].

It was shown that semi-quantitative and quantitative methods improve localization of CaP when compared

with qualitative methods [66]. Table 1 gives an overview of the features used during DCE MRI analysis. Sec-

tion 4.2.2 provides a full description of quantitative and semi-quantitative approaches. DCE MRI combined

with T2-W MRI has shown to enhance sensitivity compared to T2-W MRI alone [67, 68, 69, 70]. Despite this

fact, DCE MRI possesses some drawbacks. Due to its “dynamic” nature, patient motions during the image

acquisition may lead to spatial misregistration of the image set [62]. Furthermore, it has been suggested

that malignant tumours are difficult to distinguish from prostatitis located in PZ and Benign Prostatic Hy-

perplasia (BPH) located in CG [43, 62] as these two pairs of tissues tend to have similar appearances. Later

studies have shown that CaPs in CG do not always manifest in homogeneous fashion. Indeed, tumours in

this zone can present both hypo-vascularization and hyper-vascularization which illustrates the challenge of

CaP detection in CG [71].

DW MRI is the most recent MRI imaging technique aiming at CaP detection and diagnosis [11]. This

modality exploits the variations in the motion of water molecules in different tissues [72, 73]. Table 1

summarizes the markers used in DW MRI to distinguish CaP. From the Nuclear Magnetic Resonance

(NMR) principle side, DW MRI sequence produces contrasted images due to variation of water molecules

motion. The method is based on the fact that the signal in DW MRI images is inversely correlated to the

degree of random motion of water molecules [74]. A higher degree of random motion results in a more

significant signal loss whereas a lower degree of random motion is synonymous with lower signal loss [74].

Under these conditions, the MRI signal is measured as:

Mx,y (t, b) = Mx,y(0) exp

(
− t

T2

)
SADC(b) , (1)

SADC(b) = exp (−b×ADC) , (2)

where SADC refers to signal drop due to diffusion effect, ADC is the Apparent Diffusion Coefficient and b
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is the attenuation coefficient depending only on gradient pulses parameters: (i) gradient intensity and (ii)

gradient duration [75].

By using this formulation, image acquisition with a parameter b = 0 s.mm−2 corresponds to a T1-W

MRI acquisition. Then, increasing the attenuation coefficient b (cf., increase gradient intensity and duration)

enhances the contrast in DW MRI images. To summarize, in DW MRI images, CaPs are characterized by

high-SI compared to normal tissues in PZ and CG as shown in Fig.4(a) [50]. However, some tissues in CG

can look similar to CaP with higher SI [50]. Diagnosis using DW MRI combined with T2-W MRI has shown a

significant improvement compared with T2-W MRI alone and provides highly contrasted images [76, 77, 78].

As drawbacks, this modality suffers from poor spatial resolution and low specificity [78].

With a view to eliminate these drawbacks, radiologists are extracting quantitative maps from DW MRI

which is known as the ADC map. The ADC coefficient is considered as a “pure” diffusion coefficient. From

Eq. 1, it is clear that performing multiple acquisitions only varying b will not have any effect on the term

Mx,y(0) exp
(
− t

T2

)
. Thus, Eq. 1 can be rewritten as:

S(b) = S0 exp (−b×ADC) . (3)

To compute the ADC map, a minimum of two acquisitions are necessary: (i) for b0 = 0 s.mm−2 where

the measured signal is equal to S0, and (ii) b1 > 0 s.mm−2 (typically 1000 s.mm−2). Then, the ADC map

can be computed as:

ADC = −

ln

S(b1)

S0


b1

. (4)

More accurate computation of the ADC map can be obtained by performing several acquisitions with

different values for the parameter b and performing a semi-logarithmic linear fitting using the model presented

in Eq. (3). Regarding the appearance of the ADC maps, it was previously stated that by increasing the value

of b, the signal of CaP tissue increases significantly. From Eq. (4), it can be shown that tissue appearance in

the ADC map will be the inverse of DW MRI images. This coefficient varies inversely to DW MRI images [50]

as depicted in Fig. 4(b). Similar to the gain achieved by DW MRI, diagnosis using ADC map combined with

T2-W MRI significantly outperforms T2-W MRI alone [79, 78]. Moreover, it has been shown that ADC is

correlated with GS [80, 81, 82]. However, some tissues of the CG zone mimic CaP with low-SI [54] and

image distortion can arise due to haemorrhage [78]. It has also been noted that a high variability of the

ADC occurs between different patients making it difficult to define a static threshold to distinguish CaP

from non-malignant tumours [78].

CaP induces metabolic changes in the prostate compared with healthy tissue. Thus, CaP detection can

be carried out by tracking changes of metabolite concentration in prostate tissue. MRSI is an NMR-based
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technique which generates spectra of relative metabolite concentration in a Region Of Interest (ROI). In

order to track changes of metabolite concentration, it is important to know which metabolites are associated

with CaP. To address this question, clinical studies identified three biological markers: (i) citrate, (ii) choline

and (iii) polyamines composed mainly of spermine, and in less abundance of spermidine and putrescine [83,

84, 85].

An increased concentration of choline associated with a decreased concentration of citrate and spermine

are related to the presence of CaP [83, 84, 86, 85]. To determine the concentration of these biological markers,

one has to focus on the MRSI modality. In each spectrum acquired, each peak is associated with a particular

metabolite and the area under each peak corresponds to the relative concentration of this metabolite (see

Fig. 5) [87]. Hence, frequencies of interest in regard to CaP detection and diagnosis should correspond to the

earlier mentioned metabolites. Choline and spermine are represented by a single peak at respectively 3.21

ppm and 3.11 ppm [88]. Due to the coupling effect, citrate is represented by three or four peaks depending

on the magnetic field strength. Citrate ranges from 2.47 ppm to 2.81 ppm with a central frequency at 2.64

ppm [88]. Then, relative concentrations of these metabolites are obtained by computing the area under the

curve of the spectrum between the lower and upper frequency limits of each peak (see Fig. 5). It can be

noted that a creatine peak is located at 3.02 ppm and the three metabolite peaks tend to be merged together

at clinical magnetic field strengths (see Fig. 5) [43, 86].

The variations of the metabolites are reported in Table 1. MRSI allows examination with high specificity

and sensitivity compared to other MRI modalities [78]. Furthermore, it has been shown that combining MRSI

with MRI improves detection and diagnosis performance [89, 90, 91]. Citrate and spermine concentrations

are inversely correlated with the GS allowing to distinguish low from high grade CaPs [85]. However,

choline concentration does not provide the same properties [85]. Unfortunately, MRSI also presents several

drawbacks. First, MRSI acquisition is time consuming which prevents this modality from being used in

daily clinical practise [50]. In addition, MRSI suffers from low spatial resolution due to the fact that Signal-

to-Noise (SNR) is linked to the voxel size. However, this issue is addressed by developing new scanners with

higher magnetic field strengths such as 7.5 T [85]. Finally, a high variability of the relative concentrations

between patients has been observed [78]. The same observation was made depending on the zones studied

(cf., PZ, CG, base, mid-gland, apex) [92, 93]. Due to this variability, it is difficult to use a fixed threshold

in order to differentiate CaP from healthy tissue.

2.2.3. Computer-aided systems for CaP: CADe - CADx

As previously mentioned in the introduction (see Sect. 1), CADs are developed to advise and backup

radiologists in their tasks of CaP detection and diagnosis, but not to provide fully automatic decisions [1].

CADs can be divided into two different sub-groups either as CADe, with the purpose to highlight probable

lesions in MRI images, or CADx, which focuses on differentiating malignant from non-malignant tumours [1].
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Moreover, an intuitive approach, motivated by developing a framework combining detection-diagnosis, is to

mix both CADe and CADx by using the output of the former mentioned as a input of the latter named.

Although the outcomes of these two systems should differ, the framework of both CAD systems is similar.

A general CAD work-flow is presented in Fig. 1.

MRI modalities mentioned in Sect. 2.2.2 are used as inputs of CAD for CaP. The images acquired from the

different modalities show a large variability between patients: the prostate organ can be located at different

positions in images (e.g., patient motion, variation of acquisition plan), and the SI can be corrupted with

noise or artefacts during the acquisition process (eg., magnetic field inhomogeneity, use of endorectal coil).

To address these issues, the first stage of CAD is to pre-process multiparametric MRI images to reduce

noise, remove artefacts and standardize the SI. As most of the later processes will be only focused on the

prostate. It is necessary to segment the prostate in each MRI-modality to define it as a ROI. However,

data may suffer from misalignment due to patient motion or different acquisition parameters. Therefore, a

registration step is usually performed so that all the previously segmented MRI images will be in the same

reference frame. Registration and segmentation steps can be swapped depending on the strategy chosen.

Some studies do not fully apply the methodology depicted in Fig. 1. Details about those can be found

in Table 2. Some studies proposed methods in which inputs are the MRI raw data in order to demonstrate

the robustness of their approaches to noise or artefacts. In some cases, prostate segmentation is performed

manually as well as registration. It is also sometimes assumed that no patient motions occur during the

acquisition procedure, removing the need of registering the multiparametric MRI images.

Once the data are regularized, it becomes possible to extract features and classify these data to obtain

either the location of possible lesions (CADe) or/and the malignancy nature of these lesions (CADx).

In a CADe framework, possible lesions will be segmented automatically and further used as inputs of a

CADx. Nevertheless, some works also used a fused CADe-CADx framework in which a voxel-based features

are directly used, allowing to obtain the location of the malignant lesions as results. On the other hand,

manual lesions segmentation is not considered to be part of a CADe.

CADx is composed of the processes allowing to distinguish malignant from non-malignant tumours.

In the studies reviewed, CaP malignancy is defined using the grade of the GS determined after post-

biopsy or prostatectomy. As presented in Fig. 1, CADx is usually composed of the three common steps

used in classification framework: (i) features detection, (ii) features extraction/selection and (iii) features

classification.

2.3. Literature classification

The CAD review is organized using the methodology presented in Fig. 1. Methods embedded in the

image regularization framework are presented initially to subsequently focus on the image classification

framework, being divided into CADe and CADx. Table 2 summarizes the forty-two different CAD studies
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reviewed in this paper. The first set of information reported is linked to the data acquisition such as the

number of patients included in the study, the modalities acquired as well as the strength of the field of

the scanner used. Subsequently, information about the prostate zones considered in the CAD analysis (PZ

or CG) are reported since that detecting CaP in the CG is a more challenging problem and has received

particular attention only in recent publications.

3. Image regularization framework

This section provides a review of the methods used in CADs for CaP in order to regularize input images.

We start with pre-processing methods presented in Sect. 3.1, focusing mainly on the reduction of noise level

and artefacts as well as standardization of SI. Section 3.2 and Sect. 3.3 will be dedicated to segmentation

methods, so that later methods only operate on the segmented prostate, and registration to align segmented

images from different MRI-modalities in the same reference frame.

3.1. Pre-processing

3.1.1. MRI images pre-processing

Three different groups of pre-processing methods are commonly applied to images as initial stage in CAD

for CaP.

− Noise filtering: The NMR signal measured and recorded in the k-space during an MRI acquisition is

affected by noise. This noise obeys a complex Gaussian white noise mainly due to thermal noises in the

patient area [94]. Furthermore, MRI images visualized by radiologists are in fact the magnitude images

resulting from the complex Fourier transform of the k-space data. The complex Fourier transform, being

a linear and orthogonal transform, does not affect the Gaussian noise characteristics [94]. However, the

function involved in the magnitude computation is a non-linear transform (i.e., the square root of the sum

of squares of real and the imaginary parts), implying that the noise distribution is no longer Gaussian;

it indeed follows a Rician distribution making the denoising task harder. Briefly, a Rician distribution

can be characterized as follows: in low-SI region (low SNR), it can be approximated with a Rayleigh

distribution while in high-SI region (high SNR), it is similar to a Gaussian distribution [95]. Reviews of

all denoising methods can be found in [96, 97]. Median filtering is the simplest approach used to address

the denoising issue in MRI images [98, 99]. However, from a theoretical point of view, this simple filtering

method is not well formalized to address the noise distribution in MRI images. More complex approaches

were proposed to overcome this problem. A common method used to denoise MRI images is based on

wavelet-based filtering. Investigations focus on the strategies to perform the most adequate coefficient

shrinkage method (e.g., using thresholding, singularity property or Bayesian framework) [100]. Ampeliotis

et al. in [101, 102] performed wavelet shrinkage to denoise magnitude MRI images (cf., T2-W-MRI and
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DCE-MRI) using thresholding techniques [103]. However, since the wavelet transform is an orthogonal

transform, the Rician distribution of the noise is preserved in the wavelet-domain. Hence, for low SNR,

the wavelet and scaling coefficients still suffer from a bias due to this specific noise distribution [94]. Lopes

et al. in [104] used the filtering technique proposed by [105] to denoise T2-W-MRI which was based on

joint detection and estimation theory [106].

− Bias correction: Besides being corrupted by noise, MRI images are also affected by the inhomogeneity

of the MRI field commonly referred to as bias field [107]. This bias field results in a smooth variation

of the SI through the image. When an endorectal coil is used, an artefact resulting of an hyper-intense

signal can be observed around the coil on the images. As a consequence, the SI of identical tissues

varies depending on their spatial location in the image making further processes such as segmentation or

registration harder [108, 109]. A review of bias correction methods can be found in [109].

Viswanath et al. in [110] performed bias correction on T2-W-MRI using a parametric Legendre

polynomial model proposed in [107] and available in the Insight Segmentation and Registration Toolkit

(ITK) library1.

Lv et al. in [111] corrected the inhomogeneity in T2-W-MRI images by using the method proposed

in [112]. In this method, the MRI images are corrected iteratively by successively detecting the image

foreground via generalized scale (g-scale) and estimating a bias field function based on a second-order

polynomial model.

− SI normalization/standardization: As discussed in the later section, segmentation or classification

tasks are usually performed by first learning from a training set of patients. Hence, one can emphasize the

desire to perform MRI examinations with a high repeatability or in other words, one would like to obtain

similar MRI images (cf., similar SIs) for patients of the same group (cf., healthy patients vs. patients

with CaP), for a similar sequence.

However, it is a known fact that variability between patients occurs during the MRI examinations

even using the same scanner, protocol or sequence parameters [113]. Hence, the aim of normalization or

standardization of the MRI data is to remove the variability between patients and enforce the repeatability

of the MRI examinations. Approaches used to standardize MRI images can be either categorized as

statistical-based standardization or organ SI-based standardization.

Artan et al. [114, 115] as well as Ozer et al. [98, 99] standardized T2-W, DCE and DW MRI images

by computing the standard score (also called z-score) of the pixels of the PZ. In a similar way, Liu et

al. [116] normalized T2-W-MRI by making use of the median and interquartile range for all the pixels.

Lv et al. [111] scaled the SI of T2-W-MRI images using the method proposed in [117] based on

1The ITK library is available at: http://www.itk.org/
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Probability Density Function (PDF) matching. This approach is based on the assumption that MRI

images from the same sequence should share the same PDF appearance. Hence, one can approach this

issue by transforming and matching the PDFs using some statistical landmarks such as median and

different quantiles.

Viswanath et al. in [110, 118, 119] used a variant of this previous approach presented in [120] aiming to

standardize the T2-W-MRI images. Instead of computing the PDF of an entire image, a pre-segmentation

of the foreground is carried out via g-scale.

The methods described above were statistical-based methods. However, the standardization problem

can be tackled by normalizing the MRI images using the SI of some known organs present in these

images. Niaf et al. [121, 122] normalized T2-W-MRI images by dividing the original SI of the images by

the mean SI of the bladder. Likewise, in [121] standardized the T1-W-MRI images using the Arterial

Input Function (AIF) as proposed in [123].

3.1.2. MRSI spectra

Presented in Sect. 2.2.2, MRSI is a modality related to a one dimensional signal. Hence, specific pre-

processing steps for this type of signals have been applied instead of standard signal processing methods.

− Phase correction: MRSI data acquired suffer from zero-order and first-order phase misalignments [124,

125]). Parfait et al. [126] used a method proposed in [124] where the phase of MRSI signal is corrected

based on entropy minimization in the frequency domain.

− Water and lipid residuals filtering: The water and lipid metabolites occur in much higher concentra-

tions than the metabolites of interests (cf., choline, creatine and citrate) [127, 125]. Fortunately, specific

MRSI sequences were developed in order to suppress water and lipid metabolites using pre-saturation

techniques [127]. However, these techniques do not perfectly remove water and lipids peaks and some

residuals are still present in the MRSI spectra. Therefore, different post-processing methods have been

proposed to enhance the quality of the MRSI spectra by removing these residuals. For instance, Kelm

et al. [128] used the well known HSVD algorithm proposed in [129] which models the MRSI signal by a

sum of exponentially damped sinusoids in the time domain.

− Baseline correction: Sometimes, the problem discussed in the above section regarding the lipid

molecules is not addressed simultaneously with water residuals suppression. Lipids and macromolecules

are known to affect the baseline of the MRSI spectra. They could cause errors during further fitting

processes aiming to quantify the metabolites, especially regarding the citrate metabolite.

Parfait et al. [126] made the comparison of two different methods to detect the baseline and correct

the MRSI spectra based on [130, 131]. Liber et al. [130] addressed the problem of baseline detection

in the frequency domain by iteratively fitting a polynomial of low degree whereas Parfait et al. [126]
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modified this algorithm by convolving a Gaussian kernel to smooth the MRSI signal instead of fitting

a polynomial function. Unlike in [130], Devos et al. in [131] proposed to correct the baseline in the

time domain by multiplying the MRSI signal by a decreasing exponential function. However, Parfait et

al. [126] concluded that the method proposed in [130] outperformed the one in [131].

In the contemporary work of Tiwari et al. [132], the authors detected the baseline using a local non-

linear fitting method avoiding regions with significant peaks which were detected using a experimentally

parametrised signal-to-noise ratio (i.e. a value larger than 5 dB).

− Frequency alignment: Due to variations of the experimental conditions, a frequency shift can be

observed in the MRSI spectra [124, 125]. Tiwari et al. [132] corrected the frequency shift by first detect-

ing known metabolite peaks such as choline, creatine and citrate. The frequency shift is corrected by

minimizing the frequency error between the experimental and theoretical values of each of these peaks.

− Normalization: Due to variations of the experimental conditions, the MRSI signal may also vary

between patients. Parfait et al. [126] as in [131] compared two methods to normalize the MRSI signal.

In each method, the original MRSI spectra is divided by a normalization factor, similar to the intensity

normalization described earlier. The first approach to obtain the normalization factor is based on an

estimation of the water concentration. It is required to have an additional MRSI sequence where the

water metabolites are unsuppressed. Using this sequence, an estimation of the water concentration can

be performed using the previously reported HSVD algorithm. The second approach to normalization is

based on using the L2 norm of the MRSI spectra. It should be noted that both studies concluded that

the L2 normalization was more efficient in their framework [126, 131].

3.2. Segmentation

The segmentation task consists of delineating the prostate boundaries in the MRI and is of particular

importance for focusing the posterior processing on the organ of interest [133]. In this section, only the

segmentation methods used in CAD for CaP systems are presented and summarized in Table 4, and are

mostly intensity based. An exhaustive review of prostate segmentation methods in MRI can be found in [133]

as well as prostate modelling in [134].

− Manual segmentation: To highlight the importance of prostate segmentation task in CAD systems, it

is interesting to note the large number of studies which manually segment the prostate organs [114, 115,

135, 121, 122, 98, 99, 136, 137, 138]. In all the cases, the boundaries of the prostate gland are manually

defined in order to limit the further processing to only this area. This approach ensures the right

delineation of the organ nevertheless this procedure is highly time consuming and should be performed

by a radiologist.
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− Atlas-based segmentation: Litjens et al. in [139] used a multi-atlas-based segmentation [140] using

multi-modal images (e.g., T2-W-MRI and ADC map) to segment the prostate with an additional pattern

recognition method to differentiate CG and PZ as proposed in [141]. This method consists of three

different steps: (i) the registration between each atlas and the multi-modal images, (ii) the atlas selection

and finally (iii) the classification of the prostate segmented voxels in either CG or PZ.

Litjens et al. in [142] used an almost identical algorithm proposed in the PROMISE12 challenge [143].

Their segmentation method is also based on multi-atlas multi-modal images, but the SIMPLE method [144]

is used instead to combine labels after the registration of the different atlas to obtain the final segmen-

tation.

− Model-based segmentation: Viswanath et al. in [145, 110] used the Multi-Attribute Non-initializing

Texture Reconstruction based Active shape model (MANTRA) method as proposed in [146]. MANTRA

is closely related to the Active Shape Model (ASM) from [147]. This algorithm consists of two stages:

(i) a training stage where a shape and appearance model is generated and (ii) the actual segmentation

performed based on the learned model.

Litjens et al. [148] and Vos et al. [149] used an approach proposed in [150] in which the bladder,

prostate and rectum are segmented. The segmentation task is performed as an optimization problem

taking three parameters into account linked to organs such as: (i) the shape, (ii) the location and (iii)

the respective angles between them. Furthermore, Litjens et al. [148] used only the ADC map to encode

the appearance whereas Vos et al. [149] used both ADC and T2 maps.

Only the work of Tiwari et al. in [151] proposes a segmentation based on MRSI. Authors localized

the voxels corresponding to the prostate organ using a hierarchical spectral clustering. First, each MRSI

spectrum is projected into a lower dimension space using graph embedding [152].

3.3. Registration

The role of image registration is vital in CAD systems using multi-parametric MRI images. As it will

be discussed in Sect. 4, for the sake of an optimal classification, the features detected in each modality will

be grouped depending of their spatial locations. Hence, one has to ensure the perfect alignment of the

multi-modal MRI images ahead of performing any classification.

Image registration is the procedure consisting of aligning an unregistered image (also called moving

image) into a template image (also called fixed image) via a geometric transformation. This problem is

usually addressed as presented in Fig. 6. An iterative procedure takes place to infer the geometric trans-

formation (parametric or non-parametric) via an optimizer, which maximizes the similarity between the

two images. From Sect. 3.3.1 to Sect. 3.3.4, we individually review the different components of a typical

registration framework: transformation model, similarity metric, optimizer and interpolation. Section 3.3.5
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will summarize the combinations of these components especially used in CAD for CaP systems. Exhaustive

reviews covering registration methods in computer science and medical fields can be found in [153, 154],

respectively.

3.3.1. Geometric transformation models

From all CAD for CaP systems reviewed, only parametric transformation models have been used, mainly

based on affine and elastic transformations. Affine transformations provide degrees of freedom managing

rotations and translation as with the rigid transformations but also shearing and scaling. Elastic transfor-

mations offer the advantage to handle local distortions. Within the elastic transformations, two radial basis

functions have been used in the reviewed CAD for CaP systems: (i) the Thin Plate Spline (TPS) and (ii)

the B-splines. Apart from the formalism, these two approaches have a main difference. With B-splines,

the control points are usually uniformly and densely placed on a grid whereas with TPS, the control points

correspond to detected or selected key points. For instance, by using TPS, Mitra et al. in [155] obtained

more accurate and time efficient results than with the B-splines strategy [156].

In general only rigid or affine registrations have been used to register multi-parametric images from

a same protocol whereas elastic registration methods are more commonly used to register multi-protocol

images (e.g., histopathology with MRI images) [146, 157].

3.3.2. Similarity measure

The most naive similarity measure used in the reviewed registration frameworks is the Mean Squared

Error (MSE) of the SI of MRI images. However, this metric is not well suited when multi-parametric images

are involved due to the tissue appearance variations between the different modalities. In that regard, Mutual

Information (MI) was introduced as a registration measure in the late 1990’s in [158]. The MI measure finds

its foundation in the assumption that a homogeneous region in the first modality image should also appear

as a homogeneous region in the second modality even if their SIs are not identical. Thus, those regions share

information and the registration task can be achieved by maximizing this common information. Maximizing

the MI is in fact equivalent to minimizing the joint entropy which is a measure related with the degree of

uncertainty or dispersion of the data in the joint histogram. A generalized form of MI, Combined Mutual

Information (CMI), was proposed in [159]. CMI encompasses interdependent information such as texture

and gradient into the metric.

3.3.3. Optimization methods

Registration is usually regarded as an optimization problem where the parameters of the geometric

transformation model have to be inferred by minimizing the similarity measure. Iterative estimation methods

are commonly used being the L-BFGS-B quasi-Newton method [160] and gradient descent [161] the most

common ones. During our review, we noticed that authors do not usually linger over optimizer choice.
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3.3.4. Interpolation

The registration procedure involves transforming an image, and pixels mapped to non-integer points

must be approximated using interpolation methods. As for the optimization methods, we notice that little

attention has been paid on the choice of those interpolations methods. However, commonly used methods

are bilinear, nearest-neighbour, bi-cubic, spline and inverse-distance weighting method [162].

3.3.5. Registration methods used in CAD system

Studies presenting a CAD pipeline incorporating an automatic registration procedure are summarized

in Table 3. Ampeliotis et al. in [101, 102] did not use a general registration framework to register 2D

T2-W and DCE images. By using image symmetries and the MSE metric, they found the parameters of an

affine transformation but without using a common objective function. They were finding independently and

sequentially the scale factor, the rotation and finally the translation.

Giannini et al. [163] used also a in-house registration for 2D T2-W and DW images using an affine model.

The bladder is first segmented in both modalities in order to obtain its contours and to focus the registration.

Giannini et al. [163] and also Vos et al. [164] used the same framework which is based on finding an affine

transformation to register the T2-W and DCE images using MI [165]. Then, an elastic registration using

B-spline takes place using the affine parameters to initialize the geometric model with the same similarity

measure. However, the approaches differ regarding the choice of the optimizer since a gradient descent is

used in [163] and the same optimization problem is tackled via a quasi-Newton method in [164]. Moreover,

Giannini et al. [163] performed a 2D registration whereas Vos et al. [164] registered 3D volumes.

Viswanath et al. in [145, 110] as well as Vos et al. [137] performed an affine registration using the MI as

similarity measure to correct the misalignment between T2-W and DCE images. The choice of the optimizer

was not specified. Viswanath et al. [145, 110] focused on 2D registration while Vos et al. [137] performed

3D registration.

Finally, Viswanath et al. in [118] performed a 3D registration with the three modalities, T2-W and

DCE and DW MRI, by using an affine transformation model combined with the CMI similarity measure as

presented in [159]. Moreover, in this latter work, the authors employed a gradient descent approach to solve

this problem but suggested Nelder-Mead simplex and quasi-Newton method as other solutions.

4. CADe - CADx

4.1. CADe: ROIs detection/selection

As discussed in the introduction and shown in Fig. 1, the image classification framework is often composed

of a CADe and a CADx. In this section, we will focus on studies embedding a CADe in their framework.

Two approaches are considered to define a CADe (see Table 6): (i) voxel-based delineation and (ii) lesion
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segmentation. The first strategy, which concerns the majority of the studies reviewed (see Table 6), is in fact

linked to the nature of the classification framework [114, 115, 163, 128, 166, 104, 135, 167, 98, 99, 126, 168,

169, 170, 151, 171, 172, 132, 173, 174, 145, 110, 118, 119]. All voxels are considered as a possible lesion and

the output of the framework will be pixels classified as lesion and non lesion. The second group of methods

is composed of method implementing a lesion segmentation algorithm to delineate potential candidates to

further obtain a diagnosis through the CADx. This approach was borrowed from other application areas

such as breast cancer. These methods are in fact very similar to the classification framework used in CADx

later.

Vos et al. [149] highlighted lesion candidates by detecting blobs in the ADC map. These candidates were

filtered using some a priori criteria such as SI or diameter. The candidate blobs detected are then filtered

depending on their appearances (cf. maximum of the likelihood of the region, diameter of the lesion) and

their SI in ADC and T2-W images. The detected regions are then used as inputs for the CADx.

Litjens et al. [148] used a pattern recognition approach in order to delineate the ROIs. A blobness

map was calculated in the same manner as previously in [164] using the multi-resolution Hessian blob

detector on the ADC map, T2-W and pharmacokinetic parameters maps (see Sect. 4.2 for details about

those parameters). Additionally, the position of the voxel x = {x, y, z} was used as a feature as well as the

Euclidean distance of the voxel to the prostate center. Hence, the feature vectors were composed of eight

features and a Support Vector Machines (SVM) classifier was trained using a Radial Basis Function (RBF)

kernel (see Sect. 4.4 for more details).

Subsequently, Litjens et al. in [139] modified this approach by including only features related to the

blob detection on the different maps as well as the original SIs of the parametric images. Two new maps

were introduced based on texture. Instead of a SVM classifier, a k-Neareast Neighbour (k-NN) classifier

was used. The candidate regions were then extracted by performing a local maxima detection followed by

post-processing region-growing and morphological operations.

In a similar way, Litjens et al. in [142] used the same approach and added two new features: (i) a

Gaussian texture bank on T2-W to create new maps and (ii) the DW MRI image acquired with b = 800

s.mm−2. Three classifiers were tested: Linear Discriminant Analysis (LDA), GentleBoost and Random

forest. After evaluation, random forest was selected as classifier due to its overall performances.

4.2. CADx: Feature detection

Discriminative features which can be used to recognize CaP from healthy tissue have to be first detected.

This processing is known in computer vision as feature extraction. However, feature extraction is also the

name given in pattern recognition to some types of dimension reduction methods which will be presented

in the next section. In order to avoid confusion between these two aspects, in this survey, the procedure

“detecting” or “extracting” features from images and signals will be defined as feature detection. This
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section will summarize the different strategies employed for this task. The features used in the studies

reviewed are summarized in Table 7.

4.2.1. Image-based features

This section will focus on image-based features detection. Two main strategies to detect features have

been identified and used for the purpose of our classification: (i) voxel-wise detection and (ii) region-wise

detection.

− Voxel-wise features: This strategy refers to the fact that a feature is extracted at each voxel location.

CaP as previously discussed (see Table 1) can be discerned due to SI changes. Hence, intensity-based

features are one of the most common features used to build the feature vector which has to be classi-

fied [101, 102, 114, 115, 13, 175, 148, 139, 142, 166, 121, 122, 145, 118]. This type of feature consists

simply of the SI of each voxel of the different MRI modalities.

Edge based features have also been used to detect SI changes. Each feature is computed by convolving

the original image with an edge operator. Three of these operators are used: (i) Prewitt operator [176],

(ii) Sobel operator [177] and (iii) Kirsch operator [178]. Results obtained with these operators vary, due

to their different kernels. These features are commonly incorporated in the feature vector for further

classification in the CAD systems reviewed [121, 122, 171, 172, 173, 174, 118].

Gabor filters [179, 180] offer another approach to extract information related to edges and texture

and were integrated in three different CAD for CaP [174, 119, 132].

Texture-based features provide other characteristics discerning CaP from healthy tissue. The most

common texture analysis for image classification are co-occurrence matrices with their related statistics

which were proposed in [181] and are commonly used in CAD systems [182, 121, 122, 171, 172, 173,

174, 145, 118, 119]. Fractal analysis and more precisely a local estimation of the fractal dimension [183]

describing the texture roughness at a specific location was used in [104]. A wavelet-based method in a

multi-resolution framework was used to estimate the fractal dimension. Cancerous tissue showed a higher

fractal dimension than healthy tissue.

Chan et al. [13] described the texture using the frequency signature via the Discrete Cosine Transform

(DCT) [184] defining a neighbourhood of 7×7 pixels for each of the modalities that they used. Similarly,

Viswanath et al. in [119] projected T2-W images into the wavelet space and used the coefficients obtained

from the decomposition as features. The wavelet family used for the decomposition was the Haar wavelet.

Finally, Litjens et al. in [142] computed texture map based on T2-W images using a Gaussian filter

bank [185].

The position of a voxel within the prostate was also considered a feature. Authors in [148, 142]

computed the Euclidean distance from each voxel to the prostate center as well as the individual distance
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in the three directions x, y and z. Chan et al. [13] embedded the same information but using cylindrical

coordinates r, θ and z instead, corresponding to the radius, azimuth and elevation respectively.

− Region-wise features: Unlike the previous section, another strategy is to study an entire region and

extract characteristic features corresponding to this region. The most common approach reviewed can

be classified as statistical methods. First, a feature map is computed for the whole image instead of

using single voxels. Then, ROIs are defined and statistics are extracted from each of these regions. The

most widely used statistic is based on percentiles [182, 148, 139, 142, 82, 171, 172, 173, 174, 145, 118,

119, 137, 138, 164, 149]. The percentile used is usually manually determined observing the distribution

and corresponds to the best discriminant value differentiating malignant and healthy tissue. In addition,

statistic-moments such as mean, standard deviation, kurtosis and skewness are also used [101, 102, 182,

121, 122, 82]. Litjens et al. in [142] also introduced a feature based on symmetry. They compute the

mean of a candidate lesion as well as its mirrored counter-part and compute the quotient as feature.

Another subset of features are anatomic which were also used in [139, 142, 135]. Litjens et al.

in [139, 142] computed the volume, compactness and sphericity related to the region to integrate it in

their feature vector. Matulewicz et al. [135] introduced four features corresponding to the percentage of

tissue belonging to the regions PZ, CG, periurethral region or outside prostate region for the considered

ROI.

In contrast to anatomical are histogram-based feature descriptors. For instance, Liu et al. [116]

introduced four different types of histogram-based features. The first type corresponds to the histogram of

the SI of the image. The second type is the Histogram of Oriented Gradient (HOG) [186]. HOG descriptor

describes the local shape of the object of interest by using the distribution of gradient directions. The

third histogram-based type used in [116] was shape context [187]. The shape context is also a way to

describe the shape of an object of interest. The last set of histogram-based feature extracted is based on

the framework described in [188] which is using the Fourier transform of the histogram created via Local

Binary Pattern (LBP) [189].

The last group of region-based feature is based on fractal analysis. The features proposed are based

on estimating the fractal dimension which is a statistical index representing the complexity of what is

analysed. Lv et al. [111] proposed two features based on fractal dimension: (i) texture fractal dimension

and (ii) histogram fractal dimension. Lopes et al. [104] proposed a 3D version to estimate the fractal

dimension of a volume using wavelet decomposition.

4.2.2. DCE-based features

DCE-MRI is more commonly based on a SI analysis over time as presented in Sect. 2.2.2. The features

extracted for DCE-MRI analysis are presented.
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− Whole-spectra approach: Some studies are using the whole DCE time series as feature vector [101, 102,

132, 145, 174]. In some cases, the high-dimensional feature space is reduced using dimension reduction

methods as it will be presented in the next section (see Sect. 4.3).

− Semi-quantitative approach: Semi-quantitative approaches are based on mathematically modelling

the DCE time series. The parameters modelling the signal are commonly used mainly due to the simplicity

of their computation. Parameters included in semi-quantitative analysis are summarized in Table 8 and

also graphically depicted in Fig. 7. A set of time features corresponding to specific amplitude level

(start, maximum and end) are extracted. Then, derivative and integral features are also considered as

discriminative and are commonly computed.

− Quantitative approach: As presented in Sect. 2.2.2, quantitative approaches correspond to mathematical-

pharmacokinetic models based on physiological exchanges. Four different models have been used in CAD

for CaP systems. The most common model reviewed was the Brix model using three parameters A, kep

and kel [114, 115, 168, 166, 98, 99]. The Tofts model [190] and more precisely the parameters Ktrans, kep

and ve were used in [175, 148, 139, 142, 163, 121, 122, 167].

Mazzetti et al. [167] and Giannini et al. [163] used the Weibull function in a different empirical model

based on the West-like function and referred to as the phenomenological universalities model [191] defined

by three parameters β, a0 and r. For all these models, the parameters are inferred using an optimization

curve fitting approach.

4.2.3. MRSI-based features

− Whole spectra approach: As in the case of DCE analysis, one common approach is to incorporate the

whole MRSI spectra in the feature vector for classification [128, 126, 169, 151, 173, 171, 172, 145, 135].

Sometimes post-processing involving dimension reduction methods is performed to reduce the complexity

during the classification as it will be presented in Sect. 4.3.

− Quantification approach: We can reiterate that in MRSI only few biological markers (cf., choline,

creatine and citrate metabolites mainly) are known to be useful to discriminate CaP and healthy tis-

sue. Then, concentrations of these metabolites can be considered as a feature used for classification.

In order to perform this quantification, four different approaches have been used. The QUEST [192],

AMARES [193] and VARPRO [194] models were used in [128]. They are all time-domain quantification

methods varying by the type of pre-knowledge embedded and the optimization approaches used to solve

the quantification problem. Unlike the time-domain quantification approaches, Parfait et al. [126] used

the LcModel approach [195] which solves the optimization problem in the frequency domain.

Although Parfait et al. [126] used each metabolite concentrations individually, other authors such as
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Kelm et al. [128] proposed to compute relative concentrations as the ratio of choline plus creatine to

citrate or the ratio of citrate to choline plus creatine plus citrate.

− Wavelet decomposition approach: Tiwari et al. [132] performed a wavelet packet decomposition [196]

of the spectra with the Haar wavelet basis function and used its coefficients as features.

4.3. CADx: Feature selection and feature extraction

As presented in the previous section, a wide variety of features can be computed (see Table 7). This

often leads from multi-parametric MRI data to a high dimensions feature space which might mislead or

corrupt the classifier used for training. Thus, it is often of interest to reduce the number of dimensions

before proceeding to the classification task. The strategies used can be grouped as: (i) feature selection

and (ii) feature extraction and those methods will be presented in the above sections. However, only the

methods used in CAD system are presented and summarized in Table 9.

4.3.1. Feature selection

The feature selection strategy is based on selecting the most discriminative feature dimensions of the

high-dimensional space. Thus, the low-dimensional space is then composed of a subset of the original features

detected. In this section, methods employed in the studies reviewed will be briefly presented. More extensive

reviews specific to feature selection can be found in [197]. Niaf et al. [121, 122] make use of the p-value

by using the independent two-sample t-test with equal mean for each feature dimension. The features can

be ranked and the most significant features can be selected. However, this technique suffers from a main

drawback since it assumes that each feature is independent, which is unlikely to happen and introduces a

high degree of redundancy in the features selected.

Vos et al. in [149] employed a similar feature ranking approach but make use of the Fisher discriminant

ratio to compute the relevance of each feature dimension. Once the features are ordered, the authors select

the feature dimensions with the larger Fisher discriminant ratio.

MI can also be used to select a subset of feature dimensions. Peng et al. introduced two main criteria to

select the feature dimensions: (i) maximal relevance and (ii) minimum redundancy. Combination of these

two criteria is known as minimum Redundancy Maximum Relevance (mRMR)2 [198] and are computed as

a difference or quotient. Authors in [121, 122] make use of maximal relevance criterion alone and also of

both mRMR difference and quotient criterion. Viswanath et al. in [119] also reduced their feature vector

via mRMR difference and quotient.

2mRMR implementation can be found at: http://penglab.janelia.org/proj/mRMR/
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4.3.2. Feature extraction

The feature extraction strategy is related to dimension reduction methods but not selecting discriminative

features. Instead, these methods aim at mapping the data from the high-dimensional space into a low-

dimensional space created to maximize the separability between the classes. The mapping can be performed

in a linear or a non-linear manner. Again, only methods employed in CAD for CaP system will be reviewed

in this section. We refer the reader to [199] for a full review of feature extraction techniques.

Principal Components Aanalysis (PCA) is the most commonly used linear mapping method in CAD

prostate [200]. Tiwari et al. in [170, 151, 132] used PCA in order to reduce the dimensionality of their

feature vector. Non-linear mapping was also used for dimension reduction. It is mainly based on Laplacian

eigenmaps and Locally Linear Embedding (LLE) methods. Laplacian eigenmaps3, also referred as spectral

clustering in computer vision, aim to find a low-dimensional space in which the proximity of the data should

be preserved from the high-dimensional space [152, 201]. Tiwari et al. in [169, 151, 171] and Viswanath et

al. in [174] used this spectral clustering to project their feature vector into a low-dimensional space. The

feature space in these studies is usually composed of features extracted from a single or multiple modalities

and then concatenated before applying the Laplacian eigenmaps dimension reduction technique. Tiwari et

al. in [151, 173] used a slightly different approach by combining the Laplacian eigenmaps techniques with a

prior multi-kernel learning strategy.

LLE4 is another common non-linear dimension reduction technique widely used, first proposed in [202].

Tiwari et al. in [170] used a modified version of the LLE algorithm in which they applied LLE in a bagging

approach with multiple neighbourhood sizes. The different embeddings obtained are then fused using the

Maximum Likelihood (ML) estimation.

4.4. CADx: Classification

4.4.1. Classifier

Once the feature vector has been extracted and eventually the complexity reduced, it is possible to make

a decision and classify this feature vector to belong to CaP or healthy tissue. Classification methods used

in a CAD for CaP system to distinguish these two classes are summarized in Table 10. A full review of

classification methods used in pattern recognition can be found in [203].

− Rule-based methods: Lv et al. [111] make use of a decision stump classifier to distinguish CaP and

healthy classes. Puech et al. [136] detect CaP by implementing a given set of rules using a score scheme

in a medical decision making approach. The feature values are compared with a pre-defined threshold.

3Laplacian eigenmap implementation is available at: http://www.cse.ohio-state.edu/~mbelkin/algorithms/algorithms.

html
4LLE implementation is available at: https://www.cs.nyu.edu/~roweis/lle/
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Then, at each comparison, the final score is incremented, depending on the threshold and the final decision

is taken depending of this final score.

− Clustering methods: k-Neareast Neighbour (k-NN) is one of the simplest supervised machine learning

classification methods. k-NN was one of the methods used in [121, 122] mainly to make a comparison

with different machine learning techniques. Litjens et al. in [139] used this method to roughly detect

potential CaP voxels before performing a region-based classification.

The k-means algorithm is an unsupervised clustering method in which the data is iteratively parti-

tioned into k clusters. This algorithm can also be used for “on-line” learning. In case that new data has

to be incorporated, the initial centroid positions correspond to the results of a previous k-means training

and is followed by the assignment-updating stage previously explained. Tiwari et al. in [169, 151] used

k-means with three clusters corresponding to CaP, healthy and non-prostate, respectively. k-means was

applied iteratively and the voxels corresponding to the largest cluster were excluded under the assump-

tion that it was assigned to “non-prostate” cluster. The algorithm stopped when the number of voxels

in all remaining clusters was smaller than a given threshold. Tiwari et al. in [170] and Viswanath et al.

in [174, 145] used k-means in a repetitive manner in order to be less sensitive to the centroids initialisa-

tion. Thus, k clusters were generated T times. The final assignment was performed by majority voting

using a co-association matrix as proposed in [204].

− Linear model classifiers: Linear Discriminant Analysis (LDA) can be used as a classification method

in which the optimal linear separation between two classes is found by maximizing the interclass variance

and minimizing the intraclass variance [205]. LDA has been used in [182, 13, 142, 121, 122, 149]. Logistic

regression can be used to perform binary classification and can provide the probability of an observation

to belong to a class. This has been used to create a linear probabilistic model in [128, 136].

− Non-linear model classifier: Viswanath et al. in [119] used Quadratic Discriminant Analysis (QDA)

instead of LDA. Unlike in LDA in which one assumes that the class covariance matrix Σ is identical for

all the classes, in QDA, a covariance matrix Σk specific to each class is computed.

− Probabilistic classifier: The most commonly used classifier is the naive Bayes classifier which is a

probabilistic classifier assuming independence between each feature dimension [206]. The Naive Bayes

classifier has been used in [163, 167, 121, 122]. The Normal distribution was adopted as the likelihood

probability for that model.

− Ensemble learning classifiers: AdaBoost is an adaptive method based on an ensemble learning

method and was initially proposed by [207]. AdaBoost linearly combines several weak learners resulting

into a final strong classifier. A weak learner is defined as a classification method performing slightly
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better than random classification. Random forest5 is a classification method which is based on creating

an ensemble of decision trees and was introduced in [208]. Probabilistic boosting-tree is another ensemble

learning classifier which shares principles with AdaBoost but using them inside a decision tree [209]. Lopes

et al. [104] make use of the AdaBoost classifier to perform their classification while Litjens et al. in [142]

used the GentleBoost variant [210] which provides a modification of the function affecting the weight at

each weak classifier. The random forest classifier has been used in [128, 142, 132, 173, 110] whereas the

probabilistic boosting-tree classifier in [171, 132, 172, 118].

− Kernel method: A Gaussian process6 for classification is a kernel method in which it is assumed that

the data can be represented by a single sample from a multivariate Gaussian distribution [211]. Only the

work of Kelm et al. [128] used a Gaussian process for classification in MRSI data.

− Sparse kernel methods: In a classification scheme using Gaussian processes, when a prediction has to

be performed, the whole training data will be used to assign a label to the new observations. That is

why this method is also called kernel method. Sparse kernel category is composed of methods which rely

only on a few labelled observations of the training set to assign the label of new observations [203].

Support Vector Machines (SVM)7 is a sparse kernel method which aims at finding the best linear

hyperplane (non-linear separation is discussed further) which separates two classes such that the margin

between the two classes is maximized [212]. SVM can also be used as a non-linear classifier by performing a

kernel trick [213]. The original data x can be projected to a higher-dimension space in which it is assumed

that a linear hyperplane will better split the classes. Different kernels are popular such as the RBF kernel,

polynomial kernels or Gaussian kernel. In prostate CAD system, SVM is the most popular classification

method and was used in a multitude of research works [114, 115, 13, 128, 148, 139, 116, 104, 121, 122,

98, 99, 126, 82, 168, 132, 137, 138, 164, 149].

Relevant Vector Machine (RVM) is a sparse version of Gaussian process previously presented and was

proposed by [214]. RVM is identical to a Gaussian process with a specific covariance function [215]. Ozer

et al. [98, 99] make use of RVM and make a comparison with SVM for the task of CaP detection.

− Neural network: Multilayer perceptron is a feed-forward neural networks considered as the most suc-

cessful model of this kind in pattern recognition [203]. The most well known model used is based on

two layers. Matulewicz et al. [135] as well as Parfait et al. [126] used this classifier to classify MRSI

spectra. Probabilistic neural networks are another type of feed-forward networks which can be derived

from the multilayer perceptron case and was proposed by [216]. This classifier can be modelled by

5Random forest implementation can be found at: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.

htm
6Gaussian process implementation can be found at: http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
7SVM implementation can be found at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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changing the activation function of the hidden layer to an exponential function. This method was used

in [101, 102, 118].

− Graphical model classifiers: Markov Random Field (MRF) can also be used for classification in order

to perform a lesion segmentation method to detect CaP. Liu et al. [166] and Ozer et al. [99] used MRF

as an unsupervised method to segment lesions in multi-parametric MRI. Artan et al. [114, 115] used

conditional random fields instead of MRF for MRI segmentation.

4.4.2. Model validation

In pattern recognition, the validation model for assessing the performance of a classifier plays an impor-

tant role in the final results. Two techniques are broadly used in the development of a CAD system and are

summarized in Table 11. The most popular technique (see Table 11) is the Leave-One-Out Cross-Validation

(LOOCV) technique. From the whole data, one patient is kept for validation and the other cases are used

for training. This manipulation is repeated until each patient has been used for validation. This technique

is popular when working with a limited number of patients, allowing to train on a representative number of

cases even with a small dataset. However, Leave-One-Out Cross-Validation (LOOCV) can suffer from large

variance and can be considered as an unreliable estimate [217].

The other technique is the k-fold Cross-Validation (k-CV) technique which is based on splitting the

dataset into k subsets where the samples are randomly selected. Then, one fold is kept for the validation

and the remaining subsets are used for training. The classification is then repeated as in the LOOCV

technique. In fact Leave-One-Out Cross-Validation (LOOCV) is a particular case of k-fold Cross-Validation

(k-CV) when k equals the number of patients. In the reviewed papers, the typical values used for k were

set to three and five. k-fold Cross-Validation (k-CV) is regarded as more appropriate than Leave-One-Out

Cross-Validation (LOOCV), but the number of patients in the dataset needs to be large enough for the

results to be meaningful.

4.4.3. Evaluation measure

Several metrics can be used in order to assess the performance of a classifier and are summarized in

Table 12. Voxels in the MRI image are classified into healthy or malign tissue and compared with a ground-

truth. This allows to compute a confusion matrix by counting true positive, true negative, false positive

and false negative samples. From this analysis, different statistics can be extracted.

The first statistic used is the accuracy which is computed as the ratio of true detection to the number of

samples. However, depending on the strategy employed in the CAD work-flow, this statistic can be highly

biased by a high number of true negative samples which will boost the accuracy score overestimating the

actual performance of the classifier.
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That is why, the most common statistic computed are sensitivity and specificity which give a full overview

of the performance of the classifier. Sensitivity is also called the true positive rate and is equal to the ratio

of the true positive samples over the true positive added with the false negative samples as shown in Eq. (5).

Specificity is also named the true negative rate and is equal to the ratio of the true negative samples over

the true negative added with the false positive samples as shown in Eq. (6).

SEN =
TP

TP + FN
, (5)

SPE =
TN

TN + FP
. (6)

These statistics can be used to compute the Receiver Operating Characteristic (ROC) curves [218]. This

analysis represents graphically the sensitivity as a function of (1 - specificity), which is in fact the false

positive rate, by varying the discriminative threshold of the classifier. By varying this threshold, more true

negative samples will be found but often at the cost of detecting more false negatives. However, this fact is

interesting in CAD since it is possible to obtain a high sensitivity and to ensure that no cancers are missed

even if more false alarms have to be investigated. A statistic derived from ROC analysis is the Area Under

the Curve (AUC) which corresponds to the area under the ROC and is a measure used to make comparisons

between models.

The ROC analysis can be classified as a pixel-based evaluation method. However, a cancer can be also

considered as a region. The Free-Response Receiver Operating Characteristic (FROC) extends the ROC

analysis but to a region-based level. The same confusion matrix can be computed were the sample are not

pixels but lesions. However, it is important to define what is a true positive sample in that case. Usually,

a lesion is considered as a true positive sample if the region detected by the classifier overlaps “sufficiently”

the one delineated in the ground-truth. However, “Sufficiently” is a subjective measure defined by each

researcher and can correspond to one pixel only. However, an overlap of 30 to 50 % is usually adopted.

Finally, in addition to the overlap measure, the Dice’s coefficient is often computed to evaluate the accuracy

of the lesion localization. This coefficient consists of the ratio between twice the number of pixels in common

and the sum of the pixels of the lesions in the ground-truth GT and the output of the classifier S, defined

as shown in Eq. (7).

QD =
2|GT ∩ S|
|GT |+ |S|

. (7)
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5. Discussion

5.1. Results reported

As discussed previously in Sect. 4.4.3, different metrics have been used to report results. A comparison

of the different methods reviewed is given depending on the metric used in field of research and also the

type of MRI scanner used (cf., 1.5 versus 3.0 Tesla). For each field, the best performances obtained in each

study were reported in these figures. The results given in terms of AUC-ROC are depicted in Fig. 9. The

results vary between 71% and 97% for some experiments with a 1.5 Tesla MRI scanner and 77% and 95%

with a 3.0 Tesla MRI scanner.

The results in regard of sensitivity and specificity are reported in Fig. 10. In the case that the data were

collected with a 1.5 Tesla MRI scanner, the sensitivity ranges from 74% to 100% and the specificity from

43% to 93%. For the experiments carried out with a 3.0 Tesla MRI scanner, the sensitivity varies from 60%

to 90% and the specificity from 66% to 99%. Four studies also use FROC analysis to report their results

and are reported in Fig. 8.

5.2. Comparison

We would like to stress the following findings drawn during the review of the different studies:

1. Quantitatively, it is difficult to make a fair comparison between the different studies reviewed. Different

factors come into play to elucidate this fact. Mainly a lack of standardization can be pointed out

in regard to experimental evaluation: (i) different datasets are used during the evaluation of the

frameworks developed hinderng a inter-study comparison. The same conclusion has been recently

drawn by [142] supporting this argument; (ii) the experimental results are not reported with a common

metric which leads to the inability to compare the different studies.

2. However, multiple studies reported some performance improvements using multi-parametric imaging

techniques instead of mono-parametric imaging techniques. Considering only the most recent studies

proposing CADe-CADx frameworks, the following results can be highlighted. Viswanath et al. [118]

obtained an AUC of 77% using an ensemble learning approach combining the features from the three

modalities T2-W-DCE-DW MRI, while the results obtained as standalone modality were ranging from

62% to 65%. Tiwari et al. [173] drawn similar conclusions by using T2-W and MRSI modalities as

both in standalone and multi-parametric frameworks with an improved AUC ranging from 57%-76%

to 85%. The most recent work of Litjens et al. [142] obtained an improved AUC metric from 71%-76%

considering each modality separately (e.g., T2-W-DCE-DW MRI) to 89% in their multi-parametric

framework.
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3. The studies comparing particular combination of more than one modality give rise to the same fact [99,

148, 116, 142]: using three modalities lead to better performances than using any combination of two

modalities.

4. Unlike the previous remark 2, no straightforward conclusions can be given regarding the performances

of each modality in a standalone framework. The modality being processed by different methods, it

does not allow us to conclude if a modality by itself is more suited than another. However, we were

able to distinguish some interesting trends which deserves the attention of the community. Tiwari et

al. in [171, 132, 173] observed that MRSI is a more suitable modality than T2-W to highlight cancers.

Moreover, ADC maps have shown a better discriminative power than T2-W as well [175, 118, 82].

Lately, Litjens et al. in [142] observed that DW modality was more suitable than both DCE and

T2-W to distinguish CaP in their CADx system.

5. Furthermore, multi-parametric has attracted the attention of both radiologists and computer vision

researchers. Indeed, pioneer research groups included new modalities over years when at the same

time, new research groups directly introduced multi-parametric CAD systems. These facts lead us to

think that CaP researches will benefit from multi-parametric imaging techniques.

6. When focusing on the different modalities used, it can be pointed out that no research reported

the use of all modalities in a single framework: MRSI is usually used as a standalone modality and

never combined with the three remaining. Nevertheless, this modality has shown some overall good

performances at the price of a lower resolution as well as an increased acquisition time. Moreover,

MRSI analysis is more complex in comparison with the other modalities. To our mind, MRSI could

contribute in a multi-parametric framework and should be fused with the other modalities.

7. Lately, three studies focused on developing a region-based classification in which PZ and CG will be

analysed separately [119, 139, 142]. The promising results were obtained which indicates that this

strategy should be further investigated.

8. Recent studies are using quantitative features in addition to SI. It seems that these quantitative features

provide uncorrelated information with respect to SI features and should lead to better performances

when combined all together.

9. Regarding the methods used in the “image regularisation” (cf., pre-processing, segmentation and

registration), it is particularly difficult to distinguish the benefit of a method over another since none

of the studies focus on making comparison of these processing stages. The focus is usually entirely

based on the “image classification” framework where different methods are directly compared. Note
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that the performance of a classifier is highly linked with the features vector extracted from particular

data. Hence, one can not conclude that a machine learning method is more appropriate than another,

but we can identify a trend in which SVM as well as ensemble learning classifiers (e.g., AdaBoost,

GentleBoost and random forest) seem to perform better than neural network, LDA or Naive Bayes.

10. We would like to draw the attention of the reader on the feature extraction/selection stage. This

processing could reduce the complexity and also find a better feature space for classification. However,

few studies are performing such approaches. Niaf et al. [121, 122] are successfully applying a scheme

to reduce the number of dimensions by selecting the most discriminative features. It allows them

to obtain improved performances compared with a classification performed with their initial feature

vector. Another group of studies also applied different feature extraction methods [145, 174, 119, 169,

170, 151, 172, 132, 173]. In these specific cases, no comparison is performed against the original data.

5.3. General discussion

This review leads to some general discussions which could direct to future avenues for research. As previ-

ously mentioned, no open multi-parametric dataset is currently available. This fact leads to an impossibility

to fairly compare the different algorithms designed over years. Also, the availability of a full multi-parametric

MRI dataset, could lead to the development of algorithms which use all the different modalities currently

available. Recalling Table 2, it can be noted that none of the current works provides a solution using at the

same time the four different modalities. Also, all the algorithms are focused on one type of scanner only,

either 1.5 Tesla and 3.0 Tesla. A dataset including both these types of imaging could allow development of

more generic algorithms.

Analysing the different stages of the CAD work-flow, it is seen that the current CAD systems do not

include all the pre-processing steps. It could be interesting to evaluate the improvement using these pre-

processing steps on the final results. Regarding segmentation and registration of the prostate, CAD systems

could greatly benefit from specific research in these areas which could lead to a better automation of those

systems. Moreover, other segmentation and registration methods not currently used in CAD systems could

also obtain better results.

Regarding the classification framework, it seems that the current well-known pattern recognition methods

have been widely studied. However, more investigations should be carried out regarding the feature detection

stage. Lately, histogram-based features have shown good capabilities in the field of computer vision and

could be further investigated. Only one study by [116] used some of these features.

An important point allowing a fair comparison between methods resides in the fact that no common

dataset, nor universal evaluation model, nor metric has been defined by the research community allowing such

comparison. This review aims to have an impact in that respect by providing a novel publicly available multi-
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parametric and multi-vendor MRI dataset (from a 1.5 Tesla General Electric scanner and a 3.0 Tesla Siemens

scanner). This dataset is available at the following website address: http://visor.udg.edu/dataset. The

dataset is composed of the four modalities discussed in this review with their corresponding ground-truth

images. For each scanner type, each subset is composed of twenty patients with cancerous lesions and ten

healthy patients, having a total of 60 patients. In addition of the repository activity, this website will aim

at providing comparison between algorithms developed by the research community.

6. Conclusion

This review has presented an overview and classification of the research related to CAD development for

CaP using multi-parametric MRI data. We aimed at providing background information regarding multi-

parametric MRI imaging techniques and a description of the work-flow in the different CAD stages. The

methods used in the literature for each of these stages have been reviewed along with the available results of

the CAD systems. Moreover, insight discussions and possible future research directions have also been given.

Finally, a multi-parametric multi-vendor dataset has been made available to the research community in order

to provide a standardised platform for CAD development and evaluation for CaP using multi-parametric

MRI.
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Table 1: Overview of the features associated with each MRI modality used for medical diagnosis by radiologists. Acronyms: Prostate Cancer

(CaP) - Signal Intensity (SI) - Gleason Score (GS).

Modality Significant features CaP Healthy tissue
GS

correlation

T2-W MRI

SI low-SI in PZ [51]
intermediate to high-SI in PZ [51]

+ [53]Shape
round or ill-defined mass in

PZ [8]

SI low-SI in CG [52, 50]
low-SI in CG [52, 50]

Shape
homogeneous mass with

ill-defined edges in CG [52, 50]

T2 map SI low-SI [58, 61] intermediate to high-SI [58, 61] + [57, 58, 59]

DCE MRI

Semi-quantitative features [62]:

− wash-in faster slower 0

− wash-out faster slower 0

− integral under the curve higher lower 0

− maximum signal intensity higher lower 0

− time-to-peak enhancement faster slower 0

Quantitative features (Tofts’

parameters [65]):

− kep higher lower 0

− Ktrans higher lower 0

DW MRI SI higher-SI [74, 50] lower-SI [74, 50] +

ADC map SI low-SI [50] high-SI [50] + [80, 81, 82]

MRSI

Metabolites:

Citrate (2.64 ppm) [88] lower concentration [83, 84, 86] higher concentration [83, 84, 86] + [85]

Choline (3.21 ppm) [88] higher concentration [83, 84, 86] lower concentration [83, 84, 86] 0 [85]

Spermine (3.11 ppm) [88] lower concentration [83, 84, 86] higher concentration [83, 84, 86] + [85]

Notes:

+ = significantly correlated.

0 = no correlation.
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Table 2: Overview of the different studies reviewed with their main characteristics. Acronyms: number (#) - image regularization (Img. Reg.).

Index Study
# MRI-modality Strength of field Studied zones CAD stages

patients
T2-W

MRI

DCE

MRI

DW

MRI
MRSI 1.5 T 3.0 T PZ CG

Img.

Reg.
CADe CADx

[101] Ampeliotis et al. (2007) 25 3 3 7 7 3 7 3 7 3! 7 3
[102] Ampeliotis et al. (2008) 25 3 3 7 7 3 7 3 7 3! 7 3
[182] Antic et al. (2013) 53 3 7 3 7 3 7 3 3 7 7 3
[114] Artan et al. (2009) 10 3 3 3 7 3 7 3 7 7 3 3
[115] Artan et al. (2010) 21 3 3 3 7 3 7 3 7 3! 3 3
[13] Chan et al. (2013) 15 3 7 3 7 3 7 3 7 7 7 3
[163] Giannini et al. (2013) 10 3 3 3 7 3 7 3 7 3 3 3
[128] Kelm et al. (2007) 24 7 7 7 3 3 7 3 3 3! 3 3
[175] Langer et al. (2009) 25 3 3 3 7 3 7 3 7 3! 7 3
[148] Litjens et al. (2011) 188 3 3 3 7 7 3 3 7 3! 3 3
[139] Litjens et al. (2012) 288 3 3 3 7 7 3 3 3 3! 3 3
[142] Litjens et al. (2014) 347 3 3 3 7 7 3 3 3 3! 3 3
[166] Liu et al. (2009) 11 3 3 3 7 3 7 3 7 3! 3 3
[116] Liu et al. (2013) 54 3 3 3 7 7 3 3 3 3! 7 3
[104] Lopes et al. (2011) 27 3 7 7 7 3 7 3 7 3! 3 3
[111] Lv et al. (2009) 55 3 7 7 7 3 7 3 7 3! 7 3
[135] Matulewicz et al. (2013) 18 7 7 7 3 7 3 3 3 7 3 3
[167] Mazzetti et al. (2011) 10 7 3 7 7 3 7 3 7 3! 3 3
[121] Niaf et al. (2011) 23 3 3 3 7 3 7 3 7 3! 7 3
[122] Niaf et al. (2012) 30 3 3 3 7 3 7 3 7 3! 7 3
[98] Ozer et al. (2009) 20 3 3 3 7 3 7 3 7 3! 3 3
[99] Ozer et al. (2010) 20 3 3 3 7 3 7 3 7 3! 3 3
[126] Parfait et al. (2012) 22 7 7 7 3 7 3 3 3 3! 3 3
[82] Peng et al. (2013) 48 3 3 3 7 7 3 3 3 7 7 3
[136] Puech et al. (2009) 100 7 3 7 7 3 7 3 3 7 7 3
[168] Sung et al. (2011) 42 7 3 7 7 7 3 3 3 7 3 3
[169] Tiwari et al. (2007) 14 7 7 7 3 3 7 3 3 3! 3 3
[170] Tiwari et al. (2008) 18 7 7 7 3 3 7 3 3 3! 3 3
[151] Tiwari et al. (2009) 18 7 7 7 3 3 7 3 3 3! 3 3
[171] Tiwari et al. (2009) 15 3 7 7 3 3 7 3 3 3! 3 3
[172] Tiwari et al. (2010) 19 3 7 7 3 3 7 3 3 3! 3 3
[132] Tiwari et al. (2012) 36 3 7 7 3 3 7 3 3 7 3 3
[173] Tiwari et al. (2013) 29 3 7 7 3 3 7 3 3 3! 3 3
[174] Viswanath et al. (2008) 16 3 7 7 3 3 7 3 3 7 3 3
[145] Viswanath et al. (2008) 6 3 3 7 7 7 3 3 3 3! 3 3
[110] Viswanath et al. (2009) 6 3 3 7 7 7 3 3 3 3 3 3
[118] Viswanath et al. (2011) 12 3 3 3 7 7 3 3 3 3! 3 3
[119] Viswanath et al. (2012) 22 3 7 7 7 7 3 3 3 3 3 3
[137] Vos et al. (2008) 29 3 3 7 7 3 7 3 7 3! 7 3
[138] Vos et al. (2008) 29 7 3 7 7 3 7 3 7 3! 7 3
[164] Vos et al. (2010) 29 3 3 7 7 3 7 3 7 3! 7 3
[149] Vos et al. (2012) NA 3 3 3 7 7 3 3 7 3! 3 3

Notes:

7: not used or not implemented.

3!
: partially implemented.

3: used or implemented.



Table 3: Overview of the pre-processing methods used in CAD systems.

Pre-processing operations References

MRI pre-processing:

Noise filtering:

Median filtering [98, 99]

Wavelet-based filtering [101, 102, 104]

Bias correction:

Parametric methods [111, 110]

Non-parametric methods [118]

Standardization:

Statistical-based normalization: [114, 115, 111, 98, 99, 110,

118, 119]

Organ SI-based normalization [121, 122]

MRSI pre-processing:

Phase correction [126]

Water and lipid residuals filtering [128]

Baseline correction [126, 132]

Frequency alignment [132]

Normalization [126]

Table 4: Overview of the segmentation methods used in CAD systems.

Segmentation methods References

MRI-based segmentation:

Manual segmentation [114, 115, 135, 121, 122, 98,

99, 136, 137, 138, 164, 149]

Region-based segmentation [139, 142]

Model-based segmentation [148, 145, 110, 118, 149]

MRSI-based segmentation:

Clustering [151]

45



Table 5: Classification of the different registration methods used in the CAD systems reviewed. Acronyms: gradient descent

(GD), Nelder-Mead (NM).

Study Modality
Type

Geometric model Similarity measure Optimizer

index registered Affine Elastic MSE MI CMI GD L-BFGS-B

[101, 102] T2-W - DCE 2D 3 − 3 − − − −

[163] T2-W - DW 2D 3 3 − − − − −

[163] T2-W - DCE 2D 3 3 − 3 − 3 −

[145, 110] T2-W - DCE 2D 3 − − 3 − − −

[118] T2-W - DCE - DW 3D 3 − − − 3 3 −

[137] T2-W - DCE 3D 3 − − 3 − − −

[164] T2-W - DCE 3D 3 3 − 3 − − 3

Notes:

−: not used or not mentioned.

3: used or implemented.

Table 6: Overview of the CADe strategies employed in CAD systems.

CADe: ROIs selection strategy References

All voxels-based approach [114, 115, 163, 128, 166, 104,

135, 167, 98, 99, 126, 168,

169, 170, 151, 171, 172, 132,

173, 174, 145, 110, 118, 119]

Lesions candidate detection [148, 139, 142, 149]
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Table 7: Overview of the feature detection methods used in CAD systems.

Feature detection methods Indexes

MRI image:

Voxel-wise detection

Intensity-based 3- -[101, 102, 137]

- - 3[163]

3- 3[114, 115, 13, 175, 148, 139, 142, 166, 98, 99]

333[121, 122]
Edge-based

Prewitt operator 3- -[171, 172, 173, 174]

Sobel operator 3- -[171, 172, 173, 174, 110, 118, 119]

333[121, 122]

Kirsch operator 3- -[171, 172, 173, 174, 110, 118, 119]

333[121, 122]

Gabor filtering 3- -[132, 174, 119]
Texture-based

Haralick features 3- -[182, 171, 172, 173, 174, 110, 119]

33-[118]

333[139, 121, 122]

Fractal analysis 3- -[104, 111]

DCT 333[13]

Wavelet-based features 3- -[119]

Gaussian filter bank 3- -[142]
Position-based [13, 148, 139, 142]

Region-wise detection

Statistical-based

Percentiles - 3-[138]

- - 3[182, 82]

33-[164]

333[148, 139, 142, 121, 122, 149]

Statistical-moments 3- -[101, 102, 171, 172, 173, 174, 110, 119]

- - 3[182]

33-[118]

3- 3[82]

333[148, 139, 142, 121, 122]
Histogram-based

PDF 333[116]

HOG 333[116]

Shape context 333[116]

LBP 333[116]
Anatomical-based [139, 142, 135]

DCE signal:

Whole spectra approach [101, 102]

Semi-quantitative approach 3!
[136]

[167, 121, 122, 168]
Quantitative approach

Toft model 3!
[116? ]

[163, 175, 148, 139, 142, 167, 121, 122]

Brix model 3!
[114, 115, 98, 99]

[166, 168]
Weibull function [163, 167]
PUM [163, 167]

MRSI signal:

Whole spectra approach [128, 135, 126, 169, 170, 151, 171, 172, 173, 174]
Quantification approach [128, 126]
Wavelet-based approach [132]

Notes:

( 3|- 3|- 3|- ): triplet stating the implementation or not of the feature for respectively T2-W-MRI images, DCE-MRI images, DW-MRI

images.

3: used or implemented.

3!: partially implemented.



Table 8: Parameters used as features for a DCE semi-quantitative analysis in CAD systems.

Semi-quantitative features Explanations

Amplitude features:

S0 Amplitude at the onset of the enhancement

Smax Amplitude corresponding to 95% of the maximum amplitude

Sp Amplitude corresponding to the maximum amplitude

Sf Amplitude at the final time point

Time features:

t0 Time at the onset of the enhancement

tmax Time corresponding to 95% of the maximum amplitude

tp Time corresponding to the maximum amplitude

tf Final time

ttp Time to peak which is the time from t0 to tp

Derivatives and integral features:

WI Wash-in rate corresponding to the signal slope from t0 to tm or tp

WO Wash-out rate corresponding to the signal slope from tm or tp to tp

IAUC Initial area under the curve which is the area between t0 to tf

Table 9: Overview of the feature selection and extraction methods used in CAD systems.

Dimension reduction methods References

Feature selection:

Statistical test [121, 122, 149]

MI-based methods [121, 122, 137]

Feature extraction:

Linear mapping

PCA [170, 151]

Non-linear mapping

Laplacian eigenmaps [169, 171, 151, 172, 174, 118]

LLE and LLE-based [170, 151, 145, 174]
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Table 10: Overview of the classifiers used in CAD systems.

Classifier References

Rule-based method: [111, 136]

Clustering methods:

k-means clustering [169, 170, 151]

k-NN [139, 121, 122]

Linear model classifiers:

LDA [182, 13, 142, 121, 122, 149]

Logistic regression [128, 175]

Non-linear classifier:

QDA [119]

Probabilistic classifier:

Naive Bayes [163, 167, 121, 122]

Ensemble learning classifiers:

AdaBoost [142, 104]

Random forest [128, 142, 132, 173, 110]

Probabilistic boosting tree [151, 172, 132]

Kernel method:

Gaussian processes [128]

Sparse kernel methods:

SVM [114, 115, 13, 148, 139, 116, 104,

121, 122, 98, 99, 126, 82, 168, 132,

137, 138, 164, 149]

RVM [98, 99]

Neural network:

Multiple layer perceptron [135, 126]

Probabilistic neural network [101, 102, 118]

Graphical model classifiers:

Markov random field [166, 99]

Conditional random field [114, 115]
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Table 11: Overview of the model validation techniques used in CAD systems.

Model validation techniques References

LOOCV [101, 102, 182, 114, 115, 13, 163, 128, 139,

142, 167, 121, 122, 98, 99, 82, 136, 173,

118, 137, 137, 164]

k-CV [148, 126, 151, 171, 172, 132, 119, 110,

149]

Table 12: Overview of the evaluation metrics used in CAD systems.

Evaluation metrics References

Accuracy [114, 115, 166, 168, 132]

Sensitivity - Specificity [114, 115, 163, 166, 104, 167, 98, 99, 126,

82, 170, 151, 174, 145]

ROC - AUC [102, 182, 13, 163, 128, 175, 116, 104, 111,

135, 167, 121, 122, 82, 171, 172, 132, 173,

110, 118, 119, 137, 138, 164]

FROC [148, 139, 149]

Dice’s coefficient [114, 115, 166, 98]
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Pre-processing

Segmentation

Registration

Image regularization

Features
detection

ROIs
detection/selection

Features
selection/extraction

Features
classification/fusion

CADe

CADx

Regularized data

T2-W MRI

T2 map

DCE MRI

DW MRI

ADC

MRSI

Figure 1: Common CAD framework based on MRI images used to detect CaP.

(a) T2-W-MRI slice of an healthy

prostate acquire with a 1.5 Tesla MRI.

The blue contour represents the CG

while the PZ corresponds to the green

contour.

(b) T2-W-MRI slice of a prostate with

a CaP highlighted in the PZ using a

3.0 Tesla MRI scanner.

(c) T2-W-MRI slice of a prostate with

a CaP highlighted in the CG using a

3.0 Tesla MRI scanner.

Figure 2: Rendering of T2-W-MRI prostate image with both 1.5 and 3.0 Tesla MRI scanner.
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Figure 3: Illustration of: (a) T1-W-MRI image and (b) typical enhancement signals observed in DCE-MRI analysis collected

with a 3.0 Tesla MRI scanner. The red curve is typical from CaP while the green curve is characteristic of healthy tissue.

(a) (b)

Figure 4: Illustration of: (a) DW-MRI and (b) ADC map. The signal intensity corresponding to cancer are inversely correlated

on these two types of imaging techniques. The cancer is highlighted in red.

(a) (b)

Figure 5: Illustration of an MRSI spectrum both (a) healthy and (b) cancerous voxel with a 3.0 Tesla MRI. The highlighted

areas corresponds to the related concentration of the metabolites which is computed by integrating the area under each peak.

Acronyms: Choline (Cho), Spermine (Spe), Creatine (Cr) and Citrate (Cit).
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Figure 6: Typical framework involved to solve the registration problem.
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Figure 7: Graphical representation of the different semi-quantitative features used for DCE-MRI analysis.

Figure 8: Comparison in terms of FROC of the methods using data from 3.0 Tesla MRI scanner.
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Figure 9: Numerical and graphical comparison of the results in terms of AUC for 1.5 and 3.0 Tesla MRI scanners.

The green value represents the metric and are graphically reported in the green curve in the center of the figure.

The red value and areas correspond to the number of patients in the dataset. The numbers between brackets in

blue correspond to the reference as reported in Table 2.
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Figure 10: Numerical and graphical comparison of the results in terms of sensitivity (a), (c) and specificity (b), (d)

for 1.5 and 3.0 Tesla MRI scanners. The value in green represents the metric and are graphically reported in

the green curve in the center of the figure. The red value and areas correspond to the number of patients in the

dataset. The numbers between brackets in blue correspond to the reference as reported in Table 2.
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