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Abstract. As long as breast cancer remains the leading cause of cancer
deaths among female population world wide, developing tools to assist
radiologists during the diagnosis process is necessary. However, most of
the technologies developed in the imaging laboratories are rarely inte-
grated in this assessing process, as they are based on information cues
differing from those used by clinicians. In order to grant Computer Aided
Diagnosis (CAD) systems with these information cues when performing
non-aided diagnosis, better segmentation strategies are needed to auto-
matically produce accurate delineations of the breast structures. This
paper proposes a highly modular and flexible framework for segmenting
breast tissues and lesions present in Breast Ultra-Sound (BUS) images.
This framework relies on an optimization strategy and high-level de-
scriptors designed analogously to the visual cues used by radiologists.
The methodology is comprehensively compared to other sixteen pub-
lished methodologies developed for segmenting lesions in BUS images.
The proposed methodology achieves similar results than reported in the
state-of-the-art.
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1 Introduction

Breast cancer is the second most common cancer. In terms of mortality, breast
cancer is the fifth most common cause of cancer death. However, it is ranked as
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the leading cause of cancer deaths among females in both western and econom-
ically developing countries [4].

Medical imaging contributes to its early detection through screening pro-
grams, non-invasive diagnosis, follow-up, and similar procedures. Despite Breast
Ultra-Sound (BUS) imaging not being the imaging modality of reference for
breast cancer screening [9], Ultra-Sound (US) imaging has more discriminative
power when compared with other image modalities to visually differentiate be-
nign from malignant solid lesions [10]. In this manner, US screening is estimated
to be able to reduce between 65 ∼ 85% of unnecessary biopsies, in favour of a
less traumatic short-term screening follow-up using BUS images. As the stan-
dard for assessing these BUS images, the American College of Radiology (ACR)
proposes the Breast Imaging-Reporting and Data System (BI-RADS) lexicon
for BUS images [7]. This US BI-RADS lexicon is a set of standard markers
that characterizes the lesions encoding the visual cues found in BUS images and
facilitates their analysis. Further details regarding the US BI-RADS lexicon de-
scriptors proposed by the ACR, can be found in Sect. 3, where visual cues of
BUS images and breast structures are discussed to define feature descriptors.

The incorporation of US in screening policies and the emergence of clinical
standards to assess image like the US BI-RADS lexicon, encourage the devel-
opment of Computer Aided Diagnosis (CAD) systems using US to be applied
to breast cancer diagnosis. However, this clinical assessment using lexicon is not
directly applicable to CAD systems. Shortcomings like the location and explicit
delineation of the lesions need to be addressed, since those tasks are intrinsically
carried out by the radiologists during their visual assessment of the images to
infer the lexicon representation of the lesions. Therefore, developing accurate
segmentation methodologies for breast lesions and structures is crucial to take
advantage of this already validated clinical tools.

2 Description of the segmentation methodology

Optimization methodologies offer a standardized manner to approach segmen-
tation by minimizing an application-driven cost function [2]. Figure 1 illustrates
a generic representation of the segmentation strategy, concrete examples of its
terms, applied to BUS, can be found in section 3. The overall segmentation can
be seen as a three-steps strategy: (1) a mapping of the image into a discrete
set of elements S, (2) the optimization stage which is formulated as a metric
labelling problem, and (3) a re-mapping the labels obtained from the previous
stage to produce the final delineation.

To formulate segmentation as a metric labelling problem, the image is con-
ceived as a discrete set of elements S that need to be labelled using a label l
from the labelling set L. Let W be all the possible labelling configurations of
the set S, given L. Let U(·) be a cost function encoding the goodness of the la-
belling configuration ω ∈ W based on the appearance of the elements in S, their
inner relation and some designing constraints. Then, the desired segmentation
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Fig. 1: Conceptual block representation of the segmentation methodology.

ω̂ corresponds to the labelling configuration that minimizes this cost function,
as described in Eq. (1).

ω̂ = argmin
ω

U(ω) (1)

This goodness measure U(·) must be defined to take into account the appear-
ance of the target region, its relation with other regions, and other designing
constraints. Equation (2) describes this cost function as the combination of two
independent costs that need to be simultaneously minimized as a whole.

U(ω) =
∑
s∈S

Ds(ωs) +
∑
s∈S

∑
r∈Ns

Vs,r(ωs, ωr) (2)

Where, the left-hand side of the expression integrates the so-called data term,
while the right-hand side integrates the pairwise term, which is also referred to as
the smoothing term. Both terms are shaped by S and evaluated in the labelling
space W. In our quest to optimize the cost function U(·), it is required to define
a representation for the set S, a data term D(·), a pairwise term V (·), and a
proper minimization methodology.

The set S can be, in general, any discrete set representing the image (i.e. pixels,
overlapping or non overlapping windows, super-pixels, etc.).

The data term D(·), given a label configuration ω ∈ W, penalizes the labelling
of a particular image element or site (ωs = l) based on the data associated to
s. In this manner, Ds(ωs = l3) << Ds(ωs = l7). Figure 2b illustrates the data
cost associated to some arbitrary labelling configurations to clarify the desired
effect (or behaviour) of this data term. Designing an obscure heuristic to comply
with the desired behaviour of D(·) out of the box, is rather a complicated task.
Therefore, an easier and cleaner approach is to design this data term D(·) with
the help of Machine Learning (ML) because it provides a systematic process that
is flexible enough to encode any desired behaviour based on a training stage. This
concept is in fact depicted in the upper row in Fig. 1. For each site s ∈ S, features



describing s are designed. Then, different optional steps can be applied to this
set of features: (i) features normalization, (ii) features selection or (iii) features
extraction. Finally, the data term D(·) is encoded based on ML classifiers, the
features and a training step. Thus, the data term D(·) can be seen as a distance
or goodness measure reflecting the likelihood for s to belong to class l.

The pairwise term V (·, ·) represents the cost associated to ωs taking into account
the labels of its neighboring sites, ωr, r ∈ Ns. This term is usualy modeled using
Markov Random Fields (MRFs) or Conditional Random Fields (CRFs). The
typical form of this term, given in Eq. (3), is called homogenization which acts
as a regularization factor favouring configurations that have a coherent labelling.

Vs,r(ωs, ωr) =

{
β, if ωs 6= ωr

0, otherwise
(3)

Figure 2c shows a visual interpretation of this cost. The more fragmented is
the segmentation ω, the higher is the overall pairwise term, since every boundary
brings a penalization β to the total cost U(ω). In this manner, the regularization
term can be seen as a post-processing or denoising stage as some sites will flip
their labelling if the cost of fragmenting the regions is larger than the cost of
adopting their neighbour’s label.

The minimization strategy is determined by the nature of U(·) and W, since not
all the minimization strategies are applicable or adequate to find ω̂. The size of
the labelling space |W| = |L||S|, discontinuities in U(ω) along W or the problem
of local minima, additionally all the particular of all the different minimization.
Need to be taken into account while choosing the most desirable minimization
strategy.

3 BUS images segmentation using optimization

In this section, the problem of delineating structures in BUS images is defined
as an optimization problem that can be solved by applying the framework pre-
sented in Sect. 2. The segmentation here proposed aims at tying a label l ∈ L
(i.e. {lesion, lesion} or {chest wall, lungs, . . . , lesion}) to each element of S by
simultaneously optimizing the data and pairwise terms as illustrated in Fig. 2.
Choices made regarding different elements: the representation S, the data term
D(·), the pairwise term V (.), and the optimizer choice are summarized in Table 1
and justified thereafter (see Fig. 1 for reference).

S is considered the result from an over-segmentation of the image using
Quick-shift super-pixel [1]. The structures of the breast and their rendering when
using a hand-held 2D US probe are sketched in Fig. 3a. Figure 3b illustrates
the lexicon proposed by the ACR [7] and used by clinicians to perform their
diagnosis. Thus, our aim is to generate a set of computer vision features which is
able to encode the characteristic described in the lexicon. The selected features
are as follows:



Background Chest wall Pectoral muscle Adipose tissue Lesion

Air (or lungs) Rib Fibro-glandular tissue Skin Edge

Fig. 2:
a
b

d e

c Methodology Highlights. (a) BUS image example. (b) Superpixels’ repre-
sentation coloured using dataset’s accompanying multi-label GT. (c) GT color code.
(d) Data term: cost of labelling all sites as pectoral, lungs, adipose tissue or lesion.
For illustration purposes, highly saturated colour indicates a low data cost - i.e., high
confidence to assign the label associated with the color. (e) Pairwise term: labelling
configurations with more boundaries produce higher pairwise term cost.

Fig. 3: Visual reference: (a) breast structures, (b) US BI-RADS lexicon

Appearance Based on the multi-labelled GT, a Median Absolute Deviation
(MAD) histogram model for every tissue label is built. The Appearance
feature is computed as the χ2 distance between a histogram of s and the
models generated.

Atlas Based on the multi-labelled GT, an atlas is built to encode the labels
likelihood based on the location of s.

Brightness Intensity descriptors are computed based on statistics of s (i.e:
mean, median, mode) and are compared with some intensity markers of the
set S such as the minimum intensity value, the maximum, its mean, etc.

Self-Invariant Feature Transform (SIFT)-Back-of-Features (BoF) s is
described as a histogram of visual words based on SIFT [6]. The dictionary
is built with 36 words.



Fig. 4: Qualitative results. (a) Example 1: orignal image, super-pixels’ delineations
and GT. (b) Differences between GT and the delination resulting from super-pixels’
boundary. (c) Ex. 2. (d) weak V (·, ·) (e) strong V (·, ·)

The relationships between the lexicon and the descriptors described previ-
ously are depicted in Table 1. More precisely, we highlight the corresponding
elements of the lexicon which is encoded by each feature. A choice regarding the
encoding of the data term D(·) has to be made by using a ML classifier. Support
Vector Machines (SVM) classifier with Radial Basis Function (RBF) kernel is
selected to determine the data model during the training stage. The pairwise
term in our framework was defined as in Eq. (3). The optimization method used
as a solver to minimize our cost function U(·) is Graph-Cuts (GC). GC, where
appropriately applied, allows to rapidly find a strong local minima guaranteeing
that no other minimum with lower energies can be found [3]. GC is applicable
if, and only if, the pairwise term favours coherent labelling configurations and
penalizes labelling configurations where neighbours’ labels differ such as in our
case, given by Eq. (3).

4 Method evaluation and comparison

The proposed methodology is evaluated using a dataset of 16 BUS images pre-
senting a single lesion of variable extension. The size of the lesions ranges from
under 1/100 to over 1/5 of the image size. The dataset is composed of cysts,
Fibro-Adenomas (FAs), Ductal Inflating Carcinomas (DICs) and Inflating Lob-
ular Carcinomas (ILCs). Every image has accompanying multi-label GT de-
lineating all the depicted structures. This dataset is now publicly available at
http://visor.udg.edu/dataset/#breast

Table 1: Design choices summary
S Quick-Shift super-pixels

Background Echotexture: encoded in Appearance and SIFT-BoW

D(·) Echo Pattern: encoded in Appearance, Atlas and Brightness

Acoustic Posterior: encoded in Atlas and Brightness

V (·, ·) homogeneity as Eq. (3)

argminU(·) Graph-Cuts



Method Id: a b c d e f g h i j k l m n o p

Dataset size: 76 20 32 20 42 480 347 352 25 120 6 400 50 20 118 488
techonlogy used for:

detection
segmetnation
post-processing

Area Overlap (AOV) (in %): 88.1 86.3 88.3 85.2 62.0 75.0 84.0 54.9 64.0 83.1 73.3 73.0 85.0 78.6 77.6 74.5
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Fig. 5: Quantitative results compilation and comparison

The lack of publicly available data and source code, limits the comparison
between the different methods. For this study, the results published by the other
authors have been collected and expressed in terms of AOV in order to share a
common metric. Further details can be found in [5] and summarized in Fig. 5.

Figure 5 is divided into three main parts: (i) a table on the top summarizes
the core stages of each study framework, (ii) a legend box on the right side
informs our testing setup and, (iii) a comparison of the different metrics in a
radial manner. An extra element is also represented in this radial representation:
a blue swatch delimited by two blue dashed lines. The boundaries of this swatch
correspond to the performance of some expert radiologists based on an inter-
and intra-observer experiments carried out by Pons et al. [8]. It is interesting
to note that some methodologies outperform this swatch. A publicly available
dataset should allow a better comparison in that regard.

The results point out the inherent capabilities of ML to cope with data
scalability and variability, induce its usage in conjunction with larger datasets.
Whereas, Active Contour Model (ACM) methodologies show its effectiveness to
model the boundary in a natural manner.

For our proposed framework, the performance in terms of AOV lies within the
state-of-the-art despite its final delineation limited by the capacity of the super-
pixels to snap the desired boundary. Figure 4 shows some qualitative results



where there are limitations of labeling super-pixels when compared with hand-
drawn GT. Figure 4 also illustrates the influence of the pair-wise term.

5 Conclusions

This work presents a segmentation strategy to delineate lesions in BUS im-
ages using an optimization framework that takes advantage of all the facilities
available when using ML techniques. Despite the limitation that the final seg-
mentation is subject to the super-pixels’ boundaries, the AOV results reported
here are similar to those reported by other methodologies in the literature. A
higher AOV result can be achieved by refining the delineation resulting from
our proposed framework by post-processing it with an ACM. In this manner,
the contour constraints could be applied to achieve a more natural delineation.
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