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Abstract—This article reviews the current state of automatic
classification methodologies to identify Diabetic Macular Edema
(DME) versus normal subjects based on Spectral Domain OCT
(SD-OCT) data. Addressing this classification problem has valu-
able interest since early detection and treatment of DME play a
major role to prevent eye adverse effects such as blindness.

The main contribution of this article is to cover the lack of
a public dataset and benchmark suited for classifying DME and
normal SD-OCT volumes, providing our own implementation of
the most relevant methodologies in the literature. Subsequently,
6 different methods were implemented and evaluated using this
common benchmark and dataset to produce reliable comparison.

Index Terms—Diabetic Macular Edema (DME), Spectral Do-
main OCT (SD-OCT), Machine Learning (ML), benchmark,

I. INTRODUCTION

Diabetic Retinopathy (DR), and more particularly Diabetic
Macular Edema (DME), are leading causes of irreversible
vision loss and the most common eye diseases in individ-
uals with diabetes. Taking into account that the number of
individuals affected by diabetes diseases are expected to grow
exponentially in the next decade [1], developing methodolo-
gies for early detection and treatment of DR and DME has
become a priority to prevent adverse effects.

The main focus of this work is to describe the actual state
of DME detection in Optical Coherence Tomography (OCT)
images. DME presents an increase in retinal thickness within
1 disk diameter of the fovea center with or without hard
exudates and sometimes associated with cysts [2]. Spectral
Domain OCT (SD-OCT) is an emerging eye imaging modality
providing cross-sectional retinal morphology information [3],
which cannot be estimated from more established eye imaging
modalities such as fundus imaging.

The initial efforts of the ophtalmic community in developing
technologies for SD-OCT have been placed in segmenting the
retinal layers, which is a necessary step for retinal thickness
measurements [4, 5]. However, latter efforts address the spe-
cific problem of DME automatic detection in OCT volumes.
These efforts reveal the needs to address: (i) enhancing the
quality of OCT volumes, (ii) finding pathology signs, and (iii)
appropriate classification strategies.

Advances in any of those regards is of great interest
since (i) manual evaluation of SD-OCT volumetric scans is
expensive and time consuming [6]; (ii) SD-OCT acquisition
has some shortcomings due to eye movements during the
scanning [7], reflectivity nature of the retina [8], high level
of noise and inconsistent quality of the images; (iii) due to
the coexistence of multiple pathologies [7] as well as large
intra-pathology variability, consistently identifying pathology-
specific biomarkers remains challenging [6].

The rest of this article is structured as follows: Section II
offers a general idea of the literature state-of-the-art in SD-
OCT volume classification. Section III reviews some publicly
available datasets and states the need for another one that suits
the classification task here described. Section IV proposes an
experimental benchmark to compare different methodologies
presented in Sect. II. Section V reports and discusses the ob-
tained results, while Sect. VI wraps up our thoughts regarding
this work and its possible direction.

II. BACKGROUND

This section reviews works straightly addressing the prob-
lem of classifying OCT volumes as normal or abnormal,
regardless of the targeted pathology. The methods are cate-
gorized in terms of their learning strategy, namely supervised
or semi-supervised learning.

A. Supervised methods

Supervised learning is based on a fully annotated and
labeled training set. In this approach, the labeled training
data are used to train the classifier function later used for
prediction. Figure 1 illustrates a prevalent framework for
supervised learning. Each SD-OCT volume undergoes: (i) pre-
processing to reduce noise and other acquisition deficiencies
which alter the images; (ii) feature detection to quantify visual
cues like appearance, texture, shape, etc.; (iii) mapping in
which a sample is either considered as whole (i.e., global) or
partitioned into a set of sub-elements (i.e., local dense/sparse
patches, pyramid, etc.); (iv) feature representation to asso-
ciate a descriptor (e.g., concatenation, statistics, histogram,



Fig. 1. Common framework

Principal Component Analysis (PCA), Bag-of-Words (BoW),
etc.) for each element from the mapping-stage. This descriptor
packages the visual cues related to the sample; (v) classifica-
tion to determine the associated class of each sample.

Venhuizen et al. propose a classification method to distin-
guish between Age-related Macular Degeneration (AMD) and
normal SD-OCT volumes using BoW models [6]. A set of
keypoints are detected and selected at each individual B-scan,
by keeping the salient points included in the top 3% of the
vertical gradient values. Around each of these keypoints, a
9 px× 9 px texton is extracted, generating a feature vector of
81 dimensions, later reduce to 9 using PCA. All extracted
feature vectors are used to create a codebook using k-means
clustering. Then, each OCT volume descriptor is represented
as a histogram that captures the codebook occurrences and are
classified by a Random Forest (RF) composed of 100 trees.
The method is tested using a publicly available dataset of 384
OCT volumes [9], achieving an Area Under the Curve (AUC)
of 0.984.

Srinivasan et al. propose a classification method to dis-
tinguish DME, AMD, and normal SD-OCT volumes [10].
Each OCT slice is pre-processed using Block Matching 3D
filtering (BM3D) to reduce the speckle noise and is flattened
to reduce the inter-patient retinal curvature variations. A multi-
resolution pyramid is generated for each pre-processed slice
and a Histogram of Oriented Gradients (HOG) feature is
computed for each layer. These features are classified using
a linear Support Vector Machines (SVM). Note that each
individual B-scan is classified into one of the three categories,
namely DME, AMD, and normal, and a volume is label to
a given class by taking the majority vote of all B-scans.
This method is also tested using a publicly available dataset,
composed of 45 patients equally subdivided into the three
targeted classes. Correct classification rates of 100%, 100%
and 86.67% are obtained for normal, DME, and AMD patients,
respectively.

Extending the previous work, Alsaih et al. aggregate Local
Binary Patterns (LBP) to HOG in order to add texture infor-
mation and reduce the number of dimension using PCA [11].

Lemaı̂tre et al. propose a method based on LBP features to
describe the texture of OCT images and dictionary learning
using the BoW models [12]. In this method, the OCT im-
ages are first pre-processed using Non-Local Means (NLM)
filtering, to reduce the speckle noise. Then, the volumes are
mapped into a discrete set of structures: (i) local corresponding
to patches, or (ii) global corresponding to volume slices or

the whole volume. According to the chosen mapping, LBP
or LBP from Three Orthogonal Planes (LBP-TOP) texture
features are extracted and represent each volume through
histogram, PCA, or BoW representation. The final feature
descriptors are classified using RF classifier. This methodology
is tested against Venhuizen et al. [6] using public and non-
public datasets showing an improvement within the results by
achieving a Sensitivity (SE) of 87.5% and a Specificity (SP)
of 75%.

Liu et al. propose a methodology aiming at classifying B-
scan rather than volume. The classification goal is to distin-
guish between macular pathology and normal OCT B-scan
images using LBP and gradient information as attributes [7].
Each OCT slice is flattened before to create a 3-level mutlti-
scale spatial pyramid. From each layer of this pyramid, edges
are extracted and LBP descriptors are computed for the
flattened slice and the edge map. All the obtained histograms
are concatenated into a global descriptor whose dimensions
are reduced using PCA. Finally, a SVM with a Radial Basis
Function (RBF) kernel is used as classifier. A detection rate
with an AUC of 0.93 is achieved, using a dataset of 326 OCT
scans with various pathologies.

Albarrak et al. propose another classification framework to
differentiate AMD and normal volumes [13]. Each OCT slice
undergoes two pre-processing routines: (i) a joint denoising
and cropping step using the split Bregman isotropic total
variation algorithm and (ii) a flattening step by fitting a
second-order polynomial using a least-square approach. Then,
LBP-TOP and HOG combined with LBP-TOP features are
extracted from individual sub-volumes from each original
cropped volume. These features are concatenated into a single
feature vector per OCT volume and its dimension is reduced
using PCA. Finally, a Bayesian network classifier is used to
classify the volumes. The classification performance of the
framework in terms of SE and SP achieves 92.4% and 90.5%,
respectively, outperforming the method of Liu et al. [7], using
a dataset composed of 140 OCT volumes.

Anantrasirichai et al. propose to detect glaucoma in OCT
images based on a variety of texture descriptor [14]. The
texture information is described through LBP, Gray-level co-
occurrence matrix (GLCM), wavelet, granulometry, run length
measures, and intensity level distributions in combination with
retinal layer thickness estimation, without any pre-processing.
Each feature vector is projected using PCA before to be
classified using an SVM with both linear and RBF kernel.
Testing with rather a small dataset of 24 OCT volumes, their



proposed method achieves an Accuracy (ACC) of 85 % while
using layer thickness and textural informations.

B. Semi-supervised methods

Sankar et al. propose to use a semi-supervised strategy to
classify DME vs. normal OCT volumes based on appearance
modeling of normal OCT images using Gaussian Mixture
Model (GMM) [15]. The main difference between this method
and the supervised methodologies lies in the fact that only
normal volumes are used to train the system.

For each OCT volume, the B-scans are denoised using
NLM filtering, flattened, and resized to ensure homogeneous
dimension across all volumes. Each B-scan is vectorized and
projected into a lower-dimensional space with p dimensions
using PCA. Subsequently, normal B-scans are modelled using
a GMM in which the number of mixture components K is
determined on a validation set. At the testing stage, a scan
is classified as normal or DME depending of its Mahalanobis
distance to the learnt model; if the distance is greater than the
97.5% quantile of the Chi-squared distribution with p degree
of freedom. Therefore, a volume is classified as abnormal if
the number of abnormal slice is greater than a given threshold,
previously determined during the validation procedure. A SE
and SP of 93.8% and 80.0% are respectively achieved on a
cohort of 32 patients.

III. DATA

Proper comparison of different methodologies require a
common dataset to test these methodologies. The lack of
public data for comparing methodologies is recurrent claim in
the medical image community [17]. To amend this limitation,
Duke Univeristy made two SD-OCT datasets available to the
ophtalmic community [9, 10].

The rest of this section highlights the advantages and
disadvantages of the datasets provided by Duke University,
points out why this datasets cannot be used for our purposes
and finally describes our data: the SERI dataset [18].

The former dataset from Duke University consists of 384
OCT annotated volumes classified either as AMD or normal
cases. Despite the advantage of testing in large datasets, this
dataset cannot be used to conduct our study since we are
interested in DME and not AMD. This dataset has been
used by Venhuizen et al. [6] to test their method since their
main interest is AMD detection. The later dataset from Duke
Univeristy consists of 45 pre-processed OCT volumes and
labeled as AMD, DME, and normal. Despite this dataset is
suitable to our goal of classifying DME vs normal volumes, the
dataset has been dropped since there is no access to the original
data. All volumes have been denoised, aligned and cropped.
This dataset has been used to conduct the experimentation
reported by Srinivasan et al. [10].

The dataset to conduct our study has been acquired by
the SERI, using CIRRUS TM (Carl Zeiss Meditec, Inc.,
Dublin, CA) SD-OCT device. This dataset consists of 32
OCT volumes, subdivided into 16 DME and 16 normal
cases. Each volume contains 128 B-scans with a resolution of

512 px× 1,024 px. All SD-OCT images have been read and
assessed by trained graders and identified as normal or DME
cases, based on evaluation of retinal thickening, hard exudates,
intraretinal cystoid space formation and subretinal fluid (see
Fig. 2).

IV. EXPERIMENTAL SETUP

The experimental set-up is summarized in Table I, where the
most relevant works in Sect. II are formulated as the 5-steps
standard classification procedure described in Fig. 1.

A. Implementation details

The experiments, described in this work, are publicly avail-
able at [19] allowing for further comparisons and improve-
ments. All the methods in Table I have been developed using
protoclass [20], a rapid prototyping toolkit to perform image
processing and Machine Learning (ML) tasks. Furthermore,
each method has been implemented as a plug-in to [19], so
that all methods can be evaluated in a common framework 1.

Note that Liu et al. train the algorithm at the B-scan level,
and SERI dataset provides Ground Truth (GT) at volume level
only. Thus, two strategies have been explored to solve this
issue: (i) similarly to Srinivasan et al., at training stage, all B-
scans are considered as abnormal for a DME volume and at
testing stage, a majority vote rule is applied to whether label a
volume as abnormal or not; (ii) similarly to Venhuizen et al.,
an approach using BoW is used. From the methods reviewed
in Sect. II, we decline to implement Albarrak et al. and
Anantrasirichai et al.. The former do not provide sufficient
implementation details to replicate their results [13]; while,
the latter use a descriptor based on the layer thickness which
require a layer segmentation stage using a generic segmenta-
tion algorithm and further user validation [14].

B. Evaluation

All the experiments are evaluated in terms of SE and SP
(see Fig. 3) using the Leave-Two-Patient Out Cross-Validation
(LTPO-CV) strategy.2 SE evaluates the performance of the
classifier with respect to the positive class, while the SP does
the same with respect to negative class. LTPO-CV keeps two
volumes (one normal and one DME) for testing while the
remaining volumes are used as training. The advantage of
using LTPO-CV over Leave-One-Patient Out Cross-Validation
(LOPO-CV) is that LTPO-CV keeps the training data bal-
anced. The main drawback of using LTPO-CV (or LOPO-
CV) is that despite reporting robust performance estimators,
variance of this descriptors cannot be computed. Despite this
limitation, LTPO-CV strategy has been adopted here, since
regular Computer Vision (CV) cannot be applied due to the
reduced size of the dataset.

1See table I for standalone repositories of each method. All repositories
provide tests to ensure that our implementation comply with the original work.

2the same evaluation strategy was applied [12]



(a) Vitreomacular traction. (b) Rethinal thickening. (c) Cyst spaces, causing central and parafoveal
retina thickening.

(d) Cyst spaces and hard exudates, causing
central retinal thickening.

(e) CSR (subretinal fluid), causing central and
parafoveal thickening.

(f) CSR, hard exudates and cyst spaces.

(g) Cyst spaces, causing retinal thickening. (h) CSR and hard exudates, causing retinal
thickening.

(i) Cyst spaces causing parafoveal thickening.

Fig. 2. Examples of DME cases in Singapore Eye Research Institute (SERI) dataset.

V. RESULTS AND DISCUSSION

The entire set of experiments with their associated results
can be found in [19], while Table I shows the configuration
leading to the best results of each method. The results are
reported in terms of SE and SP (see Sect. IV-B).

Lemaitre et al. achieve the best results when using LBP-
TOP features, a global mapping, and histogram represen-
tation [12]. Alsaih et al. perform better when using HOG
features with PCA representation [16]. Our interpretation of
Liu et al., as proposed in Sect. IV, achieves the best results
when using majority voting instead of BoW models. Refer to
Table I for configuration details of the remaining methods.

Results in [19] indicate two main findings with major
impact: (i) features describing the entire volume rather than
each B-scan are more discriminative; and (ii) a pre-processing
stage with denoising is fundamental.

Other observations include the facts that (i) to represent B-
scans, local mapping in conjunction with dimension reduction,
either using PCA or BoW, improve the results. However, the

combination of both decreases the performance in comparison
to non reduced histogram representation; (ii) building BoW
models from the concatenation of all features for each B-scan,
might lead to the curse of dimensionality since 128 samples
per volume is not enough to describe a space with a number
of dimensions of the order of thousands; which could explain
the over-fitting using RBF-SVM as in [21].

VI. CONCLUSION AND FURTHER WORK

The work here presented states the relevance of developing
methodologies to automatically differentiate DME vs. normal
SD-OCT scans. This article offers an overview of the state-of-
the-art of DME detection and provides a public benchmarking
to facilitate further studies. In this regard, there are two crucial
aspects to improve the work here presented: (i) enlarge the
dataset. (ii) reach out to other authors in order to enlarge this
benchmark with additional methods and improve the existing
approaches.



TABLE I
CORRESPONDENCE BETWEEN THE MOST RELEVANT METHODOLOGIES REVIEWED IN SECT. II AND THE PROPOSED EXPERIMENTAL FRAMEWORK.

Ref Pre-processing Features Mapping Representation Classification

Venhuizen et al. [6, 22] —— Texton Local PCA RFBoW

Srinivasan et al. [10, 23]
Denoising (BM3D)

HOG Global ——
Linear-

Flattening SVM
Cropping

Lemaı̂tre et al. [12, 24] Denoising (NLM)
LBP Local PCA

RFLBP-TOP Global BoW
Histogram

Alsaih et al. [11, 16]
Denoising (BM3D) LBP

Local
PCA Linear-

Flattening HOG Histogram SVM
Cropping

Liu et al. [7, 21] Flatten Edge Local PCA RBF-
Aligned LBP BoW SVM

Sankar et al. [15, 25]
Denoising (NLM) Pixel

Global PCA
Mahalanobis

Flattening intensities -distance
Cropping to GMM

TABLE II
SUMMARY OF THE CLASSIFICATION PERFORMANCE IN TERMS OF SE AND SP IN (%).

Lemaitre et al. [12] Sankar et al. [15] Alsaih et al. [16] Srinivasan et al. [10] Liu et al. [7] Venhuizen et al. [6]

SE 87.5 81.3 75.0 68.8 68.8 61.5
SP 75.0 62.5 87.5 93.8 93.8 58.8
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(a) Confusion matrix with truly and falsely positive samples detected
(TP, FP) in the first row, from left to right and the falsely and truly
negative samples detected (FN, TN) in the second row, from left to
right.
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(b) SE and SP evaluation, corresponding to the ratio of
the doted area over the blue area.

Fig. 3. Evaluation metrics: (a) confusion matrix, (b) SE - SP
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