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We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatio-
temporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is

applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the

method enables the recovery of vis-coelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where

the method demonstrates the effect of leakage on the splitting of the forward S1 and backward S2 modes around the Zero-

Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a

substrate near 100 MHz, where the method reveals the complex wave-numbers for an out-of-plane translational and two in-

plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique

tool for analyzing spatio-temporal measurements of propagating waves.

I. INTRODUCTION

Understanding the dispersive and dissipative properties

of materials is critical to the study of wave phenomena.

Extracting complex wavenumber information is important,

particularly in the context of understanding wave attenua-

tion. In addition to dispersive effects, such as the existence

of band gaps, wave attenuation can be caused by factors

such as geometric attenuation or intrinsic material loss (e.g.,

heat dissipation). In any of these cases, the wave attenuation

can be interpreted in terms of complex wavenumbers. The

recovery of complex wavenumbers is of particular interest

for the characterization of the viscoelastic properties of

materials, in systems such as thin-films,1,2 or coated plates,3

the study of mode interactions, i.e., hybridization or repul-

sion,4–6 or the recovery of complex band structures arising

from structural periodicity or resonant elements.4,7,8 The dis-

persion of waves propagating through materials is typically

interpreted in the context of frequency and wavenumber

domain information and obtained from discrete spatiotempo-

ral data via discrete Fourier transforms and related meth-

ods.9–14 However, such techniques typically only supply real

wavenumber information (or their magnitudes) from two-

dimensional, discrete, spatiotemporal wave propagation

information, such as may be obtained from scanned receiver

measurements. Several methods have been proposed to char-

acterize wave attenuation and extract complex wavenumber

information;15–22 however, each has restrictions, as: (i) they are

usually based on measurements of wave amplitude decrease

with respect to time,15–18 (ii) they are iterative methods

applied in space, like the modified Prony method,19 (iii) the

number of modes has to be known in advance or a unique

mode has to be isolated,15–17,20,21,23 (iv) the modes contribut-

ing significantly to the signal are presumed to not interact or

overlap with one another, or (v) they must include a third

dimension of information, such as would be the case in an

experiment with a scanned emitter and a receiver.21,22

In this work, a method presenting none of these restric-

tions is proposed and applied to the analysis of complex

attenuation phenomena in the scanned spatiotemporal meas-

urements of three acoustic systems. After presenting the

implementation of the method making use of a spatial

Laplace transform in Sec. II, we discuss its application in the

following three diverse scenarios. In Sec. III, the method is

applied to the study of low frequency (200 Hz–4095 Hz)

guided elastic waves in porous materials, which are highly

dissipative systems such that the wavenumbers associated

with each mode are complex. The method is utilized to char-

acterize skeleton (matrix) viscoelastic parameters. In Sec.

IV, the method is applied to the analysis of Zero-Group

Velocity (ZGV) Lamb modes at MHz frequencies (1.85

MHz–2 MHz) in a Duralumin plate. The ZGV modes are

composed of two interfering counter-propagating Lamb

modes, and the method reveals mode separation due to leak-

age and their associated complex wavenumbers, along with

motivating the need for more complex multilayer models.

Finally, in Sec. V, the method is applied to characterize the

resonant attenuation of high frequency (10 MHz–400 MHz)

surface acoustic waves (SAWs) propagating through a

two-dimensional (2D) microscale granular crystal adhered to

a substrate with three contact-based resonances. While
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hybridization due to the out-of-plane mode can be seen using

a usual spatial Fourier transform,24 the two combined rota-

tional and in-plane translational resonances are only notice-

able by studying the attenuation of the modes, which is

further highlighted by this method.

II. THE RECOVERY OF COMPLEX WAVENUMBERS:
THE SLaTCoW METHOD

The acronym of the proposed method is SLaTCoW for

Spatial LAplace Transform for COmplex Wavenumber

recovery. In what follows, we focus on the extraction of

complex wavenumber information from guided elastic wave

measurements. However, we note that the SLaTCoW method

is sufficiently general that it may be applied to wave fields of

any type. Assume that a wave field n has been recorded dis-

cretely along a line of length L and has a time dependence of

e�ixt, where x ¼ 2pf is the angular frequency. This field

(after neglecting the branch integrals arising from the appli-

cation of the residue theorem) can be written in the fre-

quency domain as the sum of the contributions of each of the

modes (x is dropped for clarity)

nðxÞ ¼
X

m2M

~n
m

exp ðiKmxÞPðx; LÞ; (1)

where x is the spatial coordinate, ~n
m

is the complex ampli-

tude of the m-th mode, Km is the complex wavenumber of

the m-th mode, M is the set of modes, and Pðx; LÞ is the

gate function equal to 1 when x 2 ½0; L� and equal to 0 else-

where. The complex wavenumber is defined as Km ¼ km
r

þ ikm
i , with km

r > 0 and km
i > 0, such that Eq. (1) only

involves forward propagating modes. Applying the usual

spatial Fourier transform only enables the recovery of km
r . In

order to recover both real and imaginary parts of Km, a spa-

tial Laplace transform is applied to nðxÞ denoted NðsÞ
¼
Ð1
�1 nðxÞ expð�sxÞdx, where s is a complex number wave-

number parameter s ¼ si þ isr, with real numbers si and sr.

This spatial Laplace transform takes the form

N sð Þ ¼
X

m2M

~n
m
ðL

0

exp iKm � sð Þx½ �dx

¼ L
X

m2M

~n
m

exp iKm � sð ÞL=2
� � sinh iKm � sð ÞL=2

� �
iKm � sð ÞL=2

:

(2)

The meaning of the spatial Laplace transform of the m-th

mode is ensured only if si � �km
i because this ensures the

energy decay of each mode. Thus, the upper half space, the

lower bound of which is the maximum value of �km
i with

m 2 M, is the only admissible half space in the complex

s-plane and defines the region of absolute convergence of the

Laplace transform. We note that the slice of NðsÞ in the com-

plex s plane at si¼ 0 exactly corresponds to the spatial Fourier

transform TFðsrÞ of a finite window. Along this line, Eq. (2)

reduces to TFðsrÞ ¼ L
P

m2M
~n

m
exp½iðkm

r � sr þ ikm
i ÞL=2�

sinc½ðkm
r � sr þ ikm

i ÞL=2�, where sincðxÞ ¼ sinðxÞ=x, as can

be seen in Fig. 1.

The problem when trying to recover Km is twofold: the

amplitude and phase of the mode are unknown and the posi-

tion of �km
i in the complex s-plane is by definition unknown.

Therefore, we will focus the analysis on the upper half space

si � 0 where no mode Km is included, thus making the

method stable by preventing the divergence of the transform

due to the poles. Inspired by previous works on the recovery

of the reflection coefficients of higher order modes propagat-

ing in a square cross-section impedance tube,25 the recovery

of Km is performed for each frequency by minimizing the

following cost function:

F j~nmj;/m; km
r ; k

m
i ;M

� �

¼
X

sr

X
si

����Nmes sð Þ � L
X

m2M
j~nmj

� exp i/mð Þ � exp i km
r þ ikm

i

� �
� si � isr

� �
L=2

� �

�
sinh i km

r þ ikm
ið Þ � si � isrð ÞL=2

� �
i km

r þ ikm
ið Þ � si � isrð ÞL=2

����; (3)

where NmesðsÞ is the spatial Laplace transform of the mea-

sured field nðxÞ, and j~nmj and /m are, respectively, the theoret-

ical amplitude and phase of the m-th mode. Note that the L1-

norm is used in Eq. (3) because it leads to quite similar results

as the usual L2-norm. The latter may be preferable when ana-

lyzing signals with a low signal-to-noise ratio. The minimiza-

tion is performed under constraints with the Nelder-Mead

simplex algorithm (
VR

Matlab function f minsearchbnd). In Eq.

(3), it can be seen that there are 4jMj number of unknowns,

corresponding to the wave amplitude, phase, and real and

imaginary parts of the complex wavenumber Km of each

mode. To solve for these unknowns, we first determine the

number of modes to be recovered, along with their real wave-

numbers, amplitudes, and phases, by looking at the spatial

Fourier transform for each frequency. As an example, the

solid black line in Figure 1 shows the amplitude of the spatial

Fourier transform TFðsrÞ, corresponding to f ¼ 149 MHz,

for the scanned measurements discussed in Section V. It can

be seen from the Fourier spectrum that there is one clear

FIG. 1. Laplace transform NmesðsÞ corresponding to f ¼ 149 MHz, for the

scanned measurements discussed in Section V. The solid black line shows

the corresponding amplitude of the spatial Fourier transform TFmesðsrÞ.

2



peak (mode) at this frequency, with real wavenumber k1
r

� 0:29 lm�1. The spatial Laplace transform NmesðsÞ is shown

by the complex s-plane surface plot of Fig. 1. We then calcu-

late a similar surface for varied values of ðj~n1j;/1; k1
r ; k

1
i Þ and

minimize the difference between the calculated and measured

s-plane surface in Eq. (3) to end with K1 ¼ 0:294þ i3:71

�10�3 lm�1, where the superscript denotes that this is the

first identified mode (in this case only one mode is identified).

When jMj 6¼ 1, each mode may, in practice, interact in

the complex s-plane, which emphasizes the necessity of

using a model involving all possible modes at a given fre-

quency and the minimization of the previous cost function to

efficiently determine all the possible Km. This approach may

offer advantages over related approaches in that highly atten-

uating and closely spaced modes may be distinguished from

each other and from peaks associated with the finite mea-

surement domain.

III. APPLICATION TO GUIDED ELASTIC WAVES IN
POROUS MATERIALS

We first apply the SLaTCoW method to the case of

guided elastic waves in porous materials. Porous materials

are known to be highly dissipative due to viscothermal

losses, interaction between the solid and fluid phases, and

viscoelasticity of the skeleton. Seminal works by Boeckx

et al.18 have paved the way for the characterization of the

skeleton, porous material mechanical parameters by means

of guided waves. These works mainly focus on the experi-

mental recovery of the phase velocity vm
/ ¼ x=km

r , in part,

because of a lack of experimental data and analysis tools for

the efficient determination of km
i . The present method is

applied to experimentally determine both real and imaginary

parts of the wavenumbers, thereby filling the existing gap in

attenuation characterization capabilities, and enabling future

works concerning the experimental measurement and model-

ing of viscoelastic parameters of porous materials.

The experimental setup, which is similar to the one used

in Ref. 18, is depicted in Fig. 2(a). A high porosity

(/ > 0:95) melamine foam sample 85 cm long, 45 cm wide,

and 5:5 cm thick is glued on a rigid backing. The excitation

is provided by a shaker (Bruel and Kjaer type 4810), which

is rigidly attached to the sample with a threaded steel rod

(20 mm in length and 5 mm diameter) fixed to the shaker on

one side and glued on a 1 mm thick aluminum plate of width

10 cm and height 1:5 cm. This plate is cut at the edge oppo-

site to the threaded steel rod and glued to the porous sample,

creating a line source 15 cm from the edge of the sample.

FIG. 2. (a) Photograph of the experimental setup. (b) Laplace transform NmesðsÞ corresponding to f ¼ 2453 Hz. Arrows point out peaks, whose main compo-

nent is a single mode, and peaks, whose main component are two modes overlapping. (c) kr and (d) attenuation (ki) of the first guided mode. Red circles depict

the results obtained with the SLaTCoW method and solid lines depict the theoretical predictions.
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The resonance of this part was measured to be 4500 Hz.

While the measurement could be made at higher frequencies

(up to 8000 Hz with a relatively good signal to noise ratio),

the results are only shown for frequencies below this limit.

The excitations are 300 sine functions equally spaced

between 200 Hz and 4095 Hz. The normal displacement

unðxÞ is acquired at 801 positions along a length of L ¼
40 cm with a laser vibrometer (Polytec OFV-503) mounted

on a one-dimensional moving stage, which moves the laser

along the x-axis after each frequency measurement is accom-

plished. The vibrometer is connected to a spectral analyzer

(Stanford Research Systems SR785), which allows us to

directly measure unðxÞ in the frequency domain. Each mea-

surement is averaged 100 times.

The 1962 Biot model26 parameters of the porous mate-

rial, density q, porosity /, flow resistivity r, viscous and

thermal characteristic length K and K0 (respectively), real

part of the shear modulus Nr, and Poisson ratio � were

determined independently using standard methods27 and

are given in Table I. Viscous and thermal losses are

accounted for by use of the Johnson-Champoux-Allard

model,28,29 leading to complex and frequency dependent

effective density and bulk modulus of the fluid phase. The

imaginary part of the shear modulus Ni, which is usually

considered constant in frequency, has been determined

using the SLaTCoW method.

This type of measurement is known to be difficult due

to large dissipation. More than 8 modes can be theoretically

recovered over this frequency range, the velocities of which

asymptotically tend towards the Rayleigh or shear veloci-

ties at high frequencies. Fig. 2(b) depicts the Laplace trans-

form NmesðsÞ at f ¼ 2453 Hz, where 6 modes can been

seen. We choose to focus on the first guided mode, which

was the one that was excited most efficiently. Extracting

the complex wavenumber for this mode is typically diffi-

cult, as several modes are present in its vicinity. The proce-

dure was applied to recover three modes around the first

guided mode in order to remove the remaining components

of the others. The real and the imaginary wavenumber, k1
r

and k1
i , respectively, versus frequency are found via the

SLaTCoW method and plotted in Figs. 2(c) and 2(d),

respectively. Theoretical predictions obtained using Stroh

formalism30,31 and a M€uller algorithm agree well with the

wavenumbers extracted using the SLaTCoW method when

the complex shear modulus N ¼ Nr � iNi is fixed such that

N ¼ 38� i1:52 kPa (damping factor Ni=Nr ¼ 0:04). This

value is in accordance with the literature.32 This demon-

strates the efficiency of the present method to discriminate

modes when several are overlapping, and its effectiveness

for extracting attenuation parameters. This paves the way

for the extraction of new experimental information that

enables the development of improved models of viscoelas-

tic porous materials.

IV. APPLICATION TO ZGV LAMB MODE IN A
DURALUMIN PLATE

We now apply the SLaTCoW method to obtain the com-

plex dispersion curves of Lamb waves propagating in a

1.515 mm thick Duralumin plate. Particular attention is paid

to the first symmetric S1S2 ZGV Lamb mode. This mode is

composed of two counter-propagating modes: the forward

propagating S1 Lamb mode and the backward propagating

S2b Lamb mode.33 In the ideal case of a non-absorbing mate-

rial and free-standing plate, there are a unique wavenumber

and frequency ðKS1S2 ; f S1S2Þ where these two modes coexist.

At this point, the interference of S1 and S2b leads to the so-

called S1S2-ZGV resonance.34 When the material absorption

is significant or when there is leakage to the surrounding

medium, the Lamb modes are inhomogeneous, their disper-

sion curves are no longer real valued, and their wavenumbers

are complex.35–37 As previously noted for measurements

made in a 50 lm-thick tungsten plate, attenuation leads to a

separation of the S1 and S2b mode branches.38

Here, we illustrate a similar effect due to leakage. Using

the SLaTCoW method, we estimate the complex dispersion

branches in the vicinity of the ZGV point. The experimental

setup is shown Fig. 3(a). A linear array ultrasound transducer

probe (Imasonic SAS, 0.417 mm element pitch) made of 128

elements centered at 3.5 MHz, with a large frequency band-

width, was used to generate Lamb waves in a Duralumin

plate of thickness 1:515 mm, width, and length 100 mm.

The probe was operated with the OPEN System of Lecoeur

Electronique. The probe was coupled to the Duralumin plate

using a thin layer of echographic gel approximately

0.150 mm thick. The first element of the array was used to

generate an acoustic wave and then the 128 elements were

used in receiver mode to record the normal displacement of

the plate. The contact of the transducer array with the plate

modifies the boundary conditions, induces leakage of the

Lamb modes, and breaks the symmetry of the problem, such

that the Lamb modes can no longer be separated in symmet-

ric and antisymmetric families.

The results of the application of the SLaTCoW method

to these experimental data concerning the two modes (M3

and M4b) within the ranges kr 2 ½0; 1:8� mm�1, ki 2
½�0:5; 0:5� mm�1, and f 2 ½1:85; 2:03� MHz are shown in

Figs. 3(b) and 3(c). We denote the Lamb modes with a capi-

tal letter M, where the associated index indicates the mode

number. The measured M3 and M4b Lamb modes have oppo-

site phase velocities. While the real part of K4b is negative,

both wavenumbers K3 and K4b (where the superscripts of K3

and K4b correspond to modes M3 and M4b) have positive

imaginary parts as their amplitudes decay from the source to

the receiver. However, for convenience, the backward mode

wavenumber is represented with a positive real part and a

negative imaginary part. Theoretical complex dispersion

curves, using the classic M€uller algorithm, are superimposed

for comparison. Two cases have been considered: a free-

standing Duralumin plate and a more realistic model. In both

cases, the velocities of compressional and shear waves in

Duralumin are set to VL¼ 6380 m s�1 and VT¼ 3080 m s�1,

respectively, and the density is q¼ 2790 kg m�3. The

TABLE I. Material parameters for the melamine foam.

/ q ðkg m�3Þ a1 r ðN s m�4Þ K ðlmÞ K0 ðlmÞ N ðkPaÞ �

0.989 6.1 1 8060 215 215 38� i1:52 0.3
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attenuation coefficient of Duralumin is taken from the litera-

ture as 0.9 dB m�1 at 5.86 MHz.15 Considering the dotted

lines in Figs. 3(b) and 3(c), which represent the calculated

dispersion curves accounting for intrinsic loss in a free-

standing Duralumin plate, the differences between these

curves and the SLaTCoW results are clear. This emphasizes

the effects of the leakage of acoustic energy due to the con-

tact of the transducer array, and the necessity to use a model

that accounts for this. A more realistic model is composed of

three perfectly bonded media: a layer of Duralumin in contact

with a fluid layer (modeling the echographic gel), which is in

contact with a half-space solid media representing the probe

array. This model is used to calculate the theoretical dispersion

curves shown as dashed lines in Figs. 3(b) and 3(c), using the

previously stated properties for Duralumin. The 0.15 mm thick

fluid layer is modeled as water, and it is assumed that no shear

waves can propagate in it. The properties of the half-space

have been chosen to be VL¼ 3000 m s�1, VT¼ 1300 m s�1, and

q¼ 1100 kg m�3. No attenuation is assumed for both the fluid

layer and the half-space. A good agreement between the theo-

retical curves and the points obtained using the SLaTCoW

method can be seen. In Fig. 3(b), a separation of M3 (cross)

and M4b (circle) branches is observed. These modes are typi-

cally not observed because of attenuation when approaching

the position of the ZGV point. As shown in Fig. 3(b), as the

position of the ZGV point of a free plate is approached, the

imaginary part of the wavenumber and thus the attenuation

become larger.

Although the chosen model may be considered overly

simple, it is sufficient to reach good qualitative agreement

with the results obtained using the SLaTCoW method. Note

that the discrepancy in Fig. 3(c) between experiments and

theory on the M4b mode is due to the fact that this experi-

mental branch is attenuated in the vicinity of kr¼ 0, making

the SLaTCoW recovery harder to perform due to the very

low signal-to-noise ratio. However, for the M3 mode, where

the signal-to-noise ratio is high, the agreement between the

SLaTCoW results and the theoretical dispersion curves is

excellent. The good qualitative agreement between the

SLaTCoW results and the theoretical dispersion curves paves

the way for new insights regarding the ZGV modes in free-

standing plates and related multilayer systems.

V. APPLICATION TO SURFACE ACOUSTIC WAVES IN
A TWO-DIMENSIONAL MICROSCALE GRANULAR
CRYSTAL ADHERED TO A SUBSTRATE

We apply the SLaTCoW method to obtain the complex

dispersion curves of SAWs propagating in a 2D microscale

granular crystal adhered to a substrate. Ordered and reduced-

dimensional granular structures, often referred to as granular

crystals,39–41 have proven to be systems of interest, as they

represent an avenue for gaining a broader understanding of

granular media dynamics, and have been suggested for use

in stress wave manipulation and acoustic signal processing

applications.40 While granular crystals have typically been

constructed from macroscale particles,41 the acoustics of

microscale granular crystals is an emerging field.24,42,43

In a recently published work,24 the resonant attenuation

of SAWs propagating through a 2D microscale granular

crystal adhered to a substrate was studied using a laser ultra-

sonic technique. A schematic of the sample and the laser

ultrasonic setup used in the study of Ref. 24 is shown in Fig. 4.

FIG. 3. (a) Photograph of the experi-

mental setup. (b) and (c) Dispersion of

Lamb waves in a 1.525 mm thick

Duralumin plate: (b) real part and (c)

imaginary part of the wavenumber.

Markers denote the points identified

using the SLaTCoW method. The cho-

sen ranges, kr 2 ½0; 1:8� mm�1, ki 2
½�0:5; 0:5� mm�1, and f 2 ½1:85; 2:03�
MHz, include two Lamb modes: M3

(cross) and M4b (circle). Theoretical

complex dispersion curves using two

different models are displayed for

comparison: a model considering a

free-standing Duralumin plate (dotted

lines) and a more complex model

(dashed lines).
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In summary, the microscale granular crystal is a monolayer

of 2 lm diameter silica spheres, which were assembled via a

convective self-assembly process.44 An interface between

regions with and without the monolayer was created using a

microcontact printing technique.45 Surface acoustic waves

were generated by focusing a pulsed laser into the sample

surface (430 ps pulse duration, 532 nm optical wavelength,

and 1:2 mm� 20 lm spot size), such that they traversed the

interface, whereafter they were measured using a photo-

deflection technique (continuous wave laser, 514 nm optical

wavelength, 6 lm spot size) at 185 positions along a scan

length of 740 lm. Additional experimental details can be

found in Ref. 24. By calculating the 2D Fourier transform

magnitudes of the spatiotemporal data corresponding to the

SAWs propagating in the region with the monolayer, the dis-

persion of SAWs propagating in the granular crystal was

visualized. While this method did not separate the real and

imaginary wavenumber components of the SAW dispersion,

the calculated dispersion curves revealed the interaction

between three contact-based resonances of the mono-

layer,24,46 including one with out-of-plane motion of the

spheres and two with combined rotational and in-plane trans-

lational motion.

We apply the SLaTCoW method to the spatiotemporal

measurement data obtained and presented in Ref. 24 (corre-

sponding to the sample without any additional aluminum

coating on top of the spheres). The resulting complex disper-

sion curves are shown in Fig. 5(a) (k1
r ) and in Fig. 5(b) (k1

i ).

As can be seen in Fig. 5(a), an avoided crossing with the out-

of-plane contact resonance (fN) of the monolayer is present

and is the only visible feature disturbing the straight line cor-

responding to Rayleigh waves propagating in the substrate.

We compare the dispersion curves calculated from experi-

mentally obtained data with those calculated in Ref. 24 using

a lossless theoretical model,46 and find a reasonable agree-

ment in the neighborhood of the out-of-plane contact reso-

nance. As in Ref. 24, avoided crossings due to the two

rotational-translational modes (including the rotation domi-

nated resonance fRH and the translation dominated resonance

fHR) are both absent. In contrast, the two rotational-

translational resonances are both clearly visible in the disper-

sion curves corresponding to the imaginary part of the wave-

number shown in Fig. 5(b) as smaller peaks surrounding the

large out-of-plane resonance.

This work and the SLaTCoW method pave the way for

the development of new models of microscale granular

dynamics, which may find use in discerning the contributions

of various sources of loss observed in experiments.24,42 For

example, there is currently no model for the imaginary part

of Km for the 2D microscale granular crystal adhered to a

FIG. 4. Schematic of sample and laser ultrasonic experimental setup used in

Ref. 24.

FIG. 5. (a) Dispersion curves of SAWs propagating in a substrate with an adhered microsphere monolayer, corresponding to the real part of the wavenumber,

k1
r . Solid lines are dispersion curves calculated using the SLaTCoW method. Red dash-dotted lines are the dispersion curves calculated using a lossless model

and the fitted contact resonance frequencies (denoted by the horizontal dotted lines). Rayleigh (cR) and transverse (cT) wave speeds are the straight dotted and

dashed lines, respectively. (b) Dispersion curves of SAWs propagating in a substrate with an adhered microsphere monolayer calculated using the SLaTCoW

method, corresponding to the imaginary part of the wavenumber, k1
i . Horizontal dotted lines denote the fitted contact resonance frequencies. Solid lines in both

panels are computed using experimental data originally obtained and presented in Ref. 24.
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substrate. This demonstrates the efficacy of the method to

advance relevant modeling efforts.

VI. CONCLUSION

A method for the recovery of complex spatial frequency

domain information from spatiotemporal data is presented.

This method, named SLaTCoW (Spatial Laplace Transform

for COmplex Wavenumber recovery), is based on a spatial

Laplace transform of the measured wave field in the fre-

quency domain, instead of the usual spatial Fourier trans-

form. The Laplace transform, providing information on both

the real and imaginary parts of the poles, is analyzed by the

minimization of a correctly chosen cost function. This allows

the reconstruction of complex wavenumbers (as well as the

complex amplitude) of the modes, even when they are inter-

acting with other modes. The SLaTCoW method was applied

to three completely different dispersive and attenuating sys-

tems, involving three different set-ups in three different fre-

quency ranges, and showed use in the analysis of attenuation

phenomena occurring in each system. This method provides

information that cannot be obtained from 2D Fourier trans-

forms, including the separation of modes that are almost

overlapping, as well as amplitude independent information.

The SLaTCoW method paves the way for new theoretical

developments in various fields of physical acoustics such as

attenuating and locally resonant materials.
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