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ABSTRACT

Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise,
diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In
the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-
Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as
a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As
a pre-processing, image normalization is a critical and important step of the chain in order to design a robust
classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to
the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two
methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root
Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density
Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization
of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative
manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art
methods.
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1. INTRODUCTION

Prostate Cancer (CaP) has been reported the second most frequently diagnosed cancer of men accounting for
13.6%.1 In United States, aside from skin cancer, CaP was considered to be the most commonly diagnosed cancer
among men, implying that approximately 1 in 6 men will be diagnosed with CaP during their lifetime. The
American cancer society also reported an estimated 233,000 new cases of prostate cancer in 2014.2 To address
these dramatic issues, more systematic screenings are organized through Prostate-Specific Antigen (PSA) test
with further Transrectal Ultrasound biopsy if necessary. However, these tests are unreliable or invasive and that
is why further investigations using Magnetic Resonance Imaging (MRI)-Computer-Aided Diagnosis (CAD) are
motivated. In the past decades, several CAD systems have been proposed in order to assist the radiologists
with their diagnosis. These systems are usually designed as a sequential process consisting of four stages: pre-
processing, segmentation, registration and classification. As a pre-processing steps, image normalization is an
important step of the chain. Normalization is a highly crucial step to overcome the inter-patient intensity
variations occurring, enforce the repeatability, and achieve a robust classification.3 However, little attention has
been dedicated to the problem of normalization of T2W-MRI prostate images.3

Artan et al.4,5 and Ozer et al.6,7 proposed to normalize the T2W-MRI images by computing the standard
score (i.e., z-score) of the Peripheral Zone (PZ) pixels such as:

Is(x) =
Ir(x)− µPZ

σPZ
,∀x ∈ PZ, (1)

Further author information: (Send correspondence to G.L)
G.L.: E-mail: guillaume.lemaitre@udg.edu



(a) (b)

Figure 1: Visual evaluation of the goodness of fitting using Rician and Gaussian distribution.

where, Is(x) and Ir(x) are the standardized and the raw signal intensity, respectively, and µPZ and σPZ are
the mean and standard deviation of the PZ signal intensity. This transformation enforces the image Probability
Density Function (PDF) to have a zero mean and a unit standard deviation. However, this normalization is not
appropriate if the PDF do not follow a Gaussian distribution as illustrated in Fig. 1

Lv et al.8 used the method proposed by Nyul et al.9 For a given patient, a warping function is inferred
by matching some specific landmarks (i.e., median and different percentiles) of the current PDF to the same
landmarks learned during a training phase from several patients. The mapping between each landmark is
performed using a linear mapping. Viswanath et al.10 used a variant of the previous method by segmenting first
the image using region growing with a pre-defined homogeneity criterion and keeping only the largest region to
build the PDF. Nevertheless, the warping functions inferred by these methods can suffer from abrupt changes
around the landmarks position, leading to a disrupt PDF in the normalized image.

In this paper, we evaluate and compare different normalization approaches in the context of T2W-MRI
prostate images normalization. Our contribution is threefold: (i) a normalization approach based on a Rician
a priori ; (ii) a normalization approach based on a method used in registration of functional data, without any
assumption regarding the PDF of the data; (iii) a novel evaluation metric to asses quantitatively the alignment
of the PDFs independently of the assumed distribution. These methods will be compared qualitatively and
quantitatively, with both z-score normalization and piecewise-linear normalization.

2. METHODOLOGY

2.1 Normalization using Rician a priori

As stated in Sect. 1, proper normalization of the MRI data during pre-processing is a key problem that has
been addressed using parametric and non-parametric strategies. We believe that normalizing MRI data using a
parametric model based on a Rician distribution would improve the results for the parametric case. Expecting
this improvement by changing the data model from the widely used Gaussian distribution to Rician distribution
is reasonable. Indeed, Bernstein et al.11 state that MRI data theoretically follows a Rayleigh distribution for
a low Signal-to-Noise Ratio (SNR) scenarios while it appears closer to a Gaussian distribution when the SNR
increases. Figure 1 shows the intensity spectrum for some MRI prostate data as well as the fitted Gaussian
and Rician distributions. A qualitative assessment of the underlying distribution is performed by overlying the
fitted distribution, while quantitative results of the fitting are given in terms of Root Mean Square. It can be
highlighted that the Rician model better fits the data than the Gaussian model.

The normalization is carried out as: (i) fit a Rician model to each prostate PDF using non-linear least squares
minimization; (ii) compute the mean (see Eq. (2)) and variance (see Eq. (3)) of the Rician model; (iii) normalize



the entire data using the z-score similarly as in Eq. (1).

µr = σ

√
π
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L1/2(− ν2
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2σ2

)
, (3)

where ν and σ are the distance between the reference point and the center of the bivariate distribution and the
scale, respectively; L1/2 denotes a Laguerre polynomial.

2.2 Normalization using generative models in functional data analysis

Srivastava et al.12 have proposed a generic method to register functional data, without any assumption regarding
the models of different functions. This framework (see Sect. 2.2.2) relies on the Square-Root Slope Function
(SRSF) representation (see Sect. 2.2.1) which transforms the Fisher-Rao metric into the conventional L2 metric,
and thus allows to define a cost function corresponding to an Euclidean distance between two functions in this
new representation.

2.2.1 Square-Root Slope Function representation

In the proposed registration framework of functional data, two function f1 and f2 are registered by composing
f2 with a warping function γ such that:

arg min
γ∈Γ

DFR(f1, (f2 ◦ γ)) , (4)

where DFR is the Fisher-Rao distance and Γ is the set of all the functions γ.

The SRSF representation is used to transform the functions and register them into this space. The SRSF of
a function f is defined as:

q(t) = sign(ḟ(t))

√
|ḟ(t)| , (5)

where ḟ(t) corresponds to the derivative of f .

The major property of the SRSF representation used in the registration framework is the following: the
composition of a function f with a warping function γ (i.e., f ◦ γ) is equivalent to Eq. (6), using the SRSF
representation.

q̃(t) = (q(t) ◦ γ)
√
γ̇ , (6)

where γ̇ is the derivative of γ.

Using this property, a cost function (named amplitude or y-distance) is defined to measure the similarity
between two functions f1 and f2, expressed as in Eq. (7)

Dy(f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇‖ . (7)



2.2.2 Registration framework

The registration framework consists into two steps. First, an initialization in which the Karcher mean µf is
computed as in Eq. (8)

µf = arg min
f∈F

n∑
i=1

Dy(f, fi)
2 . (8)

Then, for each function fi: (i) compute γ∗i as in Eq. (9); (ii) compute q̃i as in Eq. (6); (iii) update µf as in

Eq. (8) by replacing fi by f̃i, using q̃i.

γ∗i = arg min
γ∈Γ

n∑
i=1

Dy(µf , fi)
2 , (9)

where n is the total number of functions to be aligned.

This step is iteratively performed based on the gradient of the cost function given in Eq. (8). We refer the
reader to the work of Srivastava et al.12 for more detailed discussion.

3. EXPERIMENTS

3.1 Data

The experiments are conducted on a subset of public multi-parametric MRI prostate publicly available dataset∗.13

This dataset was acquired from a cohort of patients with higher-than-normal level of PSA. The acquisition was
performed using a 3T whole body MRI scanner (Siemens Magnetom Trio TIM, Erlangen, Germany) using
sequences to obtain T2W-MRI. Aside of the MRI examinations, these patients also underwent a guided-biopsy.
Finally, the dataset was composed of a total of 20 patients of which 18 patients had biopsy proven CaP and 2
patients were “healthy” with negative biopsies. In this study, our subset consists of 17 patients with CaP. The
prostate organ as well as the prostate zones (i.e., PZ, Central Gland) and CaP were manually segmented by an
experienced radiologist.

3.2 Implementation

The different normalization methods are implemented in Python and publicly available in GitHub†. The nor-
malization based on SRSF uses the implementation‡ of Tucker et al.14

3.3 Parameters

The model fitting for the Gaussian and Rician normalization is performed as a non-linear least squares problem,
using Levenberg-Marquardt optimization. The piecewise-linear normalization is performed using the following
set of percentiles s ∈ {0, 5, 25, 50, 75, 95, 100} as landmarks. In the SRSF-based normalization, the PDFs are
smoothed using spline-based denoising method.

4. RESULTS

4.1 Qualitative

Figure 2 depicts the alignment of the different PDFs using the different methods implemented. All the methods
seem to address the problem of the PDF alignment of the full prostate data. However, the Rician normalization
seems to outperform the other methods when focusing solely on the CaP data. The PDF computed in this
specific area is more skewed from its original shape in the case of the piecewise-linear normalization than with
the three other normalization strategies. The SRSF normalization gets unstable due to the warping function γ
found which is in practise non-smooth.



Figure 2: Qualitative evaluation by visual inspection of the alignment of the PDFs for the full prostate and the
CaP.
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Figure 3: Spectral evaluation using PCA decomposition: (a) evaluation considering the full prostate, (b) evalu-
ation considering only the CaP.

4.2 Quantitative

A spectral evaluation is performed by decomposing the set of normalized PDFs using PCA under the assumption
that they are linearly dependent. Intuitively, the eigenvalues of the PCA decomposition are correlated with the
alignment of the different PDFs. Thus, in the case of a perfect alignment of the PDFs, the first eigenvalue is
much greater than the remaining since that the first eigenvector encodes all the information. In the contrary, in
the case of a misalignment of the PDFs, more eigenvectors are needed to encode the information synonymous
with larger eigenvalues. Thus, we propose to use the cumulative sum of the normalized eigenvalues as well as
the Area Under this Curve (AUC), as depicted in Fig. 3. Rician normalization outperforms the other methods
with an AUC of 0.9974 and 0.9824 considering the full prostate and CaP, respectively.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose to normalize the T2W-MRI prostate images using two new strategies: (i) based on a
Rician a priori and (ii) based on a SRSF representation which do not make any assumption regarding the PDF
of the data. An extensive comparison was conducted showing that the Rician normalization outperforms the
Gaussian, SRSF-based, and piecewise-linear normalization for T2W-MRI prostate images normalization.

As avenues for future research, the contribution of the Rician normalization must be evaluated in a classifica-
tion framework. Furthermore, normalized T2W-MRI can be included with other modalities in order to perform
classification using multi-parametric MRI data.
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