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Abstract— This paper deals with the automated detection
of Diabetic Macular Edema (DME) on Optical Coherence
Tomography (OCT) volumes. Our method considers a generic
classification pipeline with preprocessing for noise removal
and flattening of each B-Scan. Features such as Histogram of
Oriented Gradients (HOG) and Local Binary Patterns (LBP)
are extracted and combined to create a set of different feature
vectors which are fed to a linear-Support Vector Machines
(SVM) Classifier. Experimental results show a promising sen-
sitivity/specificity of 0.75/0.87 on a challenging dataset.

I. INTRODUCTION

Eye diseases such as Diabetic Retinopathy (DR) and
Diabetic Macular Edema (DME) are the most common
causes of irreversible vision loss in individuals with diabetes.
Just in United States alone, health care and associated costs
related to eye diseases are estimated at almost $500 M [1]
with prevalent cases of DR expected to grow exponentially
affecting over 300 M people worldwide by 2025 [2]. Early
detection and treatment of DR and DME play a major
role to prevent adverse effects such as blindness. DME
is characterized as an increase in retinal thickness within
one disk diameter of the fovea center with or without hard
exudates and sometimes associated with cysts [3]. Spectral
Domain OCT (SD-OCT) [4] which images the depth of
the retina with a high resolution and fast image acquisition
is an adequate tool, compared to fundus images for DME
identification [5, 6, 7]. As an example, Figure. 1 shows
one normal B-scan and one abnormal B-scans and clearly
illustrate the fact that lesions such as cysts can easily be
spotted via Optical Coherence Tomography (OCT) imaging.
Automated diagnosis on OCT imaging is rather new and
most of the pioneer works on OCT image analysis have fo-
cused on the problem of retinal layers segmentation, which is
a necessary step for retinal thickness measurements [8, 9, 10]
and has also recently proven to be quite efficient for cysts
segmentation [11]. However, very few works, up to our
knowledge, have addressed the specific problem of DME
and its associated features detection from OCT images. In
this paper we propose a solution for automated detection of

(a) DME-case (b) normal-case

Fig. 1. DME and normal case of OCT B-scans.

DME on OCT volumes.
Following this introduction, the rest of the paper is orga-

nized as follows, Sect. II will present some related works,
Sect. III is related to the data collection, Sect IV and Sect. V
are respectively dedicated to our methodology and the ob-
tained results. The paper ends with a short discussion and
some conclusion in Sect. VI.

II. RELATED WORK

Srinivasan et al. proposed a classification method to dis-
tinguish normal OCT volumes from DME and Age-related
Macular Degeneration (AMD) volumes [12]. The OCT im-
ages are pre-processed by reducing the speckle noise by
enhancing the sparsity in a transform-domain and flattening
the retinal curvature to reduce the inter-patient variations.
Then, Histogram of Oriented Gradients (HOG) are extracted
for each slice of a volume and fed to a linear Support
Vector Machines (SVM). This method was applied onto
a dataset of 45 patients equally subdivided into the three
aforementioned classes and led to a correct classification rate
of 100%, 100% and 86.67% for normal, DME and AMD
patients, respectively. The images that were used in their
paper, are publically available but are already preprocessed
(noise removed), do not offer a huge variability in term of
DME lesions, have different sizes for the OCT volumes, and
some of them (without specifying which) have been excluded



(a) Vitreomacular traction. (b) Rethinal thickening. (c) Cyst spaces, causing central and parafoveal
retina thickening.

(d) Cyst spaces and hard exudates, causing
central retinal thickening.

(e) CSR (subretinal fluid), causing central and
parafoveal thickening.

(f) CSR, hard exudates and cyst spaces.

(g) Cyst spaces, causing retinal thickening. (h) CSR and hard exudates, causing retinal
thickening.

(i) Cyst spaces causing parafoveal thickening.

Fig. 2. Examples of DME cases in Singapore Eye Research Institute (SERI) dataset.

Fig. 3. Proposed classification pipeline.

for the training phase; all these reasons prevent us from using
this dataset to benchmark our work. Venhuizen et al. recently
proposed a method for OCT images classification using the
Bag-of-Words (BoW) models [13]. The method starts with
the detection and selection of keypoints in each individual
B-scan, by keeping the most salient points corresponding
to the top 3% of the vertical gradient values. Then, a
9 × 9 pixels texton is extracted around each keypoint, and
Principal Component Analysis (PCA) is applied to reduce
the dimension of every texton from 81 to 9. All extracted

feature vectors are used to create a dictionnary using k-
means clustering. Then, each OCT volume is represented as
an histogram that captures the codeword occurrences. These
histograms are used as feature vector to train a Random
Forest (RF) classifier with a maximum of 100 trees. The
method was used to classify OCT volumes between AMD
and normal cases and achieved an Area Under the Curve
(AUC) of 0.984 with a dataset of 384 OCT volumes [14].
Liu et al. proposed a methodology for detecting macular
pathology in OCT images using Local Binary Patterns (LBP)



and gradient information as attributes [15]. The method starts
by aligning and flattening the images and creating a 3-level
multi-scale spatial pyramid. The edge and LBP histograms
are then extracted from each 80 block of every level of the
pyramid. All the obtained histograms are concatenated into a
global descriptor whose dimensions are reduced using PCA.
Finally a SVM with an Radial Basis Function (RBF) kernel
is used as classifier. The method achieved good results in
detection OCT scan containing different pathology such as
DME or AMD, with an AUC of 0.93 using a dataset of
326 OCT scans. Lemaı̂tre et al. developed a classification
framework based on LBP features to describe the texture of
OCT images and dictionary learning using the BoW models
[16]. They proposed to extract 2D and 3D LBP features
from OCT images and volumes, respectively. The LBP de-
scriptors are either extracted from the entire sample or local
patches within individual samples. Numerous experiments
were conducted and the authors achieved a sensitivity and
specificity of 81.2% and 93.2% for their best configuration.
On the same dataset, a different approach which consists in
addressing this issue as an anomaly detection problem was
recently proposed by Sankar et al. [17]. In their method,
the authors propose a technique that not only allow the
classification of the OCT volume, but also enables the
identification of the individual diseased B-scans inside the
volume. This approach is based on modeling the appearance
of normal OCT images with a Gaussian Mixture Model
(GMM) and detecting abnormal OCT images as outliers. The
classification of an OCT volume is based on the number
of detected outliers. Experimental results with two different
datasets show that the proposed method achieves a sensitivity
and a specificity of 80% and 93% on the first dataset, and
100% and 80% on the second one. The proposed method
achieves better classification performance than other recently
published work but it requires to tune the GMM parameters
and it should be tested on a larger database.

III. DATA

The datasets used in this study were acquired by the SERI,
using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA)
SD-OCT device [4]. The datasets consist of 32 OCT volumes
(16 DME and 16 normal cases). Each volume contains
128 B-scan with resolution of 512 × 1024 px. All SD-
OCT volumes are read and assessed by trained graders and
identified as normal or DME cases based on evaluation of
retinal thickening, hard exudates, intraretinal cystoid space
formation and subretinal fluid as presented in the table
below. Within the DME dataset, a large number of lesions
were selected to create a rather complete DME dataset. The
volumes and sample numbers for each volume are presented
below (Fig. 2):

IV. METHODOLOGY

Our approach is based on the original paper of Srini-
vasan et al. [12] to which a feature extraction procedure
(PCA) is added, as proposed by Venhuizen et al. [14]. Our
general pipeline is presented on Fig. 3.

(a) Original (b) Flatten

Fig. 4. Original and flatten image.

First the image are preprocessed to remove the noise with
the BM3D algorithm developed by Dabov et al. [18]; they
are then flattened and cropped as described by Srinivisan et
al. [12] (see Fig. 4). On the cropped image, we extract HOG
features [19] as well as LBP features either in their standard
version [20] or their rotation invariant version [21] with
different neighborhoods. Furthermore, to consider structures
at multiple scale levels, both HOG and LBP features vec-
tor are extracted at four levels of the multiscale Gaussian
lowpass image pyramid. For each feature, HOG or LBP the
histogram are concatenated into a single feature vector for
each image. Then the obtained histograms are either fed
directly to a linear SVM classifier or reduced with PCA.
We attempt to combine HOG and LBP feature vectors or
use them separately as explain in the next section.

V. EXPERIMENTAL RESULTS

The validation is done on a leave two patient out basis
(one DME volume, one normal volume). As 16 volumes
were provided, the experiments were performed 16 times
and the results averaged and presented in the following table.
RI stands for Rotation Invariant LBP, whereas NRI stands
for Non Rotation Invariant (i.e. LBP8−NRI stands for 8
neighbors Non Rotation Invariant). The feature vectors were
reduced to the size of 40 after PCA (i.e. HOGPCA) was
applied onto the original HOG feature vector and 20 for each
of the LBP extracted feature vector. Different experiments
were carried out and their results are summarized below (see
Table. I).

VI. DISCUSSION AND CONCLUSION

We presented an automatic classification framework for
SD-OCT volumes in order to indentify DME volumes versus
normal Volumes. In this regard, we investigated a generic
pipeline including preprocessing, feature extraction and fea-
ture reduction and feature combination. The best results were
obtained for HOG feature vectors. We plan to extend our
work with a BoW approach as well as we intend to study



TABLE I
OUTLINE AND SUMMARY OF THE PERFORMED EXPERIMENTS AND OBTAINED RESULTS.

Features Evaluations

Sensitivity Specificity Precision F1-score Accuracy

HOG 0.69 0.94 0.91 0.81 0.78

HOGPCA 0.75 0.87 0.85 0.80 0.81

HOGPCA +LBPPCA
8−NRI 0.69 0.75 0.73 0.71 0.72

HOGPCA+LBPPCA
8−NRI+LBPPCA

16−NRI+LBPPCA
24−NRI 0.62 0.75 0.71 0.66 0.68

HOGPCA+LBPPCA
8−RI+LBPPCA

16−RI+LBPPCA
24−RI 0.69 0.81 0.78 0.73 0.75

other classifiers (RBF-SVM, RF) in a near future. Also, we
are currently working on the extension of the dataset so as
to make it more challengeable and open to the community.
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[17] S. Sankar, D. Sidibé, Y. Cheung, T. Wong, E. Lamoureux, D. Milea,
and F. Meriaudeau, “Classification of sd-oct volumes for dme de-
tection: an anomaly detection approach,” in SPIE Medical Imaging.
International Society for Optics and Photonics, 2016, pp. 97 852O–
97 852O.

[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-d transform-domain collaborative filtering,” Image Pro-
cessing, IEEE Transactions on, vol. 16, no. 8, pp. 2080–2095, 2007.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005,
pp. 886–893.
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