Evaluation Metric for Rate of Background Detection - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Evaluation Metric for Rate of Background Detection


This paper proposes an evaluation metric which derive the effectiveness of background modeling algorithms. Background modeling is a key process on developing visual surveillance systems. The requirement of adapting to dynamic environments has motivated researchers to modify existing background modeling algorithms and develop new algorithms with better adaptability. Having the algorithms developed, credentials of each of the algorithms have to be assessed to exploit their effectiveness. Various evaluation metrics have been used for evaluating the rate of foreground extraction, foreground detection, and overall accuracy. However, the rate of background detection has not been exploited by these metrics. Therefore, this paper would provide an insight to the existing evaluation metrics and introduce our proposed metric for estimating the rate of background detection.
Fichier non déposé

Dates et versions

hal-01434938 , version 1 (13-01-2017)


  • HAL Id : hal-01434938 , version 1


Mohamed Abul Hassan, Malik Aamir Saeed, N.M. Saad, David Fofi. Evaluation Metric for Rate of Background Detection. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, May 2016, Taipei, Taiwan. pp.385-389. ⟨hal-01434938⟩
54 Consultations
0 Téléchargements


Gmail Facebook Twitter LinkedIn More