N

N

Optical Flow with Theoretically Justified Warping
Applied to Medical Imaging
Anke Meyer-Baese, Joan Massich, Guillaume Lemaitre, Mojdeh Rastgoo

» To cite this version:

Anke Meyer-Baese, Joan Massich, Guillaume Lemaitre, Mojdeh Rastgoo. Optical Flow with The-
oretically Justified Warping Applied to Medical Imaging. Breast Image Analysis Workshop (BIA),
Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015, Oct 2015, Munich,
Germany. hal-01235869

HAL Id: hal-01235869
https://u-bourgogne.hal.science /hal-01235869
Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://u-bourgogne.hal.science/hal-01235869
https://hal.archives-ouvertes.fr

Optical Flow with Theoretically Justified
Warping Applied to Medical Imaging

Anke Meyer-Baese, Joan Massich, Guillaume Lemaitre and Mojdeh Rastgoo

No Institute Given

Abstract. Motion induced artifacts represent a major obstacle in the
correct malignant lesion detection in medical imaging especially in MRI.
The goal of this paper is to evaluate the performance of a new non-rigid
motion correction algorithm based on the optical flow method. The pro-
posed algorithm specifically addresses three major problems in MRI: the
induced gaps in 3D images, the constancy assumption of current optical
flow algorithms and the existence of large non-linear movement. In this
paper, we compare the performance of extracted kinetic features from
the tumor regions under consideration of several 2-D or 3-D motion com-
pensation parameters for the differential diagnosis of enhancing lesions
in breast MRI. Based on several simulation results, we determined the
optimal motion compensation parameters and showed that the proposed
motion compensation algorithm can improve the correct lesion detection.

Keywords: Optical Flow, Medical Imaging, MRI, Motion Compensa-
tion

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents
an established method for the detection and diagnosis of breast lesions. However
to obtain a correct localization of the lesions in these images is quite challeng-
ing since motion artifacts and changes in the breast shape are quite common
during this procedure. An elastic matching algorithm represents an important
prerequisite for the registration of dynamic MR image series. Therefore, spatial
registration has to be performed before enhancement curve analysis. Due to the
elasticity and heterogeneity of breast tissue, only nonrigid image registration
methods are suitable. Although there has been a significant amount of research
on non-rigid motion compensation techniques in brain imaging, few methods
have been so far proposed for breast MRI. Most proposed techniques employ
physically motivated deformation models [3,4], transformations based on the
deformation of B-splines [5, 6], elastic transformations [7,8] and more recently
adaptive grid generation algorithms [9].

In this paper, we develop a novel motion compensation algorithm to reduce
these motion artifacts as is exemplarily shown in Figure 1. Further to test the ap-
plicability of this algorithm in computer-aided diagnosis, we will extract kinetic
features from the lesions and evaluate the impact of the motion compensation
algorithm on the automated tumor detection.
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2 A. Meyer-Baese et al.

Fig. 1. Removing bright stripes from the difference image by motion compensation. (a)
Top left: frame 1 of 5 post-contrast images. (b)Top right: frame 4 of 5 post-contrast
images. (¢) Middle: Computed motion. The color depicts the direction of movement,
the brightness the (relative) velocity. (d) Colorcode of movement. The color depicts
the direction of movement, the brightness the (relative) velocity. For a better visibility,
the brightness is normed. (e¢) Bottom left: difference image (b) - (a) without motion
compensation. (f) Bottom right: difference image (b)-(a) with motion compensation.
Parameters: o = 1.8, u = 100, A = —50;

Proc. MICCAI-BIA 2015

90



Real-Time Optical Flow Applied to Medical Imaging 3

2 Optical Flow of Horn & Schunck and Improvements in
Data and Smoothness Term

Mathematically, a 3D MR image f is a continuous function from the bounded
domain §2 C IR? to the real numbers

f:02 -1, (1)

where the gray values f(z,y, z) describe the brightness of one voxel and corre-
spond to the detected spin echo at this place. For the computation of the optical
flow we use the method of Horn & Schunck [10], since it overcomes the aperture
problem, provides sub pixel accuracy and has proven to provide good results in
[16] and can easily be adapted and enhanced [2]. The original model has been
developed for 2D and is extended here to for the 3D case.

The basic method of Horn & Schunck works very well with standard optic
flow problems [10], but it can be improved by adapting the data and smoothness
term in a given application [12,14]. As indicated above one can replace the
constancy assumption of the gray values by the same assumption about the image
gradient which makes the data term independent of global intensity changes.
Furthermore it is possible to adapt the smoothness term when there is some
apriori knowledge about the expected motion. Until now we have expected any
motion to be smooth, because it is unlikely that adjacent voxels are moving
completely in different directions. Additionally, we know that no part of the
regular breast tissue is supposed to disappear or to be generated during the
MRI and since regular tissue is highly elastic we would like to penalize non-
divergence-free flow fields. This can be done by adding an additional smoothness
term, (div(u,v,w)T)? = (uy + vy +w,)*

B(w.ow) = [ wI(f)u+ u(Vaf? + Vo + [Tup) o
2
+ (A + 1) (ug + vy + w,)?drdydz.

J represents the motion tensor. The first term on the right hand side of
the equation represents the linearized data term while the second describes a
penalizer for roughness and the third one for divergence. In order to find the
minimizers of our new functional (2), we have to solve the corresponding Euler-
Lagrange equations again, which are also known as the Navier-Lamé equations
or the strong form of the elasticity equations [15].

The approach with this elastic regulariser has proven to lead to good results
in registering images, especially in MR images.

3 Challenges and Corresponding Solutions of the
Standard Model

A non-rigid motion compensation algorithm in breast MRI has to overcome three
major obstacles in order to be applicable in the clinical environment.
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The first problem simply is a limitation due to the MRI technology. A 3D
image consists of many consecutive 2D slices ¢ (f(,-,¢)) that are taken one after
another and quite often the boundaries of these slices are not matching each
other perfectly. These induced gaps in the 3D image can lead to a degradation
in quality of the motion field when one tries to compute the flow across adja-
cent slices. Assuming an insignificant motion in the z direction, we simplify the
functional (2).

The next problem arises from injecting the contrast agent. Especially in the
tumor region, where we want the most exact movement computation, the con-
stancy assumption is failing. Since the tumor is uptaking faster the contrast
agent than the surrounding tissue, the tumor is suddenly appearing and there-
fore this is violating any kind of local constancy assumption. This can be solved
by masking the tumor region so that the data term is not a factor in this area.

The optical flow obtained for the masked regions is only depending on the
movement of the surrounding tissue due to the filling in effect guaranteed by the
smoothness term. This is a good approximation since the displacement of the
tumor depends directly on the movement of the whole breast, and the resulting
flow field in this area is smooth and almost divergence-free (see Figure 2).

The last problem that can be noticed is the linearisation of the data term
by a Taylor expansion. If we consider the fact that large non-linear movement is
possible, the Taylor expansion is not precise enough and this yields an inaccu-
rate data term. To avoid this we don’t linearize the constancy assumption and
keep the original quadratic term. This results in a possibly non-convex energy
functional and therefore the minimization is no longer trivial due to possible
multiple local minima. We address this problem by using a warping strategy.
This means we consider our minimization problem on a coarse scale where a lin-
earisation makes sense again because large movements become small movements
on a coarse grid. There we solve it in the common way and use the solution to
compensate the movement on this grid. Then we warp this image back to the
next finer grid where we compute the motion again. We continue like this until
we reach the finest, the original resolution. This strategy brings us step by step
closer to the global minimum.

4 Evaluation of the Motion Compensation Technique in
Breast MRI Lesion Diagnosis

The database consists of 63 patients, all female and age range 42-73, and has 66
solid breast tumors. Histologic findings were malignant in 30 and benign in 36
lesions. Tumors were classified as diagnostically challenging lesions as both foci
and non-mass-enhancing lesions. Lesion size was derived from mammography
images. Mean size of malignant lesions was 1.3 cm and mean size of benign lesions
was 1.2 cm. MRI was performed with a 1.5 T system (Magnetom Vision, Siemens,
Erlangen, Germany) with two different protocols equipped with a dedicated
surface coil to enable simultaneous imaging of both breasts.
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Fig. 2. Masking of regions. (a) Top left: frame 3 of post-contrast series with mask.
(b) Top right: segmented tumor. (c) Bottom left: flow computed without mask.
Bottom right: flow computed with mask. Parameters: o = 1.8, u = 500, 0 = —500
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Motion compensation is followed by the image segmentation where each MR
image has to be segmented into two regions, the region of interest (ROI), i.e. the
voxels belonging to the tumor, and the background. We are using an interactive
region growing algorithm that creates a binary mask for the tumor and its sur-
roundings. The image used for the region growing algorithm was the difference
image of the second post-contrast image and the native pre-contrast image.

For each lesion we extract kinetic features representing the slope of the rel-
ative signal intensity enhancement (RSIE). In [11] was shown that the shape of
the time-signal intensity curve represents an important criterion in differenti-
ating benign and malignant enhancing lesions in DCE-MR imaging. Since this
feature has already proven it’s descriptive power we are using it in the evaluation
of motion correction. We use different classification methods [17, 18] to evaluate
the effect of motion compensation to breast MRI images as shown in Table 1.

LDA |Linear Discriminant Analysis.

NLDA |Naive Bayes Linear Discrimant Analysis.

QDA |Quadratic Discriminant Analysis.

NQDA |Naive Bayes Quadratic Discriminant Analysis.
FLD |Fisher’s Linear Discriminant Analysis.

PK SSVM Classification with a Polynomial Kernel.
RBF |SVM Classification with a Radial Basis
Function.

PUK |SVM Classification with a Pearson VII
Universial Function Kernel.

Table 1. Classifiers employed for lesion classification.

Table 2 shows the results for different classifiers and kinetic features described
by the slope of the RSIE when applied to tumor classification. The results reveal
that motion compensation based on the proposed algorithm has the power to
significantly improve lesion detection in breast MRI.

| mot. comp. parameter  [[LDA QDA FLD[PK NPK RBF PUK]|
| no compensation [71.6 71.6 71.3]64.2 47.9 71.3 70.1]

o=1,1=100,\=-100|67.2 70.1 72.4[64.2 47.9 70.1 68.7
2Djo =1, =100,A = =50 [[76.1 73.1 76.1(64.2 47.9 76.1 74.6
o=3,u=100,A = —100|| 73.1 74.1 74.1|73.1 55.0 74.1 73.9
o=3,0=100,\=-=50 ||79.5 76.1 75.6|75.6 47.9 79.5 79.5

o=1,4=100,A = —100|[ 76.3 74.6 74.6|72.4 47.9 74.6 73.1
3Dl =1, =100, = —50 ||67.2 70.1 61.2|76.1 48.5 74.6 73.1
o=3,u=100,A = —100{/70.1 72.1 61.2(61.9 47.9 74.6 73.1
o =3, =100,A = =50 |[68.7 66.0 72.1|58.2 47.9 68.7 66.0
Table 2. AUC for the classifiers applied to the slope of the RSIE
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5 Conclusion and Discussion

Breast MRI reading is often affected by motion artifacts of different grades. Mo-
tion compensation becomes therefore imperative in the clinical environment of
breast MRIs in order to improve the diagnostic value of mammography reading.
We developed a new motion compensation algorithm based on the Horn and
Schunck method that addresses the necessary requirements for application in
MRI and determined the optimal parameters for lesion diagnosis when kinetic
features were considered. The optimal motion correction results were achieved for
motion compensation in two directions for mostly small standard deviations of
the Gaussian kernel and smoothing parameter. An explanation of this behavior
is because the induced gaps in the three-dimensional images lead to a degrada-
tion of the motion field when the flow is computed across adjacent slides. The
performed ROC-analysis shows that an integrated motion compensation step in
a CAD system represents a valuable tool for supporting radiological diagnosis
in dynamic breast MR imaging.

References

1. S. Behrens, H. Laue, T. Boehler, B. Kuemmerlen, H. Hahn, and H. O. Peitgen.
Computer assistance for mr based diagnosis of breast cancer: Present and future
challenges. Computerized Medical Imaging and Graphics, 31:236-247, 2 2007.

2. Andrés Bruhn, Joachim Weickert, Christian Feddern, Timo Kohlberger, and
Christoph Schnorr. Variational optical flow computation in real time. Image Pro-
cessing, IEEE Transactions on, 14(5):608-615, 2005.

3. A. Hill, A. Mehnert, S. Crozier, and K. McMahon. Evaluating the accuracy and
impact of registration in dynamic contrast-enhanced breast mri. Concepts in Mag-
netic Resonance Part B, 35B:106-120, 2 2009.

4. W. Crum, C. Tanner, and D. Hawkes. Anisotropic multi-scale fluid registration:
evaluation in magnetic resonance breast imaging. Physics in Medicine and Biology,
50(4):5153-5174, 2005.

5. T. Rohlfing, C. Maurer, D. Bluemke, and M. Jacobs. Volume-preserving nonrigid
registration of MR breast images using free-form deformation with an incompress-
ibility constraint. Medical Imaging, IEEE Transactions on, 22(2):730-741, 2003.

6. D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Nonrigid reg-
istration using free-form deformations: Application to breast MR images. Medical
Imaging, IEEE Transactions on, 18(2):712-721, 1999.

7. R. Lucht, S. Delorme, J. Heiss, M. Knopp, M. A. Weber, J. Griebel, and G. Brix.
Classification of Signal-Time Curves Obtained by Dynamic-Magnetic Resonance
Mammography. Artificial Intelligence, 114(6):125-156, 1999.

8. P. Hayton, M. Brady, S. Smith, and N. Moore. A non-rigid registration algorithm
for dynamic breast MR images. Investigative Radiology, 40(7):442-447, 2005.

9. M. Chu, H. Chen, C. Hsieh, T. Lin, H. Hsio, L. Liao, and Q. Peng. Adaptive
Grid Generation Based Non-rigid Image Registration using Mutual Information
for Breast MRI. Journal of SIGNAL PROCESSING SYSTEMS for Signal, Image,
and Video Technology, 3:45-63, 2009.

10. Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial
Intelligence, 17(1-3):185 — 203, 1981.

Proc. MICCAI-BIA 2015

95



