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Abstract

In the present article we study the form factors of quantum integrable lattice
models solvable by the separation of variables (SoV) method. It was recently
shown that these models admit universal determinant representations for the
scalar products of the so-called separate states (a class which includes in partic-
ular all the eigenstates of the transfer matrix). These results permit to obtain
simple expressions for the matrix elements of local operators (form factors).
However, these representations have been obtained up to now only for the com-
pletely inhomogeneous versions of the lattice models considered. In this article
we give a simple algebraic procedure to rewrite the scalar products (and hence
the form factors) for the SoV related models as Izergin or Slavnov type de-
terminants. This new form leads to simple expressions for the form factors in
the homogeneous and thermodynamic limits. To make the presentation of our
method clear, we have chosen to explain it first for the simple case of the XXX
Heisenberg chain with anti-periodic boundary conditions. We would neverthe-
less like to stress that the approach presented in this article applies as well to a
wide range of models solved in the SoV framework.
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1 Introduction

Quantum integrable systems are ubiquitous in modern theoretical physics appearing
both in statistical mechanics and field theory with applications ranging from con-
densed matter to string theory [1–10]. They provide unique possibility to obtain
non-perturbative and exact results for strongly correlated systems that cannot be
obtained by other methods. Besides the computation of spectrum, scattering ma-
trices and partition functions, one of the main challenges in this domain concerns
the exact computation of the form factors and correlation functions that connect to
measurable physical quantities in these systems.

The quantum inverse scattering method [11–14] together with its associated
Yang-Baxter [3, 15–17] and quantum group structures [18–22] provide a powerful
framework to tackle such problems. A central object in this approach is played by
the so-called quantum monodromy matrix T (λ) depending on a continuous complex
parameter λ whose matrix elements are operators acting on the quantum space of
states of the systems of interest V and satisfy quadratic commutation relations gov-
erned by an R matrix solving the Yang-Baxter cubic equation. The main point of the
method is the existence of an abelian sub-algebra of operators acting on V, including
the Hamiltonian of the system, generated by the transfer matrix T (λ) constructed
algebraically from T (λ) and leading, through an expansion in λ, to a complete (in the
sense of characterization of eigenstates) set of conserved operators and (dynamical)
symmetries responsible for the integrability of the model at hand. In this framework,
the solution of the original spectral problem for the Hamiltonian is embedded in the
λ-independent resolution of the spectral problem for the transfer matrix T (λ) as a
linear operator on V. At this point, within these algebraic settings, several methods
can be used to solve this spectral problem. The first methods historically, Bethe
ansatz [1] and algebraic Bethe ansatz [11–14], have been extensively used with great
success in many paradigmatic integrable systems like Heisenberg spin chains or sev-
eral lattice discretization of integrable field theories like sine-Gordon. It appeared
however that for systems lacking an obvious reference state, namely a simple eigen-
state of the transfer matrix T (λ) from which the complete space of states V can be
generated by successive actions of matrix elements of the monodromy matrix T (λ)
on it, a different, somehow more generic, approach should be designed. The quantum
separation of variable (SoV) method initiated by Sklyanin [23–26] provides such a
powerful tool for computing the spectrum and the eigenstates of quantum integrable
systems, especially for systems lacking such a reference state. Sklyanin pioneering
works on SoV have been presented for fundamental examples of integrable quantum
lattice models, e.g. the spin 1/2 XXX chains and the Toda chains, after them sev-
eral contributions have brought to further develop of the SoV method and nowadays
several classes of integrable quantum models are proven to admit a description in
the framework of the Sklyanin’s SoV method [27–51]. One very important feature of
the SoV method is that it provides not only the equations determining the spectrum
of the transfer matrix but also the proof of its completeness and the construction
of the corresponding eigenstates; this is in contrast to the Bethe ansatz or algebraic
Bethe ansatz approach where the proof of completeness is in general a non trivial
task [52,53].

For all these models, one is of course interested to go beyond the knowledge of
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the spectrum properties so as to reach their dynamical behaviour through the com-
putation of their form factors (matrix elements of local operators in the eigenstates
basis of the transfer matrix T (λ)) and correlation functions. Several progresses in
this direction have been achieved in the recent years, in particular for solvable lattice
models [54–64]. As a matter of fact, the computation of form factors and correlation
functions needs an explicit representation of the local operators in the eigenstate
basis of the transfer matrix T (λ) together with manageable formulas for the com-
putation of the resulting scalar products of states. While the first problem can be
solved within the quantum inverse scattering method by essentially expressing local
operators in terms of the quantum monodromy matrix entries, hence solving effec-
tively the so-called quantum inverse scattering problem [57, 65], the answer to the
second question was up to now strongly dependent on the method used to describe
the spectrum and eigenstates of the system.

In the context of algebraic Bethe ansatz the computation of form factors and
correlation functions [57,59,65–67] was performed in settings sufficiently explicit to
compute their critical behaviour [68–72] and make explicit contact (at operator level)
with conformal field theories [73]. All this program was finally pushed forward to
time and temperature dependent correlation functions [74–79], not mentioning clear
contact with structure factors accessible in particular through neutron scattering
experiments on magnetic crystals [80,81]. An essential technical feature in all these
results was the appearance of rather sophisticated determinant formulas, in partic-
ular for representations of certain partition functions [82], scalar products of states
and form factors [57,83], in a form suitable for their analysis in the thermodynamical
limit one is usually interested in [68–71,77,84,85].

In the SoV approach, this programme is up to now slightly less developed due
to peculiar technical features. To explain this point in more detail, let us recall
that in the SoV approach one needs first to identify a diagonalizable operator, say
S(λ), computed from the monodromy matrix T (λ) entries, having simple spectrum,
in such a way that the multidimensional spectral problem for the transfer matrix
T (λ) separate in the S(λ) eigenstate basis into multiple one dimensional spectral
problems, hence leading to its solution. In the example of one dimensional lattice
models, the space of states V is realized as a tensor product of local quantum space
of states Vn at sites n of the lattice, n = 1, . . . N , V = ⊗N

n=1Vn. In this case, in
order to find a suitable operator S(λ) with simple spectrum, one is often led to
introduce inhomogeneity parameters ξn attached to each site n of the lattice and
to let them be in generic positions in the complex plane. This has no effect on the
integrability properties of the model and this is somehow a standard method used
in integrable systems; namely to solve a given model by embedding it in a larger
class of models depending on continuous parameters, here the ξn, and use these new
variables to obtain simpler resolution process. All computations are then performed
for this inhomogeneous integrable model, the homogeneous limit being taken only
at the very end on the quantities one is interested in. It has been first shown in [86]
that within such an SoV framework, the scalar product of separate states and even
the form factors of local operators admit simple determinant representations written
in particular in terms of Baxter Q functions. The key role in these representations
is played by a Vandermonde determinant and its various (straightforward) dressing,
making the computation of scalar products in the SoV framework much simpler and
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transparent compared to the one obtained in the algebraic Bethe ansatz settings.
Such representations have quite universal character and properties as it has been
shown in many following examples [44,46–48,87,88]. Moreover it can be anticipated
that such features will generalize to even more complicated systems associated to
higher rank quantum groups, making the SoV approach even more appealing. The
power and applicability of all this method however requires that the determinant
representations for the quantities like the form factors or correlation functions are
simple or explicit enough in terms of the inhomogeneity parameters ξn such that
the required homogeneous limits are non ambiguous. In particular one would like to
avoid implicit zero over zero expressions in the homogeneous limit that could just
spoil the simplicity and benefits obtained within the SoV method. However, it has
been observed already in [86, 87], that the homogeneous limit of the determinants
for scalar products or form factors of local operators obtained by suitable dressings
of the Vandermonde determinant do not have obvious homogeneous limit although
there is no doubt that such a limit should, by construction, be well defined.

It is the purpose of the present article to show that the rather universal determi-
nant representations of scalar products of separate states obtained in the framework
of SoV can be generically recast in a different form allowing for an obvious ho-
mogeneous limit, hence opening the way to use extensively this approach to tackle
dynamical properties of quantum integrable systems. More precisely, it will be shown
that the dressed Vandermonde determinants obtained in the SoV approach for scalar
products are equal to certain Izergin-type determinants, making the above discussed
homogeneous limits trivial. These representations are shown in their turn to be
equal to generalized Slavnov-type determinants if one of the two separate states is
defined by a solution to equations of Bethe ansatz type. All these equalities between
determinants are obtained through purely algebraic identities, hence making their
appearance quite universal. For simplicity and also for making the correspondence
between SoV results and algebraic Bethe ansatz ones explicit, we made the choice
to explain the essential features of our results in a very elementary example : the
XXX anti-periodic chain, in this case these formulae are reminiscent of those ob-
tained in [89, 90] for the XXX periodic chain. Recently several authors studying
in particular the properties of the Slavnov formula for the XXX model discovered a
relation of this type of determinant with Vandermonde type representations [91,92].
There are also some more complicated relations observed for the XXZ chain [93].
We would like to stress however that the method presented in this paper seems quite
universal leading to similar formulas for more complicated cases, like for XXZ or
XY Z Heisenberg chains, even in the presence of generic integrable boundaries, that
will be given in a separate publication.

The article is organized as follows. In section 2 we recall the basics of the SoV
method for the anti-periodic XXX model. In section 3 we describe the determinant
formulas for scalar products of separate states that include all eigenstates of the
transfer matrix. We then derive the main identities and equivalent representations
of these scalar products in terms of Izergin-type and generalized Slavnov-type de-
terminants when one of the state is an eigenstate of the transfer matrix. Similar
formulas are then obtained for form factors of local operators in section 4. In section
5 we show the equivalence of this SoV description with the one obtained from alge-
braic Bethe ansatz, making use of the fact that by an explicit and simple change of
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basis the anti-periodic XXX model can be recast in a form allowing its resolution
by algebraic Bethe ansatz.

2 The antiperiodic XXX Heisenberg chain in the SoV

framework

In this section we introduce the XXX Heisenberg chain with antiperiodic boundary
conditions and recall the solution of the inhomogeneous version of this model by
means of Sklyanin’s Separation of Variables approach [23–26]. Within the frame-
work of this approach, the eigenvalues and eigenstates of the transfer matrix are
completely characterized by the solutions of a system of discrete equations involving
the inhomogeneity parameters of the model, which can be understood as discrete
versions of Baxter’s famous T -Q equation [3]. We show here that this SoV discrete
characterization of the transfer matrix spectrum and eigenstates can be reformulated
in terms of polynomial solutions of the continuous (i.e., functional) T -Q equation.
This enables us to obtain a complete description of the spectrum in terms of the
solutions of a system of Bethe-type equations, and to rewrite the corresponding
eigenvectors in an ABA-type form, which we expect to be more convenient for the
consideration of both the homogeneous and thermodynamic limits of the model.

2.1 The antiperiodic XXX Heisenberg chain

In this paper we consider the XXX Heisenberg chain of spin 1/2,

H =

N∑

n=1

(
σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1 − 1

)
, (2.1)

with antiperiodic boundary conditions,

σa
N+1 = σx

1 σ
a
1 σ

x
1 , a = x, y, z. (2.2)

The Hamiltonian (2.1) acts on a 2N -dimensional quantum space V = ⊗N
n=1Vn, with

Vn ≃ C
2. Here and in the following, σa

n, a = x, y, z, stand for the Pauli matrices at
site n i.e., acting on the local quantum spin space Vn.

The R-matrix of the model corresponds to the rational solution of the Yang-
Baxter equation,

R(λ) =




λ+ η 0 0 0
0 λ η 0
0 η λ 0
0 0 0 λ+ η


 , (2.3)

where λ is the so-called spectral parameter and η is an arbitrary non-zero complex
parameter. The monodromy matrix of the XXX spin-1/2 chain is defined as the
following ordered product of R-matrices,

T0(λ) = R0N (λ− ξN ) . . . R01(λ− ξ1) =

(
A(λ) B(λ)
C(λ) D(λ)

)

[0]

. (2.4)
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This is an operator which acts on the tensor product of a two-dimensional auxiliary
space V0 ≃ C

2 with the 2N -dimensional quantum space V of the model. We have
used here the standard notation which may label by indices (at least when it is not
clear by the context) the space(s) on which the corresponding operator acts in a non-
trivial way. Note that we have introduced in (2.4) a set of inhomogeneity parameters
ξj , 1 ≤ j ≤ N , so that T0(λ) (2.4) corresponds in fact to the monodromy matrix
of an inhomogeneous generalization of the XXX spin chain. These inhomogeneity
parameters are crucial for the SoV study of the model.

The transfer matrix of the model with antiperiodic boundary conditions can be
defined as follows

T (λ) = tr0 (σ
x
0 T0(λ)) = B(λ) + C(λ). (2.5)

This equation defines a one-parameter family of commuting operators. It is impor-
tant to underline that the transfer matrix is a polynomial in λ of degree N − 1.
It is also easy to observe1 that the transfer matrix satisfies the following simple
symmetries,

[Sx,T (λ)] = 0, [Γx,T (λ)] = 0, (2.6)

where

Sx =

N∑

n=1

σx
n, Γx =

N
⊗
n=1

σx
n = (−i)N exp

(
iπ

2
Sx

)
. (2.7)

In the homogeneous limit (ξn → 0), the Hamiltonian (2.1) of the XXX spin quantum
chain with antiperiodic boundary conditions is obtained as a logarithmic derivative
of the antiperiodic transfer matrix (2.5):

H = T (λ)−1 d

dλ
T (λ)

∣∣∣∣
λ=0

. (2.8)

Finally, let us recall the expression for the quantum determinant of the monodromy
matrix, which is a central element of the Yang-Baxter algebra,

det
q

T0(λ) = B(λ)C(λ− η)−A(λ)D(λ− η) = −a(λ) d(λ− η), (2.9)

with

a(λ) =
N∏

n=1

(λ− ξn + η), d(λ) =
N∏

n=1

(λ− ξn). (2.10)

2.2 Separation of variables for the XXX spin chain

The functional version of the separation of variables solution of the spin-1/2 XXX
spin chain leading to the diagonalization of the transfer matrix (2.5) comes back
to the early works of Sklyanin [25, 26]. Following [46], here we briefly recall the
construction of the SoV basis of the space of states as well as the characterization
of the transfer matrix spectrum and eigenstates which follow from this approach.

Starting from this point we will always suppose that the inhomogeneity param-
eters ξa, 1 ≤ a ≤ N , are generic, or at least that they satisfy the condition

ξa 6= ξb ± hη for h ∈ {0, 1}, ∀a 6= b, (2.11)

1See the proof of Theorem 4.2 for an explicit derivation of these symmetries.
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which ensures the validity of the SoV approach (see [25,26]).
The SoV diagonalization of the transfer matrix (2.5) relies on the construction of

a basis of the space of states, that we shall call SoV basis, which for the antiperiodic
case can be chosen as the one diagonalizing the action of the operator D(λ) of the
monodromy matrix. In this basis, the action of the operators B(λ) and C(λ), and
hence of the antiperiodic transfer matrix (2.5), happens to be quasi-local. In the
case of the XXX spin-1/2 chain, the construction of such a basis can be explicitly
realized in the quantum space V (respectively its dual space) by a multiple action of
operators B(ξj) on the reference state (respectively of operators C(ξj) on the dual
reference state). In fact, as noticed in [94], this SoV basis is nothing else that the
so-called F -basis introduced in [95].

Concretely, let us define, for each N -tuple h ≡ (h1, . . . , hN ), a state |h 〉 in the
quantum space V and a state 〈h | in the dual quantum space as

|h 〉 = 1

V ({ξ})

N∏

n=1

(
B(ξn)

a(ξn)

)hn

| 0 〉, (2.12)

〈h | = 1

V ({ξ}) 〈 0 |
N∏

n=1

(
C(ξn)

d(ξn − η)

)hn

, (2.13)

where | 0 〉 and 〈 0 | stand respectively for the ferromagnetic reference state with all
the spins up (right reference state) and for its dual state (left reference state):

| 0 〉 =
N
⊗
n=1

(
1
0

)

[n]

, 〈 0 | =
N
⊗
n=1

(1, 0)[n]. (2.14)

For convenience, the normalization factor in (2.12) and (2.13) is chosen to be a
Vandermonde determinant of the inhomogeneity parameters of the model:

V ({ξ}) =
∏

1≤b<a≤N

(ξa − ξb). (2.15)

The condition (2.11) on the inhomogeneity parameters of the model ensures that
the operator D(λ) is diagonalizable and has simple spectrum. It can easily be shown
that the 2N states |h 〉 constitute a complete set of eigenstates for this operator:

D(λ)|h 〉 = dh(λ)|h 〉, (2.16)

and similarly,
〈h |D(λ) = dh(λ)〈h |, (2.17)

where

dh(λ) =

N∏

n=1

(λ− ξn + hnη). (2.18)

Moreover, the basis of the quantum space built from the vectors (2.12) and the
basis of the dual quantum space built from the vectors (2.13) are orthogonal. More
precisely, with the chosen normalization, the scalar product of a state |h 〉 of the
form (2.12) and of a state 〈k | of the form (2.13) is given by

〈k |h 〉 = δk,h
V ({ξ})V ({ξ − hη}) , (2.19)
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where V ({ξ}) stands for the Vandermonde determinant (2.15) associated with the
set of inhomogeneity parameters ξj, 1 ≤ j ≤ N , whereas V ({ξ − hη}) stands for the
Vandermonde determinant associated with the set of shifted inhomogeneity parame-
ters ξj −hjη, 1 ≤ j ≤ N . Hence we have the following decomposition of the identity
I on the quantum space V:

I = V ({ξ})
∑

h∈{0,1}N

V ({ξ − hη}) |h 〉〈h |. (2.20)

From the SoV basis (2.12) or (2.13) we define as in [46] what we call separate
states. These are states which admit a particular factorized form when expressed
in these basis, so that the computation of their scalar product will follow quite
straightforwardly from (2.19). More precisely, these are states which can be written
in the form

〈α | =
∑

h∈{0,1}N

N∏

a=1

α(ξa − haη) V ({ξ − hη}) 〈h |, (2.21)

|β 〉 =
∑

h∈{0,1}N

N∏

a=1

β(ξa − haη) V ({ξ + hη}) |h 〉, (2.22)

for any function α or β. It is important to mention here that such states are defined,
up to a global normalization, only by theN ratios α(ξj−η)/α(ξj) (or β(ξj−η)/β(ξj)),
1 ≤ j ≤ N . This means in particular that many different functions α may lead to
the same separate state.

For the effective computation of the scalar product between states of the form
(2.21) and states of the form (2.22), it is convenient to rewrite (2.22) with the same
Vandermonde determinant as in (2.21) by means of the property

(−1)N
N∏

n=1

(
N∏

m=1

ξn − ξm + η

ξn − ξm − η

)hn

V ({ξ − hη}) = V ({ξ + hη}), (2.23)

which can be proven by direct computation. Then the right separate state (2.22)
can alternatively be written as

|β 〉 =
∑

h∈{0,1}N

N∏

a=1

β̄(ξa − haη) V ({ξ − hη}) |h 〉, (2.24)

where the function β̄ is such that

β̄(ξn) = β(ξn), β̄(ξn − η) = − a(ξn)

d(ξn − η)
β(ξn − η). (2.25)

The eigenstates of the antiperiodic transfer matrix (2.5) happen to be particular
cases of separate states, associated with some function Q(λ) with ratios Q(ξj −
η)/Q(ξj), 1 ≤ j ≤ N , fixed by the corresponding eigenvalue of the transfer matrix.
More precisely, we can formulate the following theorems, which were proved in [26]
and in [46] (for a more general XXZ case).
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Theorem 2.1. Let the inhomogeneity parameters satisfy the condition (2.11). Then
the antiperiodic transfer matrix T (λ) (2.5) has a simple spectrum, and a function

τ(λ) is an eigenvalue of T (λ) if and only if

1. it is a polynomial of degree N − 1,

2. it satisfies the following set of quadratic discrete equations:

τ(ξn) τ(ξn − η) + a(ξn) d(ξn − η) = 0, ∀n ∈ {1, . . . , N}. (2.26)

Theorem 2.2. The left eigenstate of the transfer matrix T (λ) corresponding to the

eigenvalue τ(λ) is a left separate state 〈Q | of the form (2.21) for a function Q(λ)
satisfying the following set of conditions for all n ∈ {1, . . . , N}:

τ(ξn)Q(ξn) + a(ξn)Q(ξn − η) = 0, (2.27)(
Q(ξn), Q(ξn − η)

)
6= (0, 0). (2.28)

Similarly the right eigenstate with eigenvalue τ(λ) is a right separate state of the

form (2.22) for the same function Q(λ).

Remark 2.1. It is important to underline that, even if the system of equations (2.27)
does not uniquely define the function Q(λ), they nevertheless uniquely define the
corresponding eigenstate up to a global normalization factor.

Remark 2.2. The conditions (2.26) for the transfer matrix eigenvalue τ(λ) imply
that a function Q(λ) associated with τ(λ) through the system (2.27) satisfies in fact
the following larger systems of 2N equations:

τ(ξn − hnη)Q(ξn − hnη) = −a(ξn − hnη)Q(ξn − (hn + 1)η)

+ d(ξn − hnη)Q(ξn − (hn − 1)η), ∀n ∈ {1, . . . , N}, ∀hn ∈ {0, 1}. (2.29)

Conversely it is easy to see that, if one can exhibit two functions τ(λ) and Q(λ)
satisfying (2.29) and (2.28), then τ(λ) automatically satisfies the conditions (2.26).
It means that the set of quadratic equations (2.26) for τ(λ) in Theorem 2.1 can
equivalently be replaced by a condition on the existence of a function Q(λ) satisfying
(2.29)-(2.28).

2.3 Baxter functional T -Q equation

The system of equations (2.29) which, due to Remark 2.2, leads to the character-
ization of the transfer matrix spectrum and eigenvectors, is strongly reminiscent
of Baxter’s famous T -Q equation [3]: it appears naturally as a discrete version,
evaluated at the inhomogeneity and shifted inhomogeneity parameters only, of the
following functional equation:

τ(λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ + η). (2.30)

In fact if, for a given function τ(λ), there exists Q(λ) solution of (2.30), then it
is obvious that Q(λ) satisfies (2.29). The converse is of course not automatically
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true2. It would nonetheless be very convenient to be able to completely characterize
the transfer matrix spectrum and eigenstates in terms of solutions of the continuous
equation (2.30) rather than of the discrete ones (2.29): the entireness condition
for τ(λ) could then simply be rewritten in terms of Bethe-type equations for the
roots λj of the function Q(λ), which would enable us to study the homogeneous and
thermodynamic limit of our model in a rather standard way.

Hence the whole problem, to pass from the discrete (2.29) to the continuous
(2.30) picture, is to understand whether there always exists, for each eigenvalue
τ(λ) as characterized from the SoV approach, a solution Q(λ) to the functional
equation (2.30) which moreover satisfies (2.28). In addition, one has to be able
to characterize the functional form of this solution, keeping in mind that the latter
should be relatively independent from the corresponding eigenvalue τ(λ) if one wants
to be able to reformulate our characterization of the spectrum and eigenstates in
terms of a system of Bethe-type equations.

Depending on the model one considers, this may be a difficult problem3 to pre-
cisely identify the class of Q-solutions to (2.30) associated with the transfer matrix
eigenvalues τ(λ). However, in the present case, the situation is quite simple since
we have to deal with polynomials of degree less than N only. One can therefore
formulate the following theorem, which provides an alternative description of the
transfer matrix spectrum with respect to Theorem 2.1.

Theorem 2.3. Let the inhomogeneity parameters satisfy the condition (2.11). Then,
a given function τ(λ) is an eigenvalue of the antiperiodic transfer matrix (2.5) if and
only if it satisfies the two following conditions:

1. it is an entire function of λ,

2. there exists a polynomial Q of some degree R ≤ N ,

Q(λ) =
R∏

a=1

(λ− λa), (2.32)

for some set of roots λ1, . . . , λR such that λa 6= ξb, ∀a ∈ {1, . . . , R}, ∀b ∈
{1, . . . , N}, satisfying with τ(λ) the functional equation (2.30).

Whenever it exists, such a polynomial Q(λ) is unique.

Proof. It is quite straightforward to show that, if the conditions 1 and 2 are satisfied,
then τ(λ) is an an eigenvalue of the antiperiodic transfer matrix: on the one hand

2All that we can say in general is that Q(λ) satisfies some inhomogeneous version of (2.30) of
the form

τ (λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ+ η) + FQ(λ), (2.31)

with an additional term FQ(λ) vanishing at all the points ξn and ξn − η, n ∈ {1, . . . , N}.
3See for instance the recent papers [51, 88] which tackle this problem for the slightly more

complicated XXZ and dynamical 6-vertex antiperiodic models: it appears that in these cases the
functional form (and notably the quasi-periodicity properties) of the solutions Q(λ) differ from those
of τ (λ). The problem seems even more complicated when one considers spin chains with boundaries,
so that it has been suggested in [96] to reformulate the SoV characterization of the transfer matrix
spectrum in terms of solutions of a particular inhomogeneous functional equations of the type (2.31)
rather than of the homogeneous one.
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it is obvious from the previous discussion that the condition 2 of Theorem 2.1 is
satisfied; on the other hand the fact that Q(λ) is a polynomial of maximal degree N
implies that −a(λ)Q(λ− η) + d(λ)Q(λ) is a polynomial of maximal degree 2N − 1
so that, from the entireness condition of τ(λ), the condition 1 of Theorem 2.1 is also
satisfied.

Let us now show that, if the equation (2.30) admits a polynomial solution Q(λ)
of the form (2.32) for a given function τ(λ), then this solution is unique. Indeed, let
us assume that there exists two different polynomial solutions P (λ) and Q(λ) to the
equation (2.30) associated with the same function τ(λ). It means that

−a(λ)P (λ− η) + d(λ)P (λ + η)

P (λ)
=

−a(λ)Q(λ− η) + d(λ)Q(λ + η)

Q(λ)
, (2.33)

so that

−a(λ)WP,Q(λ) = d(λ)WP,Q(λ+ η), (2.34)

where WP,Q(λ) stands for the quantum Wronskian of these two solutions:

WP,Q(λ) = Q(λ)P (λ− η)− P (λ)Q(λ− η). (2.35)

Taking into account that a(λ) = d(λ + η), and using the fact that WP,Q(λ) is a
polynomial in λ, we obtain that

WP,Q(λ) = wP,Q(λ) d(λ) (2.36)

where wP,Q(λ) is a polynomial in λ which moreover has to satisfy the following
quasi-periodicity condition:

wP,Q(λ+ η) = −wP,Q(λ). (2.37)

Since the only polynomial in λ which is periodic of period 2η is a constant, and since
the only constant which satisfies wP,Q = −wP,Q is zero, one has that WP,Q(λ) = 0.
Hence Q(λ) = P (λ) once we have chosen the highest coefficients of both polynomials
to be equal to 1.

Let us finally prove that, for any eigenvalue τ(λ) of the antiperiodic transfer
matrix (2.5), there exists a polynomial solution Q(λ) of degree R ≤ N and which
does not vanish at the points ξj, 1 ≤ j ≤ N , to the functional equation (2.30)
associated with τ(λ). We recall that, if Q(λ) is a polynomial of maximal degree
N , then τ(λ)Q(λ) and −a(λ)Q(λ − η) + d(λ)Q(λ + η) are both polynomials of
maximal degree 2N − 1. Hence these two polynomials are equal if and only if they
coincide for 2N different values of λ, for instance at the 2N points ξa and ξa − η for
a ∈ {1, . . . , N}, i.e., if and only the following system of 2N equations is satisfied:

{
τ(ξa)Q(ξa) = −a(ξa)Q(ξa − η),

τ(ξa − η)Q(ξa − η) = d(ξa − η)Q(ξa),
∀ a ∈ {1, . . . , N}. (2.38)

Note at this point that, due to (2.26), the above system is in fact equivalent to the
system of only N equations given by the first line of (2.38). Moreover, saying that
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Q(λ) is a polynomial of maximal degree N is equivalent to saying that Q(λ) can be
written in the following form:

Q(λ) =

N+1∑

a=1

N+1∏

b=1
b6=a

λ− ξb
ξa − ξb

Q(ξa). (2.39)

In (2.39), ξN+1 is an arbitrary complex number, different from ξ1, . . . , ξN , which can
be chosen at our convenience. Hence the system (2.38) is equivalent to a homoge-
neous linear system of N equations for the 2N + 1 unknowns Q(ξ1), . . . , Q(ξN+1),
which can alternatively be thought of as an inhomogeneous linear system for the N
unknowns Q(ξ1), . . . , Q(ξN ) in terms of the (N + 1)-th one Q(ξN+1):

N∑

b=1

[cτ (ξN+1)]ab Q(ξb) = −
N∏

ℓ=1

ξa − ξℓ − η

ξN+1 − ξℓ
Q(ξN+1). (2.40)

The elements of the matrix cτ (ξN+1) of this linear system are

[cτ (ξN+1)]ab = δab
τ(ξa)

a(ξa)
+

N+1∏

c=1
c 6=a

ξb − ξc − η

ξa − ξc
∀a, b ∈ {1, . . . , N}. (2.41)

The determinant of this matrix is a rational function of ξN+1 which is not identically
zero, hence it is possible to chose ξN+1 for this determinant to be finite and non-zero.
Then, for any given choice of Q(ξN+1) 6= 0, there exists one and only one nontrivial
solution

(
Q(ξ1), . . . , Q(ξN )

)
of the system (2.40), which is given by Cramer’s rule:

Q(ξj) = Q(ξN+1)
detN

[
c
(j)
τ (ξN+1)

]

detN [cτ (ξN+1)]
, ∀ j ∈ {1, . . . , N}, (2.42)

with matrices c
(j)
τ (ξN+1) defined as

[
c(j)τ (ξN+1)

]
ab

= (1− δb,j)[cτ (ξN+1)]ab − δb,j

N∏

ℓ=1

ξa − ξℓ − η

ξN+1 − ξℓ
, (2.43)

for all a, b ∈ {1, . . . , N}. Note that the determinant of the matrices are also non-
zero rational functions of ξN+1, so that it is also possible to fix ξN+1 such that
none of them vanish. In that case one is ensured that Q(ξj) 6= 0, ∀ j ∈ {1, . . . , N}.
Hence from (2.39) we have obtained a polynomial of degree at most N satisfying the
functional equation (2.30) and the requirement that its zeros do not coincide with any
of the inhomogeneity parameters. It is important to remark that we have no criteria
implying that the degree of Q(λ) is exactly N : being described by an interpolation
formula in N + 1 points, it can be a polynomial of any degree R ≤ N .

Hence, from Theorem 2.3, we know that there exists a bijection which relates
the set of the transfer matrix eigenvalues τ(λ) to the set of polynomials Q(λ) of the
form (2.32) with maximal degree N : the image of τ(λ) is provided by the unique
solution Q(λ), in the aforementioned set of polynomials, to the functional equation
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(2.30) associated with τ(λ). From now on we shall denote this unique solution by
Qτ (λ), and we shall denote the corresponding right and left eigenstate by |Qτ 〉 and
〈Qτ | respectively.

The Baxter equation as usual leads to the Bethe equations for the roots of the
polynomial Q(λ):

a(λa)

d(λa)

R∏

b=1

λa − λb − η

λa − λb + η
= 1, ∀ a ∈ {1, . . . , R}, 1 ≤ R ≤ N. (2.44)

Theorem 2.3 therefore ensures us that the solutions to these Bethe equations provide
a complete description of the spectrum (and eigenstates) of the antiperiodic transfer
matrix (2.5).

Before concluding this subsection, we would like to mention that it is possible to
obtain an alternative (but equivalent) description of this spectrum, as stated in the
following theorem.

Theorem 2.4. Let M = N/2 if N is even or M = (N − 1)/2 if N is odd. Then

τ(λ) is an eigenvalue of the antiperiodic transfer matrix (2.5) if and only if it can

be written in the following form,

τ(λ) = ±1

2

[
p(λ− η) q(λ+ η)− q(λ− η) p(λ + η)

]
, (2.45)

with q(λ) a polynomial of degree R ≤ M and p(λ) a polynomial of degree N−R such

that
1

2

[
p(λ) q(λ− η) + q(λ) p(λ− η)

]
= d(λ). (2.46)

Proof. Let τ(λ) be an eigenvalue of the transfer matrix. Then Theorem 2.3 implies
that there exists a (unique) polynomial Qτ (λ) satisfying the Baxter equation (2.30)
together with τ(λ). From Theorem 2.1, it is easy to see that −τ(λ) is another
eigenvalue of the transfer matrix, so that there also exists a polynomial Q−τ (λ)
which satisfies (2.30) together with −τ(λ). We then define q(λ) ∈ {Qτ (λ), Q−τ (λ)}
to be the polynomial with the smaller degree and p(λ) ∈ {Qτ (λ), Q−τ (λ)} to be the
other one. If the two polynomials Qτ (λ) and Q−τ (λ) have the same degree, we fix
for instance q(λ) = Qτ (λ) and p(λ) = Q−τ (λ).

Using the fact that q(λ) and p(λ) satisfy the Baxter equation with opposite
eigenfunctions, we obtain the identity

−a(λ) q(λ − η) + d(λ) q(λ + η)

q(λ)
=

a(λ) p(λ− η)− d(λ) p(λ+ η)

p(λ)
, (2.47)

or equivalently,
a(λ) Ŵq,p(λ) = d(λ) Ŵq,p(λ+ η), (2.48)

where we have defined the function Ŵq,p(λ) as

Ŵq,p(λ) =
1

2

[
p(λ) q(λ− η) + q(λ) p(λ− η)

]
. (2.49)

Since Ŵq,p(λ) is a polynomial in λ and since a(λ) = d(λ+ η), the equation (2.48) is
satisfied if and only if

Ŵp,q(λ) = d(λ). (2.50)
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It also means that the degree of q(λ) is less or equal to M .
Let us now show that the transfer matrix eigenvalue τ(λ) is of the form (2.45).

By definition we know that

τ(λ) q(λ) = ǫ[−a(λ) q(λ− η) + d(λ) q(λ + η)] (2.51)

where ǫ = 1 if q(λ) = Qτ (λ) and ǫ = −1 if q(λ) = Q−τ (λ). Using now that
a(λ) = Ŵp,q(λ+ η) and that d(λ) = Ŵp,q(λ), we obtain

τ(λ) q(λ) = ǫ
[
q(λ) p(λ− η) q(λ+ η)− q(λ) p(λ+ η) q(λ− η)

]
, (2.52)

which implies (2.45).
Vice versa, let q(λ) and p(λ) be two polynomials of degree R and N −R respec-

tively and which satisfy (2.46). Let τ (+)(λ) and τ (−)(λ) be equal to the right hand
side of (2.45) with + or − sign respectively. We can first remark that, from the
definition (2.45), τ (±)(λ) are obviously polynomials in λ of degree N − 1. Moreover,

τ (±)(λ) q(λ) =± 1

2

[
p(λ− η) q(λ+ η)− q(λ− η) p(λ+ η)

]
q(λ)

=±
{
1

2

[
p(λ− η) q(λ) + p(λ) q(λ− η)

]
q(λ+ η)

− 1

2

[
p(λ+ η) q(λ) + q(λ+ η) p(λ)

]
q(λ− η)

}

=±
[
d(λ) q(λ+ η)− a(λ) q(λ− η)

]
. (2.53)

Similarly one can show that

τ (±)(λ) p(λ) = ∓
[
− a(λ) p(λ − η)− d(λ) p(λ+ η)

]
. (2.54)

Hence τ (+)(λ) = −τ (−)(λ) satisfies the functional equation (2.30) with q(λ) whereas
τ (−)(λ) = −τ (+)(λ) satisfies the functional equation (2.30) with p(λ). Finally it
is easy to see that, given any inhomogeneity parameter ξj , p(λ) and q(λ) cannot
both vanish in ξj − η: this would imply from (2.46) that d(ξj − η) = 0, which is
obviously not true. Hence, taking also into account (2.53) and (2.54), this means
that τ (+)(λ) and τ (−)(λ) both satisfy (2.26), so that they are both transfer matrix
eigenvalues.

2.4 ABA-type representations for the transfer matrix eigenvectors

In this section we present an alternative way to write the separate states, and hence
the eigenstates of the antiperiodic transfer matrix, in a form which is strongly remi-
niscent of the form of the Bethe states as obtained in the framework of the algebraic
Bethe ansatz. It is worth remarking that this type of rewriting can be in fact derived
for a large class of integrable quantum models solvable by SoV method.

Let us first define a simple separate state, the state 〈 1 | associated with the
constant function α(λ) = 1. The corresponding right separate state | 1 〉 is defined
similarly using (2.22). Then, if α(λ) is a polynomial, the separate state 〈α | or |α 〉
can be obtained by multiple action of the “creation” operator D, evaluated at the
roots αj of α, on the separate states 〈 1 | or | 1 〉.
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Proposition 2.1. Let α(λ) be a polynomial of the form,

α(λ) =

R∏

k=1

(λ− αk). (2.55)

Then the corresponding separate states 〈α | and |α 〉 can be written as

〈α | = (−1)RN 〈 1 |
R∏

k=1

D(αk), |α 〉 = (−1)RN
R∏

k=1

D(αk)| 1 〉. (2.56)

Proof. The proof is straightforward using (2.16) and (2.17).

The representation (2.56) can be used notably for the eigenstates |Qτ 〉 and 〈Qτ |
corresponding to the eigenvalue τ(λ) of the transfer matrix, by means of the unique
polynomial Qτ (λ) which, in virtue of Theorem 2.3, solves the functional equation
associated with τ(λ). Since the roots of Qτ (λ) can be obtained as the solutions to
the corresponding Bethe-type equations, the analogy with algebraic Bethe ansatz
is then particularly obvious. It is also possible to represent these eigenstates in a
slightly different form. Let us to this aim define some other simple left and right
separate state that we shall denote by 〈 1alt | and | 1alt 〉 respectively, and which are
given by a function 1alt(λ) which alternates sign between the inhomogeneity and
shifted inhomogeneity parameters, namely

1alt(ξa) = 1, 1alt(ξa − η) = −1, ∀a ∈ {1, . . . N}. (2.57)

This second representation for the eigenstates |Qτ 〉 and 〈Qτ | corresponding to the
eigenvalue τ(λ) of the transfer matrix then uses the polynomial Q−τ (λ) which solves
the functional equation (2.30) for the eigenvalue −τ(λ) of the transfer matrix:

Proposition 2.2. Let τ(λ) be an eigenvalue of the antiperiodic transfer matrix (2.5)
and let

Qτ (λ) =

R∏

k=1

(λ− λk), Q−τ (λ) =

N−R∏

k=1

(λ− λ̂k), (2.58)

be the unique solutions to the functional T -Q equation (2.30) associated with the

eigenvalues τ(λ) and −τ(λ) respectively. Then the transfer matrix eigenstate |Qτ 〉
with eigenvalue τ(λ) can be represented in following forms:

|Qτ 〉 = (−1)RN
R∏

k=1

D(λk) | 1 〉 (2.59)

= (−1)(N−R)N

R∏
k=1

d(λa)

N−R∏
k=1

d(λ̂a)

N−R∏

k=1

D(λ̂k) | 1alt 〉. (2.60)
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3 Scalar products of separate states

In this section, we explain how to compute the scalar products of separate states of
the form (2.21) and (2.22). In general, the latter can by construction be represented
in terms of the determinant of a weighted sum of two Vandermonde matrices in-
volving the inhomogeneity parameters of the model. We shall notably focus on the
case where one of the two separate states is an eigenstate of the antiperiodic transfer
matrix. We shall see that in this case it is possible to represent the corresponding
scalar product in a more convenient form for the study of the homogeneous and
thermodynamic limit, namely, similarly as what happens in the ABA framework
for the scalar product of an on-shell and an off-shell Bethe states, in terms of the
determinant introduced in [83] (Slavnov determinant).

3.1 General determinant representation for the scalar product of

two separate states

Let us start by recalling the general determinant representation for the scalar prod-
ucts of two separate states. Note that this type of representation is a direct con-
sequence of the factorized form of these states in the SoV basis, and hence can be
shown for a large variety of models solvable by SoV.

Theorem 3.1. Let 〈α | be a left separate state of the form (2.21), and let |β 〉 be a

right separate state of the form (2.22). Their scalar product can be written as

〈α |β 〉 = detN
[
M(α,β)

]

V ({ξ}) , (3.1)

where M(α,β) corresponds to the following weighted sum of two Vandermonde ma-

trices:

[
M(α,β)

]
a,b

= ξb−1
a α(ξa) β̄(ξa) + (ξa − η)b−1 α(ξa − η) β̄(ξa − η) (3.2)

= α(ξa)β(ξa)

[
ξb−1
a − a(ξa)α(ξa − η)β(ξa − η)

d(ξa − η)α(ξa)β(ξa)
(ξa − η)b−1

]
. (3.3)

The proof of this theorem is straightforward. It was given in [46] in the case of
a more general XXZ model.

Note that it is possible to use this determinant representation to show the (ex-
pected) orthogonality of the eigenstates of the antiperiodic transfer matrix, which
therefore form an orthogonal basis of the quantum space of states of the model.

Corollary 3.1. Let τ(λ) and τ ′(λ) be two different eigenvalues of the antiperiodic

transfer matrix (2.5). Then the corresponding eigenstates are orthogonal:

〈Qτ ′ |Qτ 〉 = 〈Qτ |Qτ ′ 〉 = 0. (3.4)

Proof. τ(λ) and τ ′(λ) are two different polynomials of degree N − 1:

τ(λ) =
N∑

b=1

cbλ
b−1, τ ′(λ) =

N∑

b=1

c′bλ
b−1. (3.5)
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It means that the vector with components vb = cb − c′b is non trivial, and it is easy
to check that

N∑

b=1

[
M(Qτ ,Qτ ′)

]
a,b

vb = 0. (3.6)

The aim of this section is to show that it is possible to rewrite the expression (3.1)
for the scalar product of two separate states into some more convenient forms for the
consideration of the homogeneous and thermodynamic limit. We shall in particular
link this formula to some (generalizations of some) other determinant representations
that have already appeared in the literature in the framework of algebraic Bethe
ansatz: the Izergin determinant, first introduced as a representation for the partition
function of the six-vertex model with domain wall boundary conditions [82], and
the Slavnov determinant, which appears in the ABA framework as a convenient
representation for the scalar product of an on-shell and an off-shell Bethe vectors
[83]. To this aim, we shall first derive some identities that will be used for these
reformulations.

3.2 Some useful identities

As announced above, we want to transform the representation (3.1) into a more
convenient form for our purpose. To this aim we introduce, following [91], some
convenient notations that we shall use throughout all this section. For any set of
complex numbers {x} ≡ {x1, . . . , xM}, and a function f , we define

E±
{x}(y) =

N∏

n=1

y − xn ± η

y − xn
, (3.7)

A±
{x}[f ] =

detM
[
xb−1
a − f(xa) (xa ± η)b−1

]

V ({x}) (3.8)

Note that the representation (3.1)-(3.3) of the scalar product can easily be rewritten
by means of the notations (3.7) and (3.8): it is enough to choose the functions α(λ)
and β(λ) to be some polynomials (which by interpolation is always possible) that
we express in terms of their roots {α1, . . . , αR} and {β1, . . . , βS} as

α(λ) =

R∏

n=1

(λ− αn), β(λ) =

S∏

m=1

(λ− βm), (3.9)

to obtain that

〈α |β 〉 =
N∏

n=1

(
α(ξn)β(ξn)

)
A−

{ξ}

[
E+

{ξ}

E−
{ξ}

E−
{α1,...,αR}∪{β1,...,βS}

]
. (3.10)

We shall reformulate this expression by means of a few identities, involving the
quantities (3.7) and (3.8) and their relations to the Izergin and Slavnov determinants,
and that we now derive.
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We start with some preliminary identity which relates the two functionals A+
{x}[f ]

and A−
{x}[f

′] (3.8) when f ′ is related to f via a ratio of the two functions E+
{x} and

E−
{x} (3.7):

Identity 0. For any set {x} ≡ {x1, . . . , xM} of arbitrary complex numbers, we have

A±
{x}[f ] = A∓

{x}

[
−
E±

{x}

E∓
{x}

f

]
. (3.11)

Proof. To prove this identity we use an expression for the determinant of the sum
of two matrices,

V ({x}) A−
{x}

[
E+

{x}

E−
{x}

f

]

=

1∑

h1=0

· · ·
1∑

hM=0

M∏

n=1

(
−f(xn)

M∏

m=1

xn − xm + η

xn − xm − η

)hn

V ({x− hη})

=

1∑

h1=0

· · ·
1∑

hM=0

(
M∏

n=1

f(xn)

)
V ({x+ hη})

= V ({x}) A+
{x}[f ]. (3.12)

We have also used here the identity (2.23) for the Vandermonde determinants.

We shall now formulate a generalization of a result of Kostov [89, 90, 90, 91, 97]
concerning the relation between the functionals A±

{x}[f ] and the Izergin determinant

(see also [93]).
For µ ∈ C and two sets {x} ≡ {x1, . . . , xN} and {y} ≡ {y1, . . . , yN} of arbi-

trary complex numbers, we introduce the following function, that we call generalized
Izergin determinant:

I(µ)
N ({x}, {y}) =

N∏
a,b=1

(xa − yb + η)

V (x1, . . . , xN )V (yN , . . . , y1)
det
N

[
tµ(xa − yb)

]
, (3.13)

where we have defined

tµ(x) =
µ

x
− 1

x+ η
. (3.14)

For µ = 1 this formula gives the partition function of the rational six-vertex model
with domain wall boundary conditions [82].

Identity 1. For µ ∈ C and any sets {x1, . . . , xN} and {y1, . . . , yN} of arbitrary

complex numbers, we have

I(µ)
N ({x}, {y}) = (−1)NA−

{x}

[
µE+

{y}

]
(3.15)

= (−1)NA+
{y}

[
µE−

{x}

]
. (3.16)
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Proof. We shall prove here the first equality, the second one can be proven in the
same way (or by replacing η by −η in the Izergin determinant).

Let us first introduce the following auxiliary matrix with elements,

Mab =
N∏

k=1

(xa − yk + η) tµ(xa − yb), (3.17)

so as to rewrite (3.13) as

I(µ)
N ({x}, {y}) = detN M

V (x1, . . . , xN )V (yN , . . . , y1)
. (3.18)

We also introduce a set of N polynomials of degree N − 1,

Zb(x) =
∏

k 6=b

(x− yk + η) =
N∑

j=1

Cj,b xj−1, 1 ≤ b ≤ N. (3.19)

The coefficients Cj,b of these polynomials can be seen as the entries of an N × N
matrix C. It is easy to observe that

Mab = µZb(xa − η)

N∏

k=1

xa − yk + η

xa − yk
− Zb(xa)

=

N∑

j=1

(
µE+

{y}(xa) (xa − η)j−1 − xj−1
a

)
Cj,b, (3.20)

which means that M can be factorized into a product of two matrices, so that

det
N

M = (−1)N V ({x}) A−
{x}

[
µE+

{y}

]
det
N

C. (3.21)

It now remains to compute the determinant of the matrix C. It is easy to see from the
definition of the coefficients Cj,b that the product of C with a Vandermonde matrix
is diagonal:

N∑

j=1

(ya − η)j−1 Cj,b = δa,b
∏

j 6=a

(ya − yj), (3.22)

which means that detN C = V (yN , . . . , y1).

Note that the Izergin determinant (3.13) is defined only in the case where the
cardinality of the two sets of parameters {x} and {y} are equal, so that Identity 1 is
a priori valid only in this case. To overcome this restriction, it is however possible
to generalize the part of Identity 1 which concerns the relation between the two
functions A−

{x}

[
µE+

{y}

]
and A+

{y}

[
µE−

{x}

]
to cases in which the number of parameters

x and y does not coincide.

Identity 1′. For two sets {x1, . . . , xM} and {y1, . . . , yN} of arbitrary complex num-

bers and µ 6= 1, we have

A+
{y}

[
µE−

{x}

]
= (1− µ)N−MA−

{x}

[
µE+

{y}

]
. (3.23)
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Proof. The case N = M follows immediately from Identity 1. Let us therefore
suppose that M > N (the case M < N can be proven in the same way starting from
the right hand side). The proof is based on the following simple observation4,

A+
{y}

[
µE−

{x}

]
= (1− µ)N−M lim

v1,...,vM−N→∞
A+

{y}∪{v1,...,vM−N}

[
µE−

{x}

]
, (3.24)

from which we can use Identity 1 and obtain

A+
{y}

[
µE−

{x}

]
= (1− µ)N−M lim

v1,...,vM−N→∞
A−

{x}

[
µE+

{y}∪{v1,...,vM−N}

]
. (3.25)

Computing the limits we obtain (3.23).

Note that for N > M both sides of (3.23) are polynomials in µ, so that the
identity holds also in the case µ = 1. This leads to the following simple observation:

Corollary 3.2. For arbitrary sets {x1, . . . , xM} and {y1, . . . , yN} of complex num-

bers such that N > M , we have

A±
{y}

[
E∓

{x}

]
= 0. (3.26)

The next identity that we shall derive will enable us to relate the scalar product
of two separate states, one of them being an eigenstate of the transfer matrix, with
the Slavnov formula [83] for the scalar product of an off-shell and an on-shell Bethe
vectors in the framework of the algebraic Bethe ansatz.

For µ ∈ C, for two sets of parameters {x} ≡ {x1, . . . , xM} and {y} ≡ {y1, . . . , yM},
and a set of inhomogeneity parameters {ξ} ≡ {ξ1, . . . , ξN} (which may possibly co-
incide) with M ≤ N , we introduce the following function, that we call Slavnov

determinant:

S(µ)
M ({x}, {y}|{ξ}) =

M∏
j,k=1

(xj − yk + η)

V (x1, . . . , xM )V (yM , . . . , y1)
det
M

H(µ)({x}, {y}|{ξ}). (3.27)

In (3.27), the matrix H(µ)({x}, {y}|{ξ}) is defined by its elements as

[
H(µ)({x}, {y}|{ξ})

]
jk

= µE+
{ξ}(yk) t(xj − yk)−

E+
{x}(yk)

E−
{x}(yk)

t(yk − xj), (3.28)

where t(x) ≡ t1(x) is given by (3.14).
As already mentioned, this formula appeared initially in the ABA framework as a

representation for the scalar product of a Bethe state associated with generic param-
eters {y} (off-shell Bethe state) and a Bethe state associated with Bethe roots {x}
satisfying a system of Bethe equations (on-shell Bethe state) for an inhomogeneous
model with inhomogeneities ξ1, . . . , ξN and with a twist µ:

µE+
{ξ}(xm) = −

E+
{x}(xm)

E−
{x}(xm)

. (3.29)

Note at this point that the Bethe equations (2.44) introduced in the previous section
correspond to a special case of (3.29) with µ = −1.

4Here and in the following we mean that the limits are taken independently one at the time.
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Identity 2. For µ ∈ C, for {x1, . . . , xM} a solution to the Bethe equations (3.29)
associated with a set of inhomogeneity parameters {ξ1, . . . , ξN}, and for {y1, . . . , yM}
a set of arbitrary complex numbers, we have

S(µ)
M ({x}, {y}|{ξ}) = A−

{x}∪{y}

[
µE+

{ξ}

]
. (3.30)

Proof. Let us first suppose that the parameters xj are pairwise distinct, and let Q(λ)
be the normalized polynomial of degree M with roots x1, . . . , xM :

Q(λ) =

M∏

j=1

(λ− xj). (3.31)

We define from Q(λ) M different polynomials Qk(λ) of degree M − 1 as follows:

Qk(λ) =
∏

j 6=k

(λ− xj), 1 ≤ k ≤ M. (3.32)

Then, similarly as what has been done in the proof of Identity 1, we can define a
2M × 2M matrix C from the coefficients of the following 2M polynomials:

Qk(λ)Qk(λ+ η) =

2M∑

a=1

Ck,a λa−1, 1 ≤ k ≤ M, (3.33)

Qk(λ)Q(λ+ η) =

2M∑

a=1

Ck+M,a λ
a−1, 1 ≤ k ≤ M. (3.34)

Evidently the coefficients Ck,2M all vanish for k = 1, . . . ,M , but the 2M×2M matrix
C is invertible, and it is not difficult to compute its determinant using the following
identities:

2M∑

a=1

Cb,a (xk − η)a−1 = δb,k Qk(xk)Qk(xk − η), (3.35)

2M∑

a=1

Cb,a xa−1
k = δb,k+M Q(xk + η)Qk(xk) + δb,k Qk(xk)Qk(xk + η). (3.36)

It means that the product of the matrix C with the Vandermonde matrix constructed
from the variables x1 − η, . . . , xM − η, x1, . . . , xM is triangular, and therefore the
determinant of the matrix C is given as

det
2M

C =

M∏
k=1

[
Q2

k(xk)Qk(xk − η)Q(xk + η)
]

V (x1 − η, . . . , xM − η, x1 . . . , xM )

= (−1)
M(M+1)

2

M∏

k=1

[
Qk(xk)Qk(xk + η)

]
. (3.37)

On the other hand let us compute the following product,

A−
{x}∪{y}

[
µE+

{ξ}

]
det
2M

C =

det2M

(
G(1,1) G(1,2)

G(2,1) G(2,2)

)

V ({x} ∪ {y}) , (3.38)
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where the matrix in the numerator is presented in a block form, G(p,q) (1 ≤ p, q ≤ 2)
being M ×M matrices which can easily be computed. For instance, the upper left
block G(1,1) has for elements

[
G(1,1)

]
j,k

=
2M∑

a=1

Cj,a
(
xa−1
k − µE+

{ξ}(xk) (xk − η)a−1
)

= Qj(xk)Qj(xk + η)− µE+
{ξ}(xk)Qj(xk)Qj(xk − η)

= δjk Qk(xk)
(
Qk(xk + η)− µE+

{ξ}(xk)Qk(xk − η)
)
, (3.39)

so that G(1,1) = 0 due to the Bethe equations (3.29). It means in particular that we
do not need to compute the lower right block G(2,2) to have access to the quantity
(3.38). The lower left block G(2,1) is a diagonal matrix,

[
G(2,1)

]
j,k

=

2M∑

a=1

Cj+M,a

(
xa−1
k − µE+

{ξ}(xk) (xk − η)a−1
)

= Qj(xk)Q(xk + η)− µE+
{ξ}(xk)Q(xk)Qj(xk − η)

= δjk Qk(xk)Q(xk + η). (3.40)

Finally, the upper right block G(1,2) is given by

[
G(1,2)

]
j,k

=
2M∑

a=1

Cj,a
(
ya−1
k − µE+

{ξ}(yk) (yk − η)a−1
)

= Qj(yk)Qj(yk + η)− µE+
{ξ}(yk)Qj(yk)Qj(yk − η)

= −1

η
Q(yk)Q(yk − η)

[
H(µ)({x}, {y}|{ξ})

]
jk
. (3.41)

It means that

A−
{x}∪{y}

[
µE+

{ξ}

]
det
2M

C =

M∏
k=1

[Q(yk)Q(yk − η)Qk(xk)Qk(xk + η)]

V ({x} ∪ {y})
× det

M
H({x}, {y}|{ξ}), (3.42)

which leads directly to the identity (3.30).

Note that both S(µ)
M ({x}, {y}|{ξ}) and A−

{x}∪{y}

[
µE+

{ξ}

]
formally contain zero

over zero terms if computed for two or more coinciding xi. So that the identity
(3.27) has to be meant as a limit to the Bethe roots in the case of two or several
coinciding roots. In fact we can introduce a set of parameters {x(ǫ)} pairwise distinct
for ǫ > 0 and converging to the solution of the Bethe equations {x} when ǫ → 0.
We have to prove that the l.h.s. and r.h.s. of (3.27) are finite and coincide under
this limit. The identity 3.23, being proven for arbitrary values of the parameters,

implies that A−
{x(ǫ)}∪{y}

[
µE+

{ξ}

]
has a smooth limit for ǫ → 0. Now we can repeat

the proof above developed for pairwise distinct roots checking that at any step all

remains finite and that one just reproduces S(µ)
M ({x(ǫ)}, {y}|{ξ}) for ǫ → 0.
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If the number M of parameters x is exactly half of the length of the chain we
can directly apply Identity 1 and Identity 2 to obtain the following result:

Corollary 3.3. Let N = 2M . Then, for µ ∈ C, for {x1, . . . , xM} a solution

to the Bethe equations (3.29) associated with a set of inhomogeneity parameters

{ξ1, . . . , ξN}, and for {y1, . . . , yM} a set of arbitrary complex numbers, we have

S(µ)
M ({x}, {y}|{ξ}) = A+

{ξ}

[
µE−

{x}∪{y}

]
(3.43)

= I(µ)
N ({x} ∪ {y}, {ξ}). (3.44)

This relation is of prime importance for the computation of the scalar products
of separate states. The inconvenient restriction on the number of parameters x and
y can be relaxed thanks to Identity 1′, which enables us to formulate the following
generalization of (3.43):

Corollary 3.4. Let {x1, . . . , xM} be a solution of the Bethe equations (3.29) asso-

ciated with the set of inhomogeneity parameters {ξ1, . . . , ξN} and the twist µ, and
let {y1, . . . , yM} be a set of arbitrary complex numbers. Then the following relation

holds:

S(µ)
M ({x}, {y}|{ξ}) = (1− µ)2M−NA+

{ξ}

[
µE−

{x}∪{y}

]
. (3.45)

Finally, we would like to generalize the previous results to cases for which the
number of parameters x and y are not obligatory the same. To this aim we introduce
the following generalization of the Slavnov determinant (3.27), which is defined for
two sets of parameters {x} ≡ {x1, . . . , xM} and {y} ≡ {y1, . . . , yM+S}, with S ≥ 0,
a set of inhomogeneity parameters {ξ} ≡ {ξ1, . . . , ξN} and a twist µ:

S(µ)
M,M+S({x}, {y}|{ξ}) =

M∏
j=1

M+S∏
k=1

(xj − yk + η)

V (x1, . . . , xM )V (yM+S , . . . , y1)

× det
M+S

H̃(µ)({x}, {y}|{ξ}), (3.46)

with

[
H̃(µ)({x}, {y}|{ξ})

]
jk

= µE+
{ξ}(yk) t(xj − yk)−

E+
{x}(yk)

E−
{x}(yk)

t(yk − xj), if j ≤ M,

= µE+
{ξ}(yk) y

j−M−1
k −

E+
{x}(yk)

E−
{x}(yk)

(yk + η)j−M−1, if j > M.

This type of object was first introduced in [92]. This enables us to formulate the
last identity of this subsection:

Identity 3. Let {x1, . . . , xM} be a solution of the Bethe equations (3.29) associ-

ated with the set of inhomogeneity parameters {ξ1, . . . , ξN} and the twist µ, and let

{y1, . . . , yM+S} be a set of arbitrary complex numbers. Then,

S(µ)
M,M+S({x}, {y}|{ξ}) = A−

{x}∪{y}

[
µE+

{ξ}

]
. (3.47)

The proof of this identity follows the same lines as the proof of (3.30). It is
however more cumbersome, so that we give its details in Appendix A.
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3.3 An alternative representation for the scalar product of two sep-

arate states

We shall now use the identities that have been derived in the previous subsection to
rewrite the representation (3.1) (or (3.10)) for the scalar product of two generic sep-
arate states 〈α | and |β 〉 into a form for which the consideration of the homogeneous
limit is completely straightforward.

Let us first notice that Identity 0 enables us to rewrite (3.10) into a slightly
simpler form:

Proposition 3.1. Let α(λ) and β(λ) be two polynomials of respective degree R and

S, and which can be factorized as

α(λ) =

R∏

n=1

(λ− αn), β(λ) =

S∏

m=1

(λ− βm), (3.48)

in terms of some sets of roots {α1, . . . , αR} and {β1, . . . , βS}. Then the scalar product

of the corresponding separate states 〈α | and |β 〉 can be written in the following form:

〈α |β 〉 = (−1)N(R+S)
R∏

j=1

d(αj)
S∏

k=1

d(βk) A+
{ξ}

[
−E−

{α1,...,αR}∪{β1,...,βS}

]
, (3.49)

where we have used the notations (3.7)-(3.8).

We can now use the identities 1 and 1′, and we obtain the following result:

Theorem 3.2. Under the same hypothesis and notations as in Proposition 3.1, the

scalar product of the two separate states 〈α | and |β 〉 can be written as:

〈α |β 〉 = (−1)N(R+S) 2N−(R+S)
R∏

j=1

d(αj)
S∏

k=1

d(βk)

×A−
{α1,...,αR}∪{β1,...,βS}

[
−E−

{ξ}

]
. (3.50)

In the particular case where R+S = N , the scalar product of the two separate states

〈α | and |β 〉 can be written in terms of the generalized Izergin determinant (3.13)
as:

〈α |β 〉 = (−1)N(R+S+1)
R∏

j=1

d(αj)

S∏

k=1

d(βk)

× I(−1)
N ({α1, . . . , αR} ∪ {β1, . . . , βS}, {ξ}). (3.51)

Note that, as announced before, the representation (3.50) is completely smooth
with respect to the homogeneous limit in which all the inhomogeneity parameters
ξj , 1 ≤ j ≤ N , tend to the same value.
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3.4 The scalar product of a generic separate state with an eigen-

state of the transfer matrix

We shall now focus on the case in which one of the two separate states is an eigenstate
|Qτ 〉 of the transfer matrix. As we shall see, the knowledge of such scalars products
is indeed sufficient to obtain some adequate representations for the form factors of
local operators. This fact has to be put in relation with what happens in the ABA
framework, where the consideration of the scalar products of off-shell and on-shell
Bethe vectors is used to compute the local spin form factors [57].

In the whole subsection, 〈α | will denote a separate state associated with a given
polynomial α(λ) of degree M ,

α(λ) =

M∏

n=1

(λ− αn), (3.52)

and |Qτ 〉 will denote a given eigenstate of the antiperiodic transfer matrix, associ-
ated with an eigenvalue τ(λ). We recall that such an eigenstate can be written in
two different forms, either by using the polynomial

Qτ (λ) =

R∏

k=1

(λ− λk) (3.53)

satisfying the functional T -Q equation (2.30) with τ(λ) itself, or by using the poly-
nomial

Q−τ (λ) =

N−R∏

k=1

(λ− λ̂k) (3.54)

satisfying the T -Q-equation with −τ(λ) (see Proposition 2.2). We also recall that in
this framework the set of roots {λ1, . . . , λR} of Qτ (λ) satisfies the Bethe equations
(3.29) with µ = −1 (as well as the set of roots {λ̂1, . . . , λ̂N−R} of Q−τ (λ)).

Proposition 3.2. The scalar product 〈α |Qτ 〉 can be written in the two possible

following forms:

〈α |Qτ 〉 = (−1)N(R+M)
M∏

n=1

d(αn)

R∏

k=1

d(λk) A+
{ξ}

[
−E−

{λ}∪{α}

]
(3.55)

= (−1)N(N−R+M)
M∏

n=1

d(αn)

N−R∏

k=1

d(λ̂k) A+
{ξ}

[
E−

{λ̂}∪{α}

]
. (3.56)

Proof. The first line is a direct consequence of (3.49). The second one can be obtain
in the same way from the fact that

Qτ (ξa − η)

Qτ (ξa)
= −Q−τ (ξa − η)

Q−τ (ξa)
. (3.57)

We can now use the identities obtained in the previous subsection to prove the
following results for the scalar product of the separate state 〈α | with the eigenstate
|Qτ 〉.
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Theorem 3.3. If M < R the scalar product between 〈α | and |Qτ 〉 vanishes:

〈α |Qτ 〉 = 0. (3.58)

If M = R the scalar product between 〈α | and |Qτ 〉 can be written either as an

Izergin determinant (3.13),

〈α |Qτ 〉 =
(

M∏

n=1

d(αn)

N−M∏

k=1

d(λ̂k)

)
I(1)
N ({α} ∪ {λ̂}, {ξ}), (3.59)

or as a Slavnov determinant (3.27),

〈α |Qτ 〉 = (−1)M 2N−2M

(
M∏

n=1

d(αn) d(λn)

)
S(−1)
M ({λ}, {α}|{ξ}). (3.60)

If M > R the scalar product between 〈α | and |Qτ 〉 can be written as a generalized

Slavnov determinant (3.46):

〈α |Qτ 〉 = (−1)R 2N−M−R

(
M∏

n=1

d(αn)

R∏

k=1

d(λk)

)
S(−1)
R,M ({λ}, {α}|{ξ}). (3.61)

Proof. The proof of this theorem is straightforward. To prove (3.58) it is enough to
use (3.56) and Corollary 3.2; (3.59) follows from (3.56) and Identity 1. The two last
representations follow directly from (3.55), and from the identities 1′, 2 and 3.

It is important to mention that all the representations of Theorem 3.3 for the
scalar product of the eigenstate |Qτ 〉 with the generic separate state 〈α | remain
finite (and manageable) in the homogeneous limit.

Note finally to conclude this section that the fact that we can represent the scalar
product 〈α |Qτ 〉 as a Slavnov determinant allows us to take, as usual, the limit in
which the two states are equal. We therefore obtain, as in ABA, a representation
for the “square of the norm”of the eigenstate |Qτ 〉 (i.e. for the scalar product
〈Qτ |Qτ 〉) in terms of a Gaudin determinant.

Corollary 3.5. The “square of the norm” of the eigenstate |Qτ 〉 of the antiperiodic

transfer matrix is given by

〈Qτ |Qτ 〉 = 2N−2R

(
R∏

n=1

d(λn)

)2
R∏

m,n=1
(λm − λn + η)

∏
m6=n

(λm − λn)
det
R

Φτ (3.62)

with

[
Φτ

]
m,n

=
∂

∂λn
log

(
a(λm)

d(λm)

R∏

b=1

λm − λb − η

λm − λb + η

)
, 1 ≤ m,n ≤ R. (3.63)
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4 Form factors of local operators

In this section we compute the form factors, i.e. the matrix elements of the local
spin operators between the eigenstates of the transfer matrix.

Let us first consider the local operator σ−
n . Its matrix elements between two

eigenstates 〈Qτ | and |Qτ ′ 〉 of the transfer matrix can be computed by acting with
this operator on one of these two states, which can be done as usual by means of the
solution of the quantum inverse problem [57,65]. The reconstruction formula [46,57]
for this operator takes the form,

σ−
n = (−1)N




n−1∏

j=1

T (ξj)

a(ξj)


 D(ξn)

a(ξn)




N∏

j=n+1

T (ξj)

a(ξj)


 . (4.1)

It enables us to formulate the following result:

Theorem 4.1. Let |Qτ 〉 and |Qτ ′ 〉 be two eigenstates of the transfer matrix, with

Qτ (λ) =
R∏

k=1

(λ− λk), Qτ ′(λ) =
R′∏

k=1

(λ− λ′
k). (4.2)

Then the corresponding form factors for the operator σ−
n are given by the following

expressions:

• if |R−R′| > 1, the form factor 〈Qτ |σ−
n |Qτ ′ 〉 vanishes,

〈Qτ |σ−
n |Qτ ′ 〉 = 0 ; (4.3)

• if R = R′ + 1, the form factor 〈Qτ |σ−
n |Qτ ′ 〉 can be expressed in terms of the

determinant of a matrix of size R as

〈Qτ |σ−
n |Qτ ′ 〉 = 2N−2R (−1)N−1 Qτ (ξn)

Qτ ′(ξn)

×

R∏
k=1

an(λk)
R′∏
j=1

dn(λ
′
j)

V (λ1, . . . , λR)V (λ′
R′ , . . . , λ′

1)
det
R

F−({λ}, {λ′}, ξn), (4.4)

where

an(λ) =

n∏

j=1

(λ− ξj + η)

N∏

j=n+1

(λ− ξj), (4.5)

dn(λ) =

n∏

j=1

(λ− ξj)

N∏

j=n+1

(λ− ξj + η), (4.6)

and

F−
j,k =

a(λ′
k)

d(λ′
k)

Qτ (λ
′
k − η) t(λj − λ′

k) +Qτ (λ
′
k + η) t(λ′

k − λj), for k < R,

F−
j,R = t(λj − ξn) ; (4.7)
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• if R′ = R+ 1, one has similarly

〈Qτ |σ−
n |Qτ ′ 〉 = 2N−2R′

(−1)N−1 Qτ ′(ξn − η)

Qτ (ξn − η)

×

R∏
k=1

an(λk)
R′∏
j=1

dn(λ
′
j)

V (λR, . . . λ1)V (λ′
1, . . . λ

′
R′)

det
R

F−({λ′}, {λ}, ξn) ; (4.8)

• finally, if R = R′, the matrix element 〈Qτ |σ−
n |Qτ ′ 〉 takes the form

〈Qτ |σ−
n |Qτ ′ 〉 = 2N−2R−1 (−1)N−R Qτ (ξn)

Qτ ′(ξn)

R∏
k=1

an(λk)
R′∏
j=1

dn(λ
′
j)

V (λ1, . . . λR)V (λ′
R′ , . . . λ′

1)

× det
R

[
F({λ}, {λ′}) + P(n)({λ′}, {λ}, ξn)

]
, (4.9)

where the elements of the matrix F({λ}, {λ′}) are

Fj,k =
a(λ′

k)

d(λ′
k)

Qτ (λ
′
k − η) t(λj − λ′

k) +Qτ (λ
′
k + η) t(λ′

k − λj), (4.10)

and where P(n)({λ′}, {λ}, ξn) is a rank one matrix,

P(n)
j,k =

(
a(λ′

k)

d(λ′
k)

Qτ (λ
′
k − η) +Qτ (λ

′
k + η)

)
t(λj − ξn). (4.11)

Proof. We consider the case R ≥ R′ (the case with R < R′ can be done in a similar
way). Using the reconstruction formula (4.1) and the fact that 〈Qτ | and |Qτ ′ 〉
are eigenstates of the transfer matrix with respective eigenvalues τ(λ) and τ ′(λ), we
immediately get the following representation for the matrix element 〈Qτ |σ−

n |Qτ ′ 〉:

〈Qτ |σ−
n |Qτ ′ 〉 = (−1)N

n−1∏
j=1

τ(ξj)
N∏

j=n+1
τ ′(ξj)

N∏
j=1

a(ξj)

〈Qτ |D(ξn) |Qτ ′ 〉. (4.12)

We can now use the ABA type representations (2.56) from which we straightfor-
wardly obtain that

D(ξn) |Qτ ′ 〉 = (−1)N |α 〉, (4.13)

with α(λ) being a polynomial of degree R′ + 1 constructed from Qτ ′(λ) as

α(λ) = (λ− ξn)Qτ ′(λ). (4.14)

Hence, it reduces the computation of the form factor 〈Qτ |σ−
n |Qτ ′ 〉 to the compu-

tation of the scalar product 〈Qτ |α 〉 between the eigenstate 〈Qτ | and the separate
state |α 〉. We can therefore directly use the results of Theorem 3.3. More precisely,
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in the case R > R′ + 1, we can use the result for the scalar product (3.58) to show
that the corresponding form factor is zero. If R = R′ + 1 we apply (3.60) which
leads to the result (4.4). Finally, in the case R = R′, we can rewrite the gener-
alised Slavnov determinant (3.61) as a determinant of a sum of two R×R matrices
(4.9).

We can now use the symmetries (2.6) of the transfer matrix to compute the
matrix elements of the local operators σ+

n and σz
n from the ones of σ−

n .

Theorem 4.2. Let |Qτ 〉 and |Qτ ′ 〉 be two eigenstates of the transfer matrix con-

structed from polynomials Qτ (λ) and Qτ ′(λ) with respective degree R and R′. The

matrix elements 〈Qτ |σz
n |Qτ ′ 〉 and 〈Qτ |σ+

n |Qτ ′ 〉 of σz
n and σ+

n are given in terms

of 〈Qτ |σ−
n |Qτ ′ 〉 as

〈Qτ |σz
n |Qτ ′ 〉 = 2(R′ −R) 〈Qτ |σ−

n |Qτ ′ 〉, (4.15)

〈Qτ |σ+
n |Qτ ′ 〉 = (−1)R−R′ 〈Qτ |σ−

n |Qτ ′ 〉. (4.16)

Proof. The statement of the theorem follows from the fact that we can simply obtain
σz
n and σ+

n from σ−
n by means of the operators Sx and Γx (2.7):

σz
n = [Sx, σ−

n ], σ+
n = Γx σ−

n Γx. (4.17)

Hence, to obtain the matrix elements of σz
n and σ+

n in terms of those of σ−
n , we

just have to compute the action of the operators Sx and Γx on the corresponding
eigenstates. Using the following limit

Sx = lim
λ→∞

T (λ)

η λN−1
, (4.18)

we obtain
Sx|Qτ 〉 = (N − 2R)|Qτ 〉. (4.19)

The action of the operator Γx on the eigenstates of the transfer matrix can be easily
obtained from the relation

Γx = (−i)N exp

(
iπ

2
Sx

)
. (4.20)

We would like to mention to conclude this section that it is also possible to
compute in this framework the matrix elements of more general quasi-local operators,
i.e of operators obtained as a combination of local spin operators acting on a finite
number of sites of the lattice.

5 Correspondence with the results obtained by Alge-

braic Bethe Ansatz

The XXX chain is a unique example for which the results obtained by SoV can be
directly compared with the results obtained by ABA. The SU(2) symmetry of the
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XXX monodromy matrix provides indeed a correspondence between the chain with
antiperiodic boundary conditions and the chain with the following twisted boundary
conditions:

σa
N+1 = σz

1 σ
a
1 σ

z
1 , a = x, y, z. (5.1)

The eigenstates of this twisted XXX chain can be constructed, in the ABA frame-
work, as the eigenstates of the corresponding twisted transfer matrix,

T−(λ) = tr0
[
σz
0 T0(λ)

]
= A(λ)−D(λ), (5.2)

by using as usual the operators B(λ) (or C(λ)) as creation operators on the reference
state (2.14). More precisely, the state

|Ψ({λ}) 〉 =
R∏

j=1

B(λj)| 0 〉 (5.3)

is an eigenstate of the transfer matrix T−(λ) if and only if the set of parameters
{λ} ≡ {λ1, . . . , λR} satisfies the Bethe equations

R∏

a=1

λb − λa + η

λb − λa − η
=

a(λb)

d(λb)
, (5.4)

and the corresponding eigenvalue is

τ−(λ) = a(λ)

R∏

a=1

λ− λa − η

λb − λa
− d(λ)

R∏

a=1

λ− λa + η

λb − λa
. (5.5)

Let us mention here that there exists an alternative way to construct the eigenstates
of (5.2), starting instead from the second reference state

| 0′ 〉 =
N
⊗
n=1

(
0
1

)

[n]

, (5.6)

and using the operators C(λ). Then, if {λ1, . . . , λR} satisfies the Bethe equations
(5.4), the state

| Ψ̂({λ}) 〉 =
R∏

j=1

C(λj)| 0′ 〉, (5.7)

is an eigenstate of the transfer matrix corresponding to the eigenvalue

τ̂−(λ) = −τ−(λ). (5.8)

Note that the Bethe equations (5.4) issued from the ABA study of the twisted
chain coincide with the Bethe equations (2.44) issued from the SoV study of the
antiperiodic chain, so that the completeness of the former in the ABA framework can
be derived from the completeness of the latter. It is moreover possible to establish
an explicit one-to-one correspondence between the eigenstates.
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To this aim we use the SU(2) symmetry of the XXX monodromy matrix T0(λ):
for any U ∈ SU(2), it is easy to see that

[U0 ΓU
, T0(λ)] = 0, where Γ

U
=

N
⊗
n=1

Un. (5.9)

To establish the relation between two transfer matrices, we consider the following
unitary matrix:

U =
1√
2

(
1 1

−1 1

)
. (5.10)

Using the property Uσx = σzU it is easy to establish the following similarity trans-
formation between the transfer matrices of two models:

T−(λ) = Γ
U
T (λ) Γ−1

U
, (5.11)

This similarity evidently means that these two transfer matrices are isospectral, and
that their eigenvectors are in one-to-one correspondence by means of the similarity
matrix Γ

U
. More precisely, we have the following result.

Theorem 5.1. Let {λ} = {λ1, . . . λR} be a solution of the Bethe equations (5.4),
and let us define the following polynomial of degree R with roots λj, 1 ≤ j ≤ R:

Q(λ) =
R∏

j=1

(λ− λj). (5.12)

Then the separate state |Q 〉 is an eigenstate of the antiperiodic transfer matrix (2.5)
with eigenvalue

τ(λ) = −a(λ)
Q(λ− η)

Q(λ)
+ d(λ)

Q(λ+ η)

Q(λ)
, (5.13)

whereas the Bethe vector | Ψ̂({λ}) 〉 (5.7) is an eigenstate of the twisted transfer

matrix (5.2) with the same eigenvalue (5.13). These two states are related by means

of the similarity matrix constructed from (5.10) as

|Q 〉 = (−1)N(R−1) 2
N
2
−R Γ−1

U
| Ψ̂({λ}) 〉. (5.14)

Proof. For any solution {λ} of the Bethe equations we can construct such states
|Q 〉 and | Ψ̂({λ}) 〉. Let us first show that the state | Ψ̂({λ}) 〉 is non-trivial. The
norm of |Q 〉 is given by (3.62) while for | Ψ̂({λ}) 〉 one can use the usual Algebraic
Bethe Ansatz arguments to obtain a representation in terms of the same Gaudin
determinant:

〈 Ψ̂({λ}) | Ψ̂({λ}) 〉 =
(

R∏

n=1

d(λn)

)2
R∏

m,n=1
(λm − λn + η)

∏
m6=n

(λm − λn)
det
R

Φτ . (5.15)

Since |Q 〉 is a nontrivial state by construction it follows that the corresponding
Gaudin determinant is non zero and therefore that | Ψ̂({λ}) 〉 is non-trivial.
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The similarity (5.11) implies that

T (λ) Γ−1
U

| Ψ̂({λ}) 〉 = τ(λ) Γ−1
U

| Ψ̂({λ}) 〉, (5.16)

so that Γ−1
U

| Ψ̂({λ}) 〉 is an eigenstate of the antiperiodic transfer matrix T (λ) with
the same eigenvalue τ(λ) (5.13) as |Q 〉. Hence, since the spectrum of T (λ) is
simple, this state should be proportional to |Q 〉. The proportionality coefficient can
be computed up to a phase factor from the Gaudin formula.

It remains to compute this phase factor. Let us consider the simplest separate
state | 1 〉. It is an eigenstate of T (λ) with eigenvalue d(λ)−a(λ), and should therefore
be proportional to Γ−1

U
| 0′ 〉. It is easy to see (directly from the construction) that

〈 0 | 1 〉 = 1, 〈 0 |Γ−1
U

| 0′ 〉 =
(−1√

2

)N

. (5.17)

It leads to a useful relation:

| 1 〉 = (−
√
2)N Γ−1

U
| 0′ 〉 =

N
⊗
n=1

(
1

−1

)

[n]

. (5.18)

Expressing now |Q 〉 by means of the ABA-type representation (2.59), we obtain

Γ
U
|Q 〉 = (−1)RN Γ

U

R∏

j=1

D(λj) | 1 〉 = 2
N
2 (−1)N(R−1)

R∏

j=1

(
Γ
U
D(λj) Γ

−1
U

)
| 0′ 〉.

(5.19)
It is easy to see that

Γ
U
D(λ) Γ−1

U
=

1

2

(
A(λ) +B(λ) + C(λ) +D(λ)

)
. (5.20)

Due to the proportionality between Γ
U
|Q 〉 and | Ψ̂({λ}) 〉 only the term containing

R operators C(λj) produces a non-zero contribution and we obtain the final result
for the phase factor.

Hence, Theorem 5.1 relates the eigenstates of the antiperiodic transfer matrix,
which were constructed as separate states in the SoV framework, with the on-shell
Bethe states for the twisted transfer matrix constructed from ABA (note that Bethe
equations are crucial here). On the one hand, it provides an easy way to prove
the completeness of the ABA construction. On the other hand, it gives explicit
representations valid in the homogeneous limit for the separate states: in particular,
the equation (5.18) shows that the state | 1 〉 does not depend on the inhomogeneities.
A similar result can be obtained for the state | 1alt 〉,

| 1alt 〉 =
N
⊗
n=1

(
1
1

)

[n]

. (5.21)

This explicit correspondence between these two families of eigenstates can also
be used to compare the expressions we have just obtained for the form factors of the
antiperiodic model in the SoV framework with those that can be computed for the
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twisted model in the ABA framework. Namely, let us fix two given eigenvalues τ(λ)
and τ ′(λ) of the antiperiodic (or twisted) transfer matrix, corresponding to two sets
of solutions {λ} ≡ {λ1, . . . , λR} and {λ′} ≡ {λ′

1, . . . , λ
′
R′} of the Bethe equations

(2.44) with associated Baxter polynomials Qτ (λ) and Qτ ′(λ). We shall denote as
usual the corresponding T (λ)-eigenstates by |Qτ 〉 and |Qτ ′ 〉, and the corresponding
T−(λ)-eigenstates of the form (5.7) by | Ψ̂({λ}) 〉 and | Ψ̂({λ′}) 〉. Then, Theorem 5.1
implies the following relation between the form factors:

〈Qτ |σ−
n |Qτ ′ 〉 = 〈 Ψ̂({λ}) |σz

n | Ψ̂({λ′}) 〉 − 〈 Ψ̂({λ}) |σ−
n | Ψ̂({λ′}) 〉
2i

+
〈 Ψ̂({λ}) |σ+

n | Ψ̂({λ′}) 〉
2i

, (5.22)

=





− 〈 Ψ̂({λ}) |σ−
n | Ψ̂({λ′}) 〉/2i for R = R′ + 1,

〈 Ψ̂({λ}) |σz
n | Ψ̂({λ′}) 〉 for R = R′,

〈 Ψ̂({λ}) |σ+
n | Ψ̂({λ′}) 〉/2i for R′ = R+ 1.

(5.23)

Since we are now able to compute these matrix elements independently in the SoV
and in the ABA framework, and since the obtained representations may appear
slightly different, it is important to check their effective coincidence. This is explicitly
done in Appendix B.
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A Proof of Identity 3

In this appendix we prove the identity 3 concerning the equality between the quan-
tity A−

{x}∪{y}

[
µE+

{ξ}

]
and the generalized Slavnov determinant (3.46) when {x} is

a solution to the Bethe equations (3.29). We shall proceed in a way similar to the
proof of the identity 2.

We consider a set of pairwise distinct Bethe roots {x} ≡ {x1, . . . , xM}, and a set
of arbitrary complex numbers {y} ≡ {y1, . . . , yM+S}. As previously we introduce
the polynomial Q(λ) with roots x1, . . . , xM :

Q(λ) =
N∏

j=1

(λ− xj), (A.1)

and the M polynomials Qk(λ) obtained from Q(λ) as

Qk(λ) =
Q(λ)

(λ− xk)
. (A.2)
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We also introduce polynomials Z(λ) of degree S with generic roots z1, . . . , zS such
that za 6= xj, za 6= xj − η,

Z(λ) =
S∏

a=1

(λ− za), Zk(λ) =
Z(λ)

(λ− zk)
. (A.3)

As before we consider the auxiliary (2M +S)× (2M +S) matrix C composed of the
coefficients of the following polynomials:

Qk(λ)Qk(λ+ η) =
2M+S∑

j=1

Ck,j λj−1,

Qk(λ)Q(λ + η) =

2M+S∑

j=1

Ck+M,j λ
j−1,

Q(λ)Q(λ+ η)Zk(λ) =

2M+S∑

j=1

Ck+2M,j λ
j−1. (A.4)

Evidently the matrix elements Ck,j are zero for k ≤ 2M and j > 2M . However the
matrix C is invertible and its determinant can easily be computed using the following
identities:

2M+S∑

a=1

Cb,a (xk − η)a−1 = δb,k Qk(xk)Qk(xk − η),

2M+S∑

a=1

Cb,a xa−1
k = δb,k+M Q(xk + η)Qk(xk) + δb,k Qk(xk)Qk(xk + η),

2M+S∑

a=1

Cb,a za−1
k = δb,k+2M Q(zk + η)Q(zk)Zk(zk) +Ab,k,

with Ab,k = 0 if b > 2M . It means that the product of the matrix C and the
corresponding Vandermonde matrix is triangular, so that the determinant can be
easily computed:

V ({x− η} ∪ {x} ∪ {z}) det
2M+S

C

=
M∏

k=1

[
Q2

k(xk)Qk(xk − η)Q(xk + η)
] S∏

j=1

[Q(zj)Q(zj + η)Zj(zj)] . (A.5)

Hence,

det
2M+S

C = (−1)
M(M+1)+S(S−1)

2 V ({z})
M∏

k=1

[
Q2

k(xk)Qk(xk + η)
]
. (A.6)

Let us now compute the following product of two determinants:

A−
{x}∪{y}

[
µE+

{ξ}

]
det

2M+S
C =

det2M+S




G(1,1) G(1,2)

G(2,1) G(2,2)

G(3,1) G(3,2)




V ({x} ∪ {y}) . (A.7)
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As in the case S = 0, the M ×M block G(1,1) is given by

G(1,1)
j,k =

2M+S∑

a=1

Cj,a
(
xa−1
k − µE+

{ξ}(xk) (xk − η)a−1
)

= Qj(xk)Qj(xk + η)− µE+
{ξ}(xk)Qj(xk)Qj(xk − η)

= δjk Qk(xk)
(
Qk(xk + η)− µE+

{ξ}(xk)Qk(xk − η)
)
. (A.8)

Due to the Bethe equations G(1,1)
j,k = 0. Another block which turns out to be trivial

is the S ×M matrix G(3,1):

G(3,1)
j,k =

2M+S∑

a=1

Cj+2M,a

(
xa−1
k − µE+

{ξ}(xk) (xk − η)a−1
)

= Q(xk)Q(xk + η)Zj(xk)− µE+
{ξ}(xk)Q(xk)Q(xk − η)Zj(xk − η)

= 0, (A.9)

due to the zero factor Q(xk) in both terms. It means that there is no need to
compute the block G(2,2) as it does not contribute to the determinant. The M ×M
block G(2,1) is diagonal:

G(2,1)
j,k =

2M+S∑

a=1

Cj+M,a

(
xa−1
k − µE+

{ξ}
(xk)(xk − η)a−1

)

= Qj(xk)Q(xk + η)− µE+
{ξ}(xk)Q(xk)Qj(xk − η)

= δjk Qk(xk)Q(xk + η). (A.10)

The non-trivial part of this product is contained in the two remaining blocks. The
(M + S)×M block G(1,2) has a usual form of a Slavnov matrix:

G(1,2)
j,k =

2M+S∑

a=1

Cj,a
(
ya−1
k − µE+

{ξ}(yk) (yk − η)a−1
)

= Qj(yk)Qj(yk + η)− µE+
{ξ}(yk)Qj(yk)Qj(yk − η)

= −1

η
Q(yk)Q(yk − η) H̃jk, (A.11)

while the (M + S)× S block G(3,2) is

G(3,2)
j,k =

2M+S∑

a=1

Cj+2M,a

(
ya−1
k − µE+

{ξ}(yk) (yk − η)a−1
)

= Q(yk)
(
Q(yk + η)Zj(yk)− µE+

{ξ}(yk)Q(yk − η)Zj(yk − η)
)
. (A.12)

Now to get rid of the arbitrary polynomials Z(λ) we introduce the following S × S
matrix C̃ defined as

Zj(λ) =

S∑

a=1

C̃j,a λa−1. (A.13)
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It is easy to see that

det
S

C̃ = (−1)
S(S−1)

2 V ({z}). (A.14)

Together with the following representation for the block G(3,2),

Q(yk + η)Zj(yk)− µE+
{ξ}(yk)Q(yk − η)Zj(yk − η)

=

S∑

a=1

C̃j,a
(
Q(yk + η) ya−1

k − µE+
{ξ}(yk)Q(yk − η)(yk − η)a−1

)
, (A.15)

it leads to the expression (3.47).

B Explicit comparison of the form factor representa-

tions issued from SoV and from ABA

In this appendix we explicitly check that the expressions of the form factors we have
obtained from our SoV study of the XXX antiperiodic spin chain are consistent with
the one issued from the ABA study [57] of the twisted spin chain, i.e. that the
relation (5.23) is effectively satisfied.

The fact that the SoV and the ABA expressions for the form factors coincide if
|R−R′| = 1 is quite simple to prove. We shall therefore provide here the details for
the verification of the last case R = R′ only.

The direct computation of the form factor 〈 Ψ̂({λ}) |σz
n | Ψ̂({λ′}) 〉 by ABA leads

to the following expression:

〈 Ψ̂({λ}) |σz
n | Ψ̂({λ′}) 〉 = S(−1)

R ({λ}, {λ′}|{ξ})

+ 2
R∑

m=1

Qτ ′(λ
′
m − η)

Qτ (λ′
m − η)

S(−1,m)
R ({λ}, {λ′}|{ξ}|ξn), (B.1)

where S(−1,m)
R ({λ}, {λ′}|{ξ}|ξn) is obtained from S(−1)

R ({λ}, {λ′}|{ξ}) (3.27) by sub-
stituting ξn to λ′

m in the m-th column of the matrix H(−1)({λ}, {λ′}|{ξ}). The SoV
computation gives instead:

〈Qτ |σ−
n |Qτ ′ 〉 = S(−1)

R ({λ}, {λ′}|{ξ})

+
R∑

m=1

a(λ′
m)Qτ (λ

′
m − η) + d(λ′

m)Qτ (λ
′
m + η)

a(λ′
m)Qτ (λ′

m − η)
S(−1,m)
R ({λ}, {λ′}|{ξ}|ξn). (B.2)

In the case τ(λ) = τ ′(λ), the equality between (B.1) and (B.2) is a consequence
of the following identity:

a(λm)Qτ (λm − η) + d(λm)Qτ (λm + η)

a(λm)Qτ (λm − η)
=

2a(λm)Qτ (λm − η) + τ(λm)Qτ (λm)

a(λm)Qτ (λm − η)

= 2. (B.3)
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Let us now consider the case R = R′ for τ(λ) 6= τ ′(λ). We therefore want to
compute the difference of the two expressions (B.1) and (B.2),

〈Qτ |σ−
n |Qτ ′ 〉 − 〈 Ψ̂({λ}) |σz

n | Ψ̂({λ′}) 〉

=

R∑

m=1

a(λ′
m)
[
2Qτ ′(λ

′
m − η)−Qτ (λ

′
m − η)

]
− d(λ′

m)Qτ (λ
′
m + η)

a(λ′
m)Qτ (λ′

m − η)

× S(−1,m)
R ({λ}, {λ′}|{ξ}|ξn), (B.4)

and show that it vanishes.

One can first notice that the right hand side of (B.4) can be seen as the devel-
opment of the determinant of a larger matrix Ŝ(n) with one more line and column:

〈Qτ |σ−
n |Qτ ′ 〉 − 〈 Ψ̂({λ}) |σz

n | Ψ̂({λ′}) 〉

=
detR+1 Ŝ(n)

V (λ1, . . . , λR)V (λ′
1, . . . , λ

′
R)
∏R

a=1 Qτ (λ′
a)
, (B.5)

where Ŝ(n) is the (R + 1)× (R + 1) matrix of elements, for 1 ≤ j, k ≤ R:

[
Ŝ(n)

]
j,k

= Qτ,j(λ
′
k)

(
Qτ,j(λ

′
k − η) +

d(λ′
k)

a(λ′
k)

Qτ,j(λ
′
k + η)

)
,

[
Ŝ(n)

]
j,R+1

= Qτ,j(ξn)Qτ,j(ξn − η),

[
Ŝ(n)

]
R+1,k

= Qτ (λ
′
k)

(
2Qτ ′(λ

′
k − η)−Qτ (λ

′
k − η)− d(λ′

k)

a(λ′
k)

Qτ (λ
′
k + η)

)
,

[
Ŝ(n)

]
R+1,R+1

= γ,

with γ being an arbitrary complex number. Here we have used the shorthand nota-
tion

Qτ,j(λ) =
Qτ (λ)

λ− λj
. (B.6)

We now want to rewrite this determinant in terms of the determinant of a (2R+
1) × (2R + 1) matrix G = C · X . To this aim we introduce the matrices C and X as
follows.

The (2R+1)×(2R+1) matrix C is defined by its elements Cj,k, 1 ≤ j, k ≤ 2R+1
such that

2R+1∑

j=1

λj−1 Cm,j = Qτ,m(λ)Qτ,m(λ− η), ∀m ∈ {1, . . . , R}, (B.7)

2R+1∑

j=1

λj−1 Cm+R,j = gm(λ), ∀m ∈ {1, . . . , R}, (B.8)

2R+1∑

j=1

λj−1 C2R+1,j = h(λ), (B.9)
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where the functions h(λ) and gm(λ), 1 ≤ m ≤ R, are given as

h(λ) =
(
Qτ (λ)−Qτ ′(λ)

)(
Qτ ′(λ− η)−Qτ (λ− η)

)
+Qτ ′(λ)Qτ ′(λ− η), (B.10)

gm(λ) =

2R∏

j 6=m,j=1

(λ− gj). (B.11)

Here gj are general complex numbers which have only to satisfy the condition:

det
1≤j,k≤R

[
Gj(λk)

]
6= 0, where Gk(λ) = gk(λ) +

d(λ)

a(λ)
gk(λ+ η). (B.12)

In its turn, the (2R + 1)× (2R+ 1) matrix X has for elements

Xj,k = Tj(λ
′
k), (B.13)

Xj,R+1+k = Tj(λk)− δj,2R+1 H(λk), (B.14)

Xj,R+1 = Tj(ξn) + δj,2R+1(γ −H(ξn)), (B.15)

for k ∈ {1, . . . , R} and j ∈ {1, . . . , 2R + 1}, where we have set

Tj(λ) = λj−1 +
d(λ)

a(λ)
(λ+ η)j−1, (B.16)

H(λ) = h(λ) +
d(λ)

a(λ)
h(λ+ η). (B.17)

We can write the matrix product of C and X in a block form

C · X = G ≡



G11 G12 G13 = 0
G21 G22 G23

G31 G32 G33 = 0


 , (B.18)

where we have used that Cm,2R+1 = 0, for anym ∈ {1, . . . , 2R}. Here G11 =
(
Fj(λ

′
k)
)
,

G13 =
(
Fj(λk)

)
, G21 =

(
Gj(λ

′
k)
)
and G23 =

(
Gj(λk)

)
are R × R matrices; G22 =(

Gj(ξn)
)
and G12 =

(
Fj(ξn)

)
are R× 1 columns; G31 =

(
K(λ′

k)
)
and G33 =

(
K(λ′

k)
)

are 1×R rows; finally G32 = γ. Here we have defined

Fj(λ) = Qτ,j(λ)

(
Qτ,j(λ− η) +

d(λ)

a(λ)
Qτ,j(λ+ η)

)
,

K(λ) = Qτ (λ)

(
Qτ ′(λ− η)−Qτ (λ− η) +

d(λ)

a(λ)

[
Qτ ′(λ+ η)−Qτ (λ+ η)

])
.

Note that we have
H(λ′

m) = K(λ′
m) ∀m ∈ {1, . . . , R}. (B.19)

If we now use the block determinant formula to compute the determinant of the
matrix G we obtain

det2R+1 G
V (λ1, . . . , λR)V (λ′

1, . . . , λ
′
R)
∏R

a=1 Qτ (λ′
a)

=
(
〈Qτ |σ−

n |Qτ ′ 〉 − 〈 Ψ̂({λ}) |σz
n | Ψ̂({λ′}) 〉

)
det

1≤j,k≤R

[
Gj(λk)

]
, (B.20)
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once we observe that, thanks to the Bethe equations

a(λ′
m)Qτ ′(λ

′
m − η) = d(λ′

m)Qτ ′(λ
′
m + η),

one has

K(λ′
m) = Qτ (λ

′
m)

(
2Qτ ′(λ

′
m − η)−Qτ (λ

′
m − η)− d(λ′

m)

a(λ′
m)

Qτ (λ
′
m + η)

)
. (B.21)

This leads to a representation of the quantity (B.4) that we want to compute in
terms of the product of the two determinants of C and X :

〈Qτ |σ−
n |Qτ ′ 〉 − 〈 Ψ̂({λ}) |σz

n | Ψ̂({λ′}) 〉

=
det2R+1 C det2R+1 X

V (λ1, . . . , λR)V (λ′
1, . . . , λ

′
R)
∏R

a=1 Qτ (λ′
a) det1≤j,k≤R

[
Gj(λk)

] . (B.22)

We shall now show that

det
2R+1

X = 0, (B.23)

which will conclude our proof. In order to do so, let us introduce the (2R+1)×(2R+
1) matrix B with elements given by the coefficients of the following polynomials:

2R+1∑

j=1

λj−1Bm,j = Qτ,m(λ)Qτ,m(λ− η), ∀m ∈ {1, . . . , R}, (B.24)

2R+1∑

j=1

λj−1Bm+R,j = Qτ,m(λ)Qτ (λ− η), ∀m ∈ {1, . . . , R}, (B.25)

2R+1∑

j=1

λj−1B2R,j = Qτ (λ)Qτ (λ− η) + h(λ), (B.26)

2R+1∑

j=1

λj−1B2R+1,j = h(λ). (B.27)

Note that this matrix has a non zero determinant:

det
2R+1

B =
(−1)R

η
h(λR)V ({λi})V ({λi + η})

R−1∏

m=1

Qτ,m(λm − η) 6= 0. (B.28)

Now we can compute the matrix product

G̃ ≡ B · X =



G11 G12 G13 = 0

G̃21 G̃22 G̃23

G31 G32 G33 = 0


 , (B.29)

where we need to precise only the R×R matrices G̃23:

(
G̃23

)
j,k

= (1− δj,R) δj,k Qτ,j(λj)Qτ,j(λj − η), ∀j, k ∈ {1, . . . , R}.
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Indeed, the G blocks are defined above, whereas the R×R matrix G̃21 and the R×1
column G̃22 have no influence on the computation of the determinant of G̃. It is
then simple to show that, after some row and column exchange, we can write a new
(2R + 1)× (2R + 1) matrix such that

det
2R+1

G̃ = det
2R+1

Ĝ = det
R+2

A det
R−1

Ĝ23, with Ĝ =

(A A′ = 0

A′′ Ĝ23

)
(B.30)

where A is a (R + 2) × (R + 2) matrix, A′ is a (R + 2) × (R − 1) matrix, A′′ is a
(R− 1)× (R+2) matrix, and Ĝ23 is a (R− 1)× (R− 1) diagonal invertible matrix.
In particular, we have defined

[
Ĝ23

]
j,k

= δj,k Qτ,j(λj)Qτ,j(λj − η), ∀j, k ∈ {1, . . . , R− 1}, (B.31)

A =




G11 G12 0R×1

G31 γ 0(
G̃21

)
R

(
G̃22

)
R

0


 , (B.32)

where
(
G̃21

)
R
and

(
G̃22

)
R
are respectively the last row and the last element of G̃21

and G̃22. This proves our statement as detR+2 A = 0.
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16:1103, 2015.

[88] D. Levy-Bencheton, G. Niccoli, and V. Terras. Antiperiodic dynamical 6-vertex
model by separation of variables II: Functional equation and form factors. in
preparation.

[89] I. Kostov. Classical limit of the three-point function of n= 4 supersymmetric
yang-mills theory from integrability. Phys. Rev. Letters, 26:261604, 2012.

[90] I. Kostov. Three-point function of semiclassical states at weak coupling. J.

Phys. A: Math. Theor., 45:494018, 2012.

[91] I. Kostov and Y. Matsuo. Inner products of Bethe states as partial domain wall
partition function. JHEP, 10:168, 2012.

[92] O. Foda and M. Wheeler. Variations on Slavnov’s scalar product. JHEP, 10:096,
2012.

[93] A. Garbali. The scalar product of XXZ spin chain revisited. Application to the
ground state at ∆ = 1/2. arXiv:1411.2938.

[94] V. Terras. Drinfel’d twists and functional Bethe Ansatz. Lett. Math. Phys.,
48:263–276, 1999. math-ph/9902009.

[95] J. M. Maillet and J. Sanchez de Santos. Drinfel’d twists and algebraic Bethe
Ansatz. In L. D. Faddeev’s Seminar on Mathematical Physics, pages 137–178.
Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000.
q-alg/9612012.

[96] N. Kitanine, J. M. Maillet, and G. Niccoli. Open spin chains with generic
integrable boundaries: Baxter equation and Bethe ansatz completeness from
separation of variables. J. Stat. Mech., page P05015, 2014.

[97] E. Bettelheim and I. Kostov. Semi-classical analysis of the inner product of
Bethe states. J. Phys A: Math. Theor., 24:245401, 2014.

46

http://arxiv.org/abs/1003.4557
http://arxiv.org/abs/1411.2938
http://arxiv.org/abs/math-ph/9902009
http://arxiv.org/abs/q-alg/9612012

	1 Introduction
	2 The antiperiodic XXX Heisenberg chain in the SoV framework
	2.1 The antiperiodic XXX Heisenberg chain
	2.2 Separation of variables for the XXX spin chain
	2.3 Baxter functional T-Q equation
	2.4 ABA-type representations for the transfer matrix eigenvectors

	3 Scalar products of separate states
	3.1 General determinant representation for the scalar product of two separate states
	3.2 Some useful identities
	3.3 An alternative representation for the scalar product of two separate states
	3.4 The scalar product of a generic separate state with an eigenstate of the transfer matrix

	4 Form factors of local operators
	5 Correspondence with the results obtained by Algebraic Bethe Ansatz
	A Proof of Identity 3
	B Explicit comparison of the form factor representations issued from SoV and from ABA

