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Darboux curves on surfaces II

Ronaldo Garcia*, Rémi Langevin and Paweł Walczak

Abstract. In 1872, Gaston Darboux defined a family of curves on surfaces in the 3-

dimensional Euclidean space E3 which are preserved by the action of the Möbius group

and share many properties with geodesics. Here, we study the Darboux curves from a

dynamical viewpoint on special canal surfaces, quadrics and some Darboux cyclides.

We also describe the generic behavior of Darboux curves near ridge points (zig-zag and

beak-to-beak).

Keywords: Darboux curves, conformal geometry, space of spheres, canal surfaces,

ridge points.

Mathematical subject classification: 53A30, 53C12, 53C50, 57R30.

1 Introduction

Geodesics on a surface are defined in terms of a Riemannian metric. Here we

study a family of curves defined on a surface M contained in the 3-dimensional

space E3 using only its conformal structure, called Darboux curves.

They are characterized by a relation between the geometry of the curve and

of the surface: an osculating sphere to a Darboux curve is always tangent to the

surface.

The study of these curves started with G. Darboux at end of 19th century, and

has been continued until now.

We adopt a dynamical viewpoint and focus on semi-local behavior near ridge

points (see Subsection 2.3) and on global properties of these curves.

We first recall the construction of a flow, that we call Darboux flow, on the

set V (M) of spheres tangent to the surface M having a saddle contact at the

tangency point associated to the Darboux curves. This construction and the cor-

respondence between conformal properties of one parameter families of spheres

*Corresponding author.
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tangent to a surface M ⊂ S3 or M ⊂ E3 along curves and properties of curves

in V (M) is the main topic of [11].

The unit tangent bundle T 1 M is essentially a 4-fold covering of V (M). There

we can write a differential equation for a flow “covering” the Darboux flow (see

Section 2.4 and [11]).

Then in Sections 4 and 5 we present a detailed study of the dynamical behavior

of Darboux curves on special canal surfaces and quadrics, retrieving in particular

results of [6], [7], [8], [15], [16], [25], [27], [29], [30], [31], [35].

The global study of Darboux curves in general remains wide open. In particu-

lar, it would be interesting to know on which surfaces there exist either closed

and/or complete Darboux curves disjoint from the ridges.

2 Preliminaries

In this section we fix the notations and revise some results of [11].

2.1 Spheres tangent to a surface

In the Lorentz space R5
1 endowed with the Lorentz quadratic form L = −x 2

0 +
x 2

1 + · · · + x 2
4 , the points of the de Sitter quadric �4 ⊂ R5

1 of equation L = 1

represent oriented (plane-or-)spheres of E3 (see [17] and [21]). Through out the

paper, except when explicitly mentioned, planes are considered as particular

spheres.

We will use the terminology of relativity theory to qualify vectors of R5
1: v

is space-like if L(v) > 0, time-like if L(v) < 0 and light-like if L(v) = 0. A

subspace will be space-like if it contains only space-like non-zero vectors, time-

like if it contains some time-like non-zero vectors, and light-like if it contains

some light-like non-zero vectors but no time-like non-zero vectors.

The points of E3 are represented by the intersectionE of the light cone Light

given by equation L = 0 and an affine hyperplane Q parallel to a hyperplane

q tangent to Light . Such an hyperplane is tangent to Light along a line of

the form R · m∞. Therefore q = m⊥
∞. Any 3-dimensional subspace E of Q

transverse to the direction m∞ is space-like, therefore the restriction of L to it

is positive definite. The restrictions of L to the tangent spaces at points of the

paraboloid E form a Riemannian metric on E. The Riemannian metric induced

by L on E is Euclidean; the projection of E on E parallely to m∞ is an isom-

etry. This shows that the induced metric on E is also Euclidean. Alternatively,

we may think of the set of generatrices of the light cone Light as the comple-

tion S3 of E3.
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Each time-like hyperplane h intersects E in a subset isometric to a sphere or

a plane (see [17]). The space-like line h⊥ intersects the quadric �4 = {L = 1}
at two points. Reciprocally, each point of �4 corresponds to a sphere (or plane)

endowed with an orientation.

If two points σ1 and σ2 of �4 satisfyL(σ1, σ2) = 0, the corresponding spheres

(or planes) are orthogonal. If they satisfy L(σ1, σ2) = 1, the corresponding

spheres (or planes) are tangent (or parallel if both are planes). The set Tσ�4 ∩�4

is a cone of vertex σ which is a union of light-rays. A glance at Equation 1 below

will convince the reader that each generatrix of this cone corresponds to spheres

tangent to the sphere � associated to σ ∈ �4 at a point m ∈ �.

The spheres tangent to a surface M ⊂ E3 form a 3-dimensional subset of the

set of spheres, which is 4-dimensional (see [19]).

Let V (M) ⊂ �4 be the set of spheres having a saddle contact with the surface

M ⊂ E3.

Figure 1: Possible contacts of a sphere and a surface.

The set V (M) essentially projects on M . Indeed, generically, a point σ ∈
V (M) projects on the tangency point of the sphere � corresponding to σ and

the surface M (exceptional points of V (M) correspond to spheres tangent to

M at more than a point). Above any non umbilical point m ∈ M , the spheres

admitting a saddle contact with M form a light-like segment bounded by the two

osculating spheres at m ∈ M (see [21] and [11]).

We will denote by O1 and O2 the surfaces of osculating spheres associated

respectively to the principal curvatures k1 ≥ k2 of the surface M and by M the

surface of spheres tangent to M of mean curvature equal to the mean curvature

of M at the tangency point.

The boundary of V (M) ⊂ �4 is the surfaceO1 ∪O2 of spheres osculating M .

Therefore, when M has no umbilics, V (M) is essentially an interval fiber-bundle

π : V (M) → M over M . The fibers Im are light-like intervals.
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The points σα of a fiber Im can be expressed as linear combinations of the

two osculating spheres o1(m) and o2(m): σα = cos2 α o1(m) + sin2 α o2(m).

Euler’s computation of the normal curvatures kn = kn (m, ℓ) of sections of

a surface by normal planes intersecting the tangent plane Tm M along a line ℓ

making angle α with the first principal direction implies

Proposition 1. Let kn = k1 cos2 α + k2 sin2 α. Then the angle of the two direc-

tions ℓ±α tangent at m to �m,kn
∩ M with the principal direction corresponding

to k1 is ±α, where �m,kn
is the sphere tangent to M at m of curvature kn , that is

such that geodesic circles on �m,kn
have curvature kn .

Proof. See [11]. �

The interval bundle V (M) is closely related with the projective tangent bundle

P(T (M)). Indeed, let us chose as origin on a fiber of P(T (M)) the direction

of the first principal direction. The “antipodal” direction of the first principal

direction on the fiber Pm of P(T (M)) above m is the second principal direction.

Sending the direction making an angle α with the first principal direction and

the one making an angle −α to the point σα ∈ Im “folds” the circle Pm on the

interval Im .

When M has umbilical points, the two folds O1 and O2 meet at the oscu-

lating spheres at umbilical points of M . The middle-points of the segments

[o1(m), o2(m)], m ∈ M form a surface M, the mean surface. Each point of

M is a sphere tangent to M at a point m. Moreover its mean curvature is equal

to the mean curvatureH (m) of M at m. R. Bryant noticed that the area of this

surface is the value of the Willmore functional for M (see [4]).

It is convenient to have a formula giving the point σ ∈ �4 in terms of the

Riemannian geometry of the corresponding sphere � ⊂ E ⊂ Light and a point

m on it. For that we need to know also the unit vector
→
n tangent to E ⊂ Light

and normal to � at m and the geodesic curvature k of �, that is, for us, the

geodesic curvature (as a curve of E ⊂ Q ⊂ R5
1 ) of any great circle on �. We

can also think of k as the curvature of any great circle on � ⊂ E, where E is

endowed with its Euclidean metric induced from L.

Proposition 2. The point σ ∈ �4 corresponding to the sphere � ⊂ E ⊂ Light

is given by

σ = k · m + →
n . (1)

Proof. See for example [17] Section 1.1 and [20]. �
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2.2 Local conformal invariants of surfaces

Assume that M is a surface which is umbilic free, that is, that the principal

curvatures k1(x) ≥ k2(x) of M are different at any point x of M . We will

keep the convention k1 ≥ k2 throughout the paper and refer to the principal

direction associated to k1 as first principal direction. Let X1 and X2 be unit

vector fields tangent to the curvature lines corresponding to, respectively, k1 and

k2. Put µ = (k1 − k2)/2. Since more than 100 years, it is known ([34], see also

[5]) that the vector fields ξi = X i/µ and the coefficients θi (i = 1, 2) in

[ξ1, ξ2] = −1

2
(θ2ξ1 + θ1ξ2) (2)

are invariant under arbitrary (orientation preserving) conformal transformation

of R3. In fact, they are invariant under arbitrary conformal change of the Rie-

mannian metric on the ambient space. This follows form the known (see [21],

page 142, for instance) relation Ã = e−φ(A − g(∇φ, N) × Id) between the

Weingarten operators of a surface M with respect to conformally equivalent

Riemannian metrics g̃ = e2φg on the ambient space; here ∇φ and N denote,

respectively, the g-gradient of φ and the g-unit normal to M . Elementary calcu-

lation involving Codazzi equations shows that

θ1 = 1

µ2
· X1(k1) and θ2 = 1

µ2
· X2(k2). (3)

The quantities θi (i = 1, 2) are called conformal principal curvatures of M .

Let ω1, ω2 be the 1-forms dual to the vectors ξ1, ξ2. Then the equalities

dω1 = 1

2
θ2ω1 ∧ ω2, dω2 = 1

2
θ1ω1 ∧ ω2 (4)

hold. See [11].

2.3 Ridges

Let F0 and F π
2

be the foliations of M by lines of principal curvature associated

respectively to the principal curvatures k1 ≥ k2; these foliations are singular if

M has umbilical points. For the generic behavior of F0 and F π
2

near umbilical

points see [13] and references therein. Consider a surface M and a principal

chart (u, v) such that the horizontal foliationF0 is that associated to the principal

curvature k1.
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Definition 3. A non umbilical point p0 = (u0, v0) is called a ridge point of the

principal foliation F0 if ∂k1

∂u
(p0) = 0, equivalently, if θ1(p0) = 0. In the same

way we define ridges for F π
2
.

We refer the reader to [26] for an introduction to ridges and to [14] for appli-

cation to the construction of eye-lenses.

Let us pull back the foliation F0 of M to a foliation F̃0 of O1. The lift of a

ridge point to O1 is in general a cusp of a leaf L of F̃0. To see that, let us

parametrize a leaf L of F0 near a ridge point using a regular parameter t on the

corresponding line of curvature. It induces a parametrization of the correspond-

ing leaf L̃ = {o1 = o1(t)} of F̃0. Then, at a ridge point, k′
1 = 0. Differentiating

(1) we get, at the lift of the ridge point, o′
1 = 0.

The correspondence between singular points of Oi and ridges can be seen

directly observing that the osculating spheres along their line of principal cur-

vature are stationary at a ridge point. From that it follows that ridges are confor-

mally defined.

In general, ridge points form curves in M that we call just ridges. The lift to

O1 of a ridge for k1 is in general a cuspidal edge of the surfaceO1. See Figure 2.

Leaf of F̃0

O1

Lift of a ridge

�4

Figure 2: The surface O1 and the foliation F̃0.

The equations of the two families of ridges are θ1 = 0 and θ2 = 0; let us define

ζ1 = ξ1(θ1)(p0) and ζ2 = ξ2(θ2)(p0). In [11] we proved the following

Theorem 4. Let p0 be a point of a ridge of M corresponding to the principal

foliationF0 such that ζ1(p0) = 0. Then the ridge R containing p0 is locally a

regular curve transverse toF0; the boundary component of V(M) corresponding

to α = 0 has a cuspidal edge along π−1(R), see Figure 3. The same is true for

ridges associated to the principal foliationF π
2

.
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Figure 3: Ridges and Singularities of the boundary of V (M).

For an open and dense set of compact surfaces with the Cr -topology of Whit-

ney, r ≥ 4, the set of ridge points is the union of regular curves outside the set

of umbilical points. See [3].

Proposition 5. At regular points, V (M) inherits from �4 a semi-Riemannian

metric. In other words its tangent 3-space at any regular point is light-like.

2.4 Differential equation of a Darboux curve in a principal chart

Definition 6. A curve C on a surface M ⊂ E3 is a Darboux curve if at each

point m ∈ C ⊂ M the osculating sphere to C at m is tangent to M at m.

We observe that the definition of Darboux curves involves only spheres and

contact order, so this notion belongs to conformal geometry.

We prove in [11] the following

Theorem 7. A curve C ⊂ M is a Darboux curve if and only if it satisfies the

equation

k′
n + τgkg = 0, (5)

where we differentiate with respect to the arc-length of C. Here kn is the normal

curvature, τg is the geodesic torsion and kg is the geodesic curvature of C ⊂ M.

We also explain there that the osculating spheres to a Darboux curve form a

curve which is a geodesic of the 3-dimensional space V (M) of spheres having

a saddle contact with the surface M . These curves, that we call D̃-curves form

almost a flow: two such curves pass through every point of the interior of V (M).

To get a flow, we should “unfold” the intervals of light-ray fibering V (M) into

circles, that is consider the map P(T M) → V (M), (α mod π �→ σα (see

Section 2.1)).
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In fact we will consider, in order to compute using an angle α ∈ S1, the unit

tangent bundle T 1 M of M , double cover of P(T M). T 1M covers four times

the set of regular points of V (M), and is endowed with a flow the orbits of which

project onto D̃-curves.

Consider a local principal chart (u, v) in a surface M ⊂ E3.

We denote by s the arc-length of a curve C and by sc, mean-spheres length,

the arc-length of the curve corresponding to C in the surfaceM of mean spheres

tangent to M . Length elements dsc and ds are related by dsc

ds
= µ = (k1−k2)

2
.

Theorem 8. Let (u, v) be a principal chart and C : s �→ c(s) a Darboux curve

parametrized by Euclidean arc length s or mean-sphere length sc. Let α be the

angle between C and the principal direction ∂/∂u. The angle α satisfies the

following differential equation

6 sin α cos α
dα

dsc

= θ1 cos3 α + θ2 sin3 α. (6)

Notice that all the quantities involved in Equation (6) are conformally defined.

Equation (6) implies directly that the Darboux curves on a Dupin cyclide (θ1 =
θ2 = 0) make a constant angle with the principal curvature lines. The Darboux

curves are then exactly the leaves of the foliationsFα studied in [12].

2.5 A plane-field on V(M)

In this subsection we consider a natural plane-field associated to the Darboux

curves and its integrability in terms of conformal invariants.

Two tangent vectors D1 and D2 to the two Darboux curves through the point

(m, α) ∈ V (M) define a plane in Tm,αV (M). These planes define a plane-field

D. It will be called Darboux plane-field. As a branch of the intersection of a

sphere σm,α and M , and the Darboux curve tangent at m to this branch have

the same osculating circle, the vector, say D1, is also tangent to the pencils

of spheres through this osculating circle. The plane D is therefore tangent at

(m, α) ∈ V (M) to the two curves corresponding to pencils through the osculat-

ing circles to the two branches.

The next results, see [11], establish the necessary and sufficient conditions of

integrability of the Darboux plane-field D.

Theorem 9. The Darboux plane-fieldD is integrable if and only if

5
ξ2(θ1) = 5

6
θ1θ2. (7)ξ1(θ2) = −

6 
θ1θ2, 

8



Corollary 10. Consider a principal chart (u, v) and principal curvatures k1 >

k2. Then the criterium of integrability of the Darboux plane-field D is given

by:

∂2k1

∂u∂v
=1

3
· 1

k1 − k2

∂k1

∂u

(

3
∂k1

∂v
− ∂k2

∂v

)

∂2k2

∂u∂v
=1

3
· 1

k1 − k2

∂k2

∂v

(

∂k1

∂u
− 3

∂k2

∂u

)

(8)

3 Local and semi-local dynamics of Darboux curves

In this section we study the local and semi-local aspects of Darboux curves

near a non-ridge point and regular arcs of ridge points transversal to the asso-

ciated principal foliation, called zig-zag and beak-to-beak. Then we determine

the dynamical behavior of Darboux curves on non-degenerated quadrics near

the ridges.

3.1 Darboux curves near non-ridge points and near arcs of ridges

In this subsection we consider the dynamical behavior of Darboux curves

through a non-ridge point and near a regular arc of ridge points.

More precisely, we analyze the asymptotic behavior of Darboux curves when

the curve becomes tangent to a principal direction and consider the qualitative

behavior of Darboux curves near a regular ridge point where the ridge is trans-

verse to the correspondent principal foliation. We analyze in this situation the

generic behavior of the Darboux curves: there are two different patterns, zig-zag

and beak-to-beak, see Figure 6.

Proposition 11. Let p0 be non-umbilical point which is not in a ridge, i.e.

θi(p0) = 0, (i = 1, 2), and consider a principal chart (u, v) that is a chart

such that the coordinate curve v = constant (“horizontals”) are plaques of

the foliationF0 associated to the principal curvature k1, and the the coordinate

curve u = const . (“verticals”) are plaques of the foliationF π
2

to the principal

curvature k2.

The Darboux curves tangent to the lines of principal curvature at p0 are

singular curves of cuspidal type and are parameterized by

(u(t), v(t)) =
(

1

24
(k1 − k2)θ1t2 + · · · ,

1

216
(k1 − k2)

2θ 2
1 t3 + · · ·

)
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and

(u(t), v(t)) =
(

1

216
(k1 − k2)

2θ 2
2 t3 + · · · ,

1

24
(k1 − k2)θ2t2 + · · ·

)

.

The behavior of the Darboux curves passing through p0 is as shown in Fig-

ure 4.

Figure 4: Darboux curves through a non-ridge point. The right side of the figure

shows the cuspidal contact of the Darboux curves with the principal line (hori-

zontal) and the top side the same behavior with the other principal line (vertical).

Proof. From the differential equation (6) it follows that the Darboux curves in

M are the projections of the integral curves of the vector field D1 defined in the

tangent bundle T M \ {v1, v2} = {(p, v) : v ∈ TpM, v = v1, v = v2}, where

{v1, v2} is the set of principal directions. In a local chart (u, v, α) it is given by

D1 =
[

cos α√
E

∂

∂u
+ sin α√

G

∂

∂v

]

+
[

∂k1/∂u

3
√

E(k1 − k2)

cos2 α

sin α
+ ∂k2/∂v

3
√

G(k1 − k2)

sin2 α

cos α

]

∂

∂α
.

To develop the analysis we will consider the vector field X = cos α sin αD1

defined by the differential equation:

u′ = 1√
E

cos2 α sin α , v′ = 1√
G

sin2 α cos α ,

α′ = k1 − k2

12
[θ1 cos3 α + θ2 sin3 α] .
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The vector field X has a smooth extension to the axis α. Also, X (u, v, α+
π) = −X (u, v, α) and therefore it projects (as a line-field) smoothly to the

projective bundle P(T M).

For any initial condition (0, 0, α0), with α0 = nπ

2
, n ∈ Z, the integral curves

of X are transverse to the axis α and therefore have regular projections. For

α0 = πn
2

and θ1θ2 = 0, the integral curves of X have quadratic tangency with

the axis α and under the hypothesis the projections of these integral curves are

singular curves of cuspidal type, see Figure 5.

Figure 5: Projections of integral curves of X in the singular Darboux curves

through a non-ridge point.

In fact, for α = nπ and assuming the normalization E(0) = G(0) = 1, direct

calculations provide

u(t) = 1

24
(k1 − k2)θ1t2 + · · ·

v(t) =(−1)n 1

216
(k1 − k2)

2θ 2
1 t3 + · · ·

α(t) =nπ + (−1)n θ1

12
t + · · ·

For α = nπ
2

direct calculations provide

u(t) = 1

216
(k1 − k2)

2θ 2
2 t3 + · · ·

v(t) =(−1)n 1

24
(k1 − k2)θ2t2 + · · ·

α(t) =nπ

2
+ (−1)n−1 θ2

12
t + · · ·
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Now observe that the projection P(u, v, α) = (u, v) of the integral curves of

X passing through (0, 0, nπ) and (0, 0, nπ

2
) form a cusp tangent to a principal

curvature line. �

Remark. We do not know if Darboux curves issued from a non-ridge point

m cover a neighborhood of m deprived of the lines of principal curvature

through m.

Recall, see Definition 3, that a non umbilical point p0 = (u0, v0) is called

a ridge point of the principal foliation F0 or of the principal curvature k1 if
∂k1

∂u
(p0) = 0, equivalently, if θ1(p0) = 0. In the same way we define ridges

for F π
2

.

Recall that the ridge points are associated to the singularities of the focal

set of the surface and also to the singularities of the boundary of V (M) (see

Section 2.1).

Definition 12. A ridge point p0 of F0 is called zig-zag, when

ζ1(p0) = ∂2k1

∂u2
(p0)

/

(k1(p0) − k2(p0)) < 0,

or equivalently when ξ1(θ1)(p0) < 0.

It is called beak-to-beak, when ζ1(p0) > 0, or equivalently when ξ1(θ1)

(p0) > 0.

We define zig-zag and beak-to-beak points for F π
2

in the same way. In this

case a point p0 is a ridge zig-zag when ξ2(θ2)(p0) < 0 and it is beak-to-beak

when ξ2(θ2)(p0) > 0.

Theorem 13. Let R be an arc of ridge points transverse to the corresponding

principal foliation (i.e., suppose that ζi (p) = 0 for every p ∈ R). Then there

exist exactly two types of behavior for the Darboux curves near the ridge arc R,

zig-zag ζi(p) < 0 and beak-to-beak ζi(p) > 0 as shown in Figure 6.

Proof. Consider the vector field X as in the proof of Proposition 11.

We will consider a ridge corresponding toF0. For the other principal foliation

the analysis is similar.

The ridge is defined by the equation ∂k1

∂u
(u, v) = 0.

In the principal chart (u, v), the singularities of the vector field X are given by

(R1(v), 0) = (U (v), v, 0).
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Figure 6: Darboux curves near regular arcs of ridges: zig-zag and beak-to-beak.

It follows that

D X (R1(v), 0) =

⎛

⎝

0 0 1

0 0 0
1

12

∂θ1

∂u
(k1 − k2)

1
12

∂θ1

∂v
(k1 − k2) 0

⎞

⎠

The eigenvalues of D X (R1(v), 0) are

λ1 = 0, λ2 = 1

2
√

3

√

∂θ1

∂u
(k1 − k2), λ2 = − 1

2
√

3

√

∂θ1

∂u
(k1 − k2).

Using invariant manifold theory, (see [18, page 44] and [9]), we see that when

λ2 and λ3 are real and

λ2λ3 = − 1

12

∂θ1

∂u
(k1 − k2) = −1

3
ζ1(R1(v)) < 0,

(hyperbolic case) the singular set of X (ridge) is normally hyperbolic. Therefore

there exist stable and unstable surfaces, which are normally hyperbolic along the

singular set. This implies that there is a lamination (continuous fibration) along

the ridge and the fibers are the Darboux curves.

Darboux curves are as shown in Figure 6, right. That is, there are Darboux

curves crossing the ridge, tangent to the lines of principal curvature, and these

prolonged Darboux curves are C1 along the ridge.

When

ζ1(R1(v)) = ∂2k1

∂u2
/(k1 − k2) < 0,

the non zeros eigenvalues of D X (R1(v), 0) are purely complex (elliptic case)

and therefore the singular set is not normally hyperbolic.
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In this case we are in the hypothesis of Roussarie Theorem, [28, Theorem 20,

page 59], so there is a local first integral in a neighborhood of the ridge. The

level sets of this first integral are cylinders and the integral curves (like helices)

in each cylinder when projected in the surface M have a cuspidal point exactly

when the helix cross the section α = 0. See Figure 7.

Figure 7: Integral curves of X near a curve of singularities: hyperbolic an elliptic

behavior.

The projections of integral curves of X in M produces the zig-zag as shown

in Figure 6, left.

There are no Darboux curves tangent to the principal direction ∂/∂u along the

ridge in this case.

A similar analysis for the other ridge corresponding to principal foliation

F π
2

can be carried out. �

3.2 Darboux curves near ridges on quadrics

In this subsection we describe the dynamical behavior of Darboux curves near

the ridges on non-degenerated quadrics (ellipsoidsand hyperboloids).The global

study of Darboux curves on quadrics will be done in Section 5.

Proposition 14. The ridges of Qa,b,c = {(x , y, z) : x2/a + y2/b + z2/c = 1}
are the intersection of the quadric with the coordinates planes. Moreover the

conic that contains the umbilical points is divided in connected components of

the ridges of k1 and k2. See Figure 8.

Proof. By the symmetry it is clear that the points of intersection of the coor-

dinate planes with the quadric are ridges points. In a principal chart (u, v), see

equation (12), we have that

∂k1

∂u
= − 3

2u
k1 = 0 and

∂k2

∂v
= − 3

2v
k2 = 0.
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Figure 8: Ridges of the quadricQa,b,c .

Therefore the principal curvatures have no critical points along the correspond-

ing principal curvature line in the complement of these three conics. This implies

that there are no ridges outside the intersection of the coordinate planes with

the quadric. �

Proposition 15. Consider the quadric

Qa,b,c =
{

(x , y, z) : x2/a + y2/b + z2/c = 1
}

and fix an orientation on it such that k1 ≥ k2.

a) For the ellipsoid with 0 < c < b < a it follows that

i) The ellipse Exz = {y = 0} ∩ Qa,b,c containing the four umbilics

(x0, 0, z0) is the union of ridges of k1 and k2. For |x | > x0 the ridge

correspond to k1. The ellipse Exz is beak-to-beak in both cases.

ii) The ellipse Exy = {z = 0} ∩ Qa,b,c, respectively Eyz = {x =
0} ∩ Qa,b,c , is a ridge corresponding to k1, respectively to k2, and is

zig-zag.

b) For the hyperboloid of one sheet with c < 0 < b < a it follows that

i) The hyperbole Hyz = {x = 0} ∩ Qa,b,c is a ridge corresponding to

k1 and is beak-to-beak.

ii) The hyperbole Hxz = {y = 0} ∩ Qa,b,c is a ridge corresponding to

k1 and is zig-zag.

iii) The ellipse Exy = {z = 0} ∩ Qa,b,c is a ridge corresponding k2 and

it is zig-zag.

c) For the hyperboloid of two sheets with c < b < 0 < a it follows that

i) The hyperbole Hxz is a ridge corresponding to k1 and is zig-zag.
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ii) The hyperbole Hxy containing the four umbilics (x0, y0, 0) is the

union of ridges of k1 and k2. For |x | > x0 the ridge correspond to k1

and all segments of hyperbolas are beak-to-beak.

Proof.

a) Ellipsoid

It will be sufficient to check the condition of zig-zag or beak-to-beak only at

a point of a connected component of the ridge.

The ellipse Exz contained in the plane y = 0 contains the four umbilics Ui

(i = 1, . . . ,) and therefore Exz is the ridge ofF0 andF π
2

. More precisely, under

the hypothesisa > b > c the arcs of ellipse that contain the vertices (±√
a, 0, 0)

are ridges of F π
2

and the arcs of ellipse that contain the vertices (0, 0, ±√
c) are

ridges of F0.

Consider the point p0 = (
√

a, 0, 0) contained in the ellipses Exz and Exy ,

supposed parameterized in the neighborhood of p0 by arc length with unitary

tangent vector X1 and X2 respectively.

Also consider the orientation of the ellipsoid such that k1(p0) > k2(p0) > 0.

The principal curvatures of the ellipsoid on the coordinate planes are the cur-

vature of the ellipses and as a > b > c > 0 it follows that X2(X2(k2))(p0) < 0.

Therefore ξ2(θ2)(p0) = X2(X2(k2))(k2 −k1)(p0) > 0 and, using Theorem 13,

we see that this point is a ridge beak-to-beak for F π
2
.

As a > b > c > 0 the point p1 = (0, 0,
√

c) contained in the ellipses Exz and

E yz, ridge of F0, it follows that 0 < k2(p1) < k1(p1), X1(X1(k1))(p1) > 0 and

ξ1(θ1)(p1) = X1(X1(k1))(k1 − k2)(p1) > 0 and, using again Theorem 13, we

see that this point p1 is a ridge beak-to-beak for F0.

Therefore Theorem 13 implies that the ellipse Exz is beak-to-beak for both

principal curvatures.

Now consider the point q0 = (0,
√

b, 0) contained in the ellipse Eyz (ridge of

k2 corresponding toF π
2
).

It follows that k1(q0) > k2(q0) > 0, X2(k2)(q0) = 0 and X2(X2(k2))

(p0) > 0.

Therefore ξ2(θ2)(q0) = X2(X2(k2))(k1 − k2)(q0) < 0 and the ellipse

E yz is zig-zag.

A similar argument shows that Exy is zig-zag for k1, i.e.,

X1(X1(k1))(k1 − k2) < 0.

b) Hyperboloid of one sheet (a > b > 0 > c)

16



Consider the ellipse Exy and an orientation of the hyperboloid such that

k1 > 0 > k2 and k1 being the curvature of this ellipse. For p0 = (
√

a, 0, 0) ∈
Exy , as k2 < 0 it follows that X2(X2(k2))(p0) > 0 since the plane z =
0 is the plane of symmetry of the hyperbolas orthogonal to Exy . Therefore

X2(X2(k2))(p0)(k2 − k1)(p0) < 0 and Exy is zig-zag for F π
2

.

The hyperbola Hyz contained in the plane x = 0 is beak-to-beak for F0. In

fact, let q0 = (0,
√

b, 0). So X1(X1(k1))(q0) > 0 (minimum of k1 as a > b)

and X1(X1(k1))(q0)(k1 − k2)(q0) > 0. Analogously, it can be shown that Hxz is

zig-zag for F0.

c) Hyperboloid of two sheets (a > 0 > b > c)

The analysis is similar to the case of the ellipsoid. �

4 Darboux curves on general cylinders, cones and surfaces of revolution

The Darboux curves on general cones were already studied by Santaló ([30]).

In a similar way, one can study Darboux curves on cylinders and surfaces of

revolution. This is not a coincidence. The three types of surfaces are canals

corresponding to a curve γ ⊂ �4 which is also contained in a 3-dimensional

subspace of R5
1. Depending on the subspace, this intersection is either a copy

of �2, a unit sphere S2 or a 2-dimensional cylinder (see [2], [7], [24]). The

latter condition defines conformal images of general cones, general cylinders

and surfaces of revolution. These surfaces can be obtained imposing confor-

mally invariant local conditions.

Recall first that canal surfaces are characterized locally, [2], [7], [17], [24], by

the following proposition

Proposition 16. A surface M is (a piece of) a canal if and only if one of its

conformal principal curvatures, say θ2, is equal to zero.

Since Dupin cyclides are the only surfaces which are canal in two different

ways, they can be characterized by the condition θ1 = θ2 = 0.

Proposition 17. A surface such that θ2 = 0 and θ1 is constant along character-

istic circles can be obtained as the image by a Möbius map of a cone, a cylinder

or a surface of revolution.

The authors of [2] call the surfaces characterized in Proposition 17 special

canal surfaces. Theorem 9 implies the following corollary.

Corollary 18. The Darboux plane-field D is integrable when the surface M is

a special canal.
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Proposition 19. Let M be a special canal surface and (u, v) be a principal

chart such that θ1(u, v) = θ1(u) and θ2(u, v) = 0. As usual, E, F and G are

the coefficients of the first fundamental form of M (here F = 0).

Let A(u) = exp[
∫ k′

1

k1−k2
du] and α ∈ (0, π) be an angle. Then the function

J(u, α) = A(u) cos3 α is a first integral of the Darboux curves. Moreover in the

region Ac = π(Mc) = {(u, v) : u ∈ Mc}, Mc = J−1(c), the Darboux curves

are defined by the implicit differential equation

c2/3Gdv2 − E(A2/3 − c2/3)du2 = 0.

Proof. In order to integrate a vector field in dimension 3, it is usual to look

for a foliation the leaves of which contains the orbits, or even better, a foliation

given by the levels of a function called first integral. Here the integrability of

the Darboux plane-field D in V (M) ⊂ �4 defines a foliation of V (M) which

can be lifted to T 1M . Therefore, whenD is integrable it is natural to try to find

a global first integral.

When the 3-dimensional space is the “phase space” T 1(M), a first integral

gives a differential equation of order 1 on each level.

The differential equation (6) reduces to

u′ = cos α√
E

, v′ = sin α√
G

, α′ = 1

3
√

E

k′
1

k1 − k2

cos2 α

sin α
.

Therefore,
dα

du
= 1

3

k′
1

k1 − k2

cos α

sin α

which is an equation where the variables are separable. Direct integration leads

to the first integral J as stated.

To obtain the implicit differential equation solve the equation J(u, v) = c in

function of cos α and observe that

dv

du
=

√
E√
G

sin α

cos α
. �

4.1 Cylinders

The case of cylinders is the simplest. Let C = {c(u)} be a plane curve of

curvature k(u). The cylinder of axis generated by a vector �z orthogonal to the

plane can be parametrized by φ(u, v) = c(u) + v�z. The function I(u, α) =
k(u) cos3 α is a first integral for Darboux curves.
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4.2 Cones

Proposition 20. The Darboux curves on a cone free of umbilical points (that is

without flat points) can be integrated by quadrature. The function

I(u, α) = kg(u) cos3 α

is a first integral of the differential equation of Darboux curves. Here kg is the

geodesic curvature of the intersection of the cone with the unitary sphere.

Moreover, if k′
g/kg < 0 the ridge is zig-zag. If k′

g/kg > 0 the ridge is beak-

to-beak. See Figure 9.

Figure 9: Darboux curves near regular ridges on a general cone.

Proof. The cone can be parametrized by X (u, v) = vγ (u) where |γ | = 1 and

|γ ′| = 1 is a spherical curve.

Since γ ′′ = −γ + kgγ ∧ γ ′ and N(u, v) = γ ∧ γ ′, k1(u, v) = kg(u) and

k2(u, v) = 0.

Therefore, Darboux curves are given by (sin α/ cos α)dα = 1
3
(k′

g/kg)du and

I(u, α) = kg(u) cos3 α is a first integral for them. The behavior of Darboux

curves near ridges follows from Theorem 13. �

4.3 Surfaces of revolution

Traditionally, a surface of revolution is defined from a profile. Here we view it

as a canal surface obtained from a one parameter family of spheres of radii r(u)

and centers at (0, 0, u) on the vertical axis. The functions h, horizontal distance

to the axis of revolution, r and β, angle between the tangent to the profile and

the axis of revolution, are related by h = r cos β.
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Figure 10: A surface of revolution as a canal.

The envelope of this family is a canal surface and can be parametrized by

H (u, v) = r(u) cos β(u)(cos v, sin v, 0) + (0, 0, u − r(u) sin β(u)),

where cos β(u) =
√

1 − r ′(u)2, sin β = r ′, |r ′(u)| < 1, β ∈ (−π/2, π/2).

The unit normal to the surface is

N = (− cos β(u) cos v, − cos β(u) sin v, sin β(u)).

The coefficients of the first and second fundamental forms of H are given by

E(u, v) = (1 − r ′2 − rr ′′)2

1 − r ′2 , F(u, v) = 0, G(u, v) = r2(1 − r ′2)

e(u, v) = −r ′′(1 − r ′2 − rr ′′)

1 − r ′2 , f (u, v) = 0, g(u, v) = r(1 − r ′2).

The principal curvatures are given by

k1(u, v) = k1(u) = − r ′′

1 − r ′2 − rr ′′ k2(u, v) = k2(u) = 1

r
.

It will be assumed that the surface is free of umbilical points, for example that

k2 > k1.

Therefore it follows that

θ1 = 4r2[r ′′′(1 − r ′2) + 3r ′r ′′2]
(1 − r ′2)3/2(1 − r ′2 − rr ′′))

= 4r2 R(u)

(1 − r ′2)3/2(1 − r ′2 − rr ′′))
, θ2 = 0.
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Ridges corresponding to the principal foliation F0 are defined by the equation

θ1(u) = 0 which is equivalent to

R(u) = ∂k1

∂u
= r ′′′(1 − r ′2) + 3r ′r ′′2 = 0.

As θ2 = 0 the ridges corresponding to F π
2

is the whole surface of revolution.

Proposition 21. The function

I(u, α) = r(u) cos β(u)(k1 − k2) cos3 α = h(u)(k1 − k2) cos3 α,

is a first integral of the differential equation of Darboux curves, where h is the

distance of the point H (u, v) of the surface to the axis of revolution.

Moreover, if R′(u) < 0, or equivalently ξ1(θ1) < 0, the ridge is zig-zag. If

R′(u) > 0, or equivalently, ξ1(θ1) > 0 the ridge is beak-to-beak, see Figure 11,

left beak-to-beak and right zig-zag.

Figure 11: Darboux curves near regular ridges on surfaces of revolution, left

beak-to-beak and right zig-zag.

Proof. In the principal chart (u, v) the differential equation of Darboux curves

is given by

u′ = 1√
E

cos α, v′ = 1√
G

sin α, α′ = 1

3
√

E

[

k′
1(u)

k1(u) − k2(u)

]

sin2 α

cosα
.

Therefore, it follows that 3 sin α

cos α
dα = k′

1

k1−k2
du.
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Now observe that
∫

k′
1

k1 − k2

du =
∫

k′
1 − k′

2

k1 − k2

du +
∫

k′
2

k1 − k2

du

= ln(k2 − k1) +
∫

k′
2

k1 − k2

du

∫

k′
2

k1 − k2

du =
∫ [

r ′

r
+ r ′r ′′

1 − r ′2

]

du = ln r(1 − r ′2)
1/2

Therefore

I(u, v, α) = r(1 − r ′2)1/2(k1 − k2) cos3 α

= r cos β(k1 − k2) cos3 α = h(u)(k1 − k2) cos3 α

is the first integral. Again, the behavior of Darboux curves near ridges follows

from Theorem 13. �

First notice that the osculating spheres of curvature k1 of the surface of revo-

lution intersect a plane containing the axis of revolution in the osculating circles

of the profile. They form a surface O1 ⊂ �4 (see 2). The osculating spheres of

radius k2 intersect the same plane in the circle of center (0, u) and radius r(u).

They form a curve γ ⊂ �2 ⊂ �4.

Ridges on a surface of revolution are characteristic circles. They correspond

to vertices of the profile. They also correspond to the singularities of the surface

O1 ⊂ �4 (see Figure 2).

Here the osculating spheres to the surface along a meridian form a curve Cme

in a totally geodesic �2 ⊂ �4. We can also see this curve as corresponding

to the osculating circles of the profile. The vertices of the profile correspond to

singular points of Cme. At these singular points the tangent direction is light-

like. The one-parameter family of rotations gt leaving the surface of revolution

invariant extend to a one-parameter family of isometries of the Lorentz spaceR4
1

such that O1 = ∪gt (Cme).

5 Darboux curves on quadrics

The Darboux curves in the ellipsoid were considered by A. Pell in [25] and

J. Hardy in [16]. Here we complete and hopefully simplify these works, de-

scribing the global behavior of Darboux curves in a triple orthogonal system of

quadrics.

A geometrical aspect of the theory of quadrics is the following classical result.

Given three straight lines L1, L2 and L3 in E3 in general position the set of lines
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intersecting these lines defines a one parameter family of lines which generate

a unique twice ruled surface. This was first established by G. Monge [23]. See

also Spivak [32]. The basic idea is observe that this configuration is of projective

nature and also can be extended to the projective space P3. Taking coordinates

such that the lines L i are parallel to the axis and writing the equation of a general

line L as the intersection of two planes y = ax +b, z = cx +d it follows, from

algebraic manipulations, that the set of lines which intercept the three given lines

is a quadric, the hyperboloid of one sheet or the hyperbolic paraboloid.

A circle (or a line) contained in a surface is a Darboux curve. In fact, we can

chose a sphere tangent to the surface in the pencil of spheres containing the

circle or the line. The corresponding curve in �4 is a geodesic, therefore it is a

geodesic in V (M), proving that the initial curve is a Darboux curve.

The quadratic surfaces have many remarkable geometric properties. Some

were already considered by d’Alembert [1], who was the first to observe that

the ellipsoid has two families of circular sections. After that, Monge and

Hachette [23] showed that all generic quadric surfaces have two families of

circular sections. Therefore, the 3-dimensional set V (Q) of spheres having a

saddle tangency with the quadric Q contains a surface filled with two families

of geodesics, arcs of the pencils of spheres containing the previous circles. The

previous analysis of twice rules surfaces in P3 shows that the latter surface is a

piece of the intersection of �4 with a quadratic cone of R5
1 contained in some

hyperplane (see also [10]).

Recall that the a non singular quadric Qa,b,c belongs to the triple orthogonal

system of quadrics of equation q(λ) = 0 where

q(λ) = x 2

a − λ
+ y2

b − λ
+ z2

c − λ
− 1

(we supposed abc = 0 and that a > b > c > 0; the other cases can be treated

similarly; see also [32], vol. 3, chapter 4 and [33], pp. 99 to 103).

Given a point p0 = (x0, y0, z0) ∈ Qa,b,c with x0y0z0 = 0 the equation

q(λ) = 0 is a polynomial of degree 3 in λ which has three real roots λ1 = 0,

λ2(p0) ∈]b, c[ and λ3(p0) ∈]b, a[. In fact the rational function q(λ) has the

same roots and poles at a, b and c. This forces one root in each of the intervals

]c, b[ and ]b, a[.
The position of the roots λ2 ∈]c, b[ and λ3 ∈]b, a[ implies that q(λ2(p0)) = 0

is an hyperboloid of one sheet and q(λ3(p0)) = 0 is an hyperboloid of two

sheets. Moreover the surfaces q(λ2(p0)) = 0, q(λ3(p0)) = 0 and q(0) = 0

intersect orthogonally along the curves of intersections, see [33] [pp. 99 to 103]]).

Dupin’s theorem shows that these are lines of principal curvature, therefore the
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curves q(λ2(p0)) = q(0) = 0 and q(λ3(p0)) = q(0) = 0 are the lines of

principal curvature of the ellipsoidQa,b,c through the point p0.

Consider the principal chart (u, v) and the parameterization β of Qa,b,c

given by equation (9) below.

β(u, v) =
(

√

a(u − a)(v − a)

(b − a)(c − a)
,

√

b(u − b)(v − b)

(b − a)(b − c)
,

√

c(u − c)(v − c)

(c − a)(c − b)

)

. (9)

The first fundamental form of β is given by

I = ds2 = Edu2 + Gdv2 = (v − u)u

4H (u)
du2 + (u − v)v

4H (v)
dv2 (10)

The second fundamental form of β with respect to the normal N = −(βu ∧
βv)/‖βu ∧ βv‖ is given by

I I = edu2 + gdv2 = (v − u)

4H (u)

√

abc

uv
du2 + (u − v)

4H (v)

√

abc

uv
dv2 (11)

where H (t) = (t − a)(t − b)(t − c).

Therefore the principal curvatures k1 ≥ k2 are given by

k1 = e

E
= 1

u

√

abc

uv
, k2 = g

G
= 1

v

√

abc

uv
. (12)

The four umbilics Ui , (i = 1, . . . , 4), are given by

(x0, 0, z0) =
(

√

a(a − b)

a − c
, 0,

√

c(c − b)

c − a

)

. (13)

Recall that the domains of the principal charts (u, v) in the family of triply

orthogonal systems of surfaces have the following restrictions:

• For the ellipsoid, with a > b > c > 0, u ∈ (b, a), v ∈ (c, b) or

u ∈ (c, b), v ∈ (b, a).

• For the hyperboloid of one sheet, with a > b > 0 > c, u ∈ (b, a),

v < c or u < c, v ∈ (b, a).

• For the hyperboloid of two sheets, with a > 0 > b > c, u ∈ (c, b),

v < c or u < c, v ∈ (c, b). See Figure 12

See Figure 13 for an illustration of the region x > 0, y > 0, z > 0 of the

ellipsoid parametrized by β : [b, a] × [c, b] → Qa,b,c, see (9), with the vertex

(b, b) mapped to the umbilic (x0, 0, z0), β(b, c) = (a, 0, 0), β(a, c) = (0, b, 0)

and β(a, b) = (0, 0, c).

24



Figure 12: Domain of parametrization by a principal chart (u, v).

Figure 13: Parametrization of the ellipsoid by a principal chart (u, v).

5.1 Integrability of the Darboux plane-field on quadrics

Before studying the dynamics of Darboux curves on quadrics, let us prove the

following

Proposition 22. The Darboux plane-fieldsD of quadrics are integrable.

Proof. Consider again the quadric Qa,b,c defined by x2

a
+ y2

b
+ z2

c
= 1 with

a > b > c, abc = 0, and let (u, v) a principal chart defined by Equation (9).

Using the criterium of integrability given in Corollary 10, Equation 8, the result

follows by elementary calculations using the formulas

k1(u, v) = 1

u

√

abc

uv
, k2(u, v) = 1

v

√

abc

uv

(Equation 12), giving the two principal curvatures of quadrics in the principal

chart (u, v). �
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The integrability of D guarantees the existence of a local first integral of the

field D1, defined by

D1 = cos α√
E

∂

∂u
+ sin α√

G

∂

∂v

+
[

∂k1/∂u

3
√

E(k1 − k2)

cos2 α

sin α
+ ∂k2/∂v

3
√

G(k1 − k2)

sin2 α

cosα

]

∂

∂α
.

(14)

Further forward we will provide a global one which allows us to achieve a

qualitative analysis of Darboux curves on the quadricsQa,b,c .

Proposition 23. Consider the quadricQa,b,c and let (u, v) be a principal chart

defined by equation (9).

Then the differential equation of Darboux curves on Qa,b,c is given by

u′ = 1√
E

cos2 α sin α, v′ = 1√
G

cos α sin2 α

α′ = r1 cos3 α + r2 sin3 α

(15)

Here,

r1 = (k1 − k2)θ1

12
= 1

2

v

u(u − v)
,

r2 = (k1 − k2)θ2

12
= 1

2

u

v(u − v)

E = (v − u)u

4H (u)
= (v − u)u

4(u − a)(u − b)(u − c)
,

G = (u − v)v

4H (v)
= (u − v)v

4(v − a)(v − b)(v − c)
.

and α is the angle of the Darboux curve with the principal foliationF0. The dif-

ferentiation is with respect to arc-length parametrization of the Darboux curve.

Proof. We can suppose that the Darboux curve is parametrized by arc-length

(for the metric of the quadric Qa,b,c); then the vector (
√

Eu′,
√

Gv′) is unitary.

The angle α between the Darboux curve and the foliationF0 satisfies

tan α =
√

Gv′
√

Eu′
so that u′ = 1√

E
cos α and v′ = 1√

G
sin α.
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In a principal chart the differential equation of Darboux curves is given by

equation (6). Therefore, we have that

u′ = 1√
E

cos α v′ = 1√
G

sin α

dα

dsc

= 2

k1 − k2

dα

ds
= 1

6 sinα cos α
[θ1 cos3 α + θ2 sin2 α]

(16)

To obtain a smooth vector field with the same orbits we multiply the vector-field

given by Equation (16) by cos α sin α(u′, v′, α′).
The coefficients r1 and r2 are obtained from the definition of θ1 and θ2, see

Equation (3), and the values of E , F , k1 and k2 , see Equations (10) and (12), in

the principal chart (u, v) of the quadric. �

As the Darboux plane-field of quadrics is integrable (see Proposition 22), it is

natural to look for a first integral for the vector fieldD1 defined by Equation (15)

in the principal chart (u, v).

Proposition 24. The function I (u, v, α) = kn(β(u, v), α)/δ(β(u, v)), where

kn(β(u, v), α) is the normal curvature in the direction making the angle α with

F0 at β(u, v) and δ is the distance of the tangent plane of the quadric at β(u, v)

to the origin of E3, is a first integral of (15). In a principal chart (u, v) defined

by equation (9) the first integral I writes

I (u, v, α) = cos2 α

u
+ sin2 α

v
; tan α =

√
Gv′

√
Eu′

. (17)

Proof. Consider a principal chart (u, v) and the parametrization β defined

by Equation (9).

The normal curvature in the direction ℓ defined by the unitary vector field

(

u′
√

E
,

v′
√

G

)

= (cos α, sin α)

is given by

kn (u, v, α) = k1(u, v) cos2 α + k2(u, v) sin2 α =
√

abc

uv

(

cos2 α

u
+ sin2 α

v

)

.

The distance of the tangent plane to the origin is given by

δ(u, v) =
〈

βu ∧ βv

|βu ∧ βv|
, β(u, v)

〉

=
√

abc

uv
.
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Then, I (u, v, α) = kn(u, v, α)/δ(u, v) = cos2 α
u

+ sin2 α
v

.

Let c(s) = (u(s), v(s), α(s)) be a solution of the differential equation (15).

Let us show that d
ds

(I (u(s), v(s), α(s)) = 0.

We have

Es = 1

4

uv′

H (u)
− 1

4

u′

H (u)2
[(u − 2v)H (u) + (uv − u2)H ′(u)]

Gs = 1

4

vu′

H (v)
− 1

4

v′

H (v)2
[(u − 2v)H (v) + (v2 − uv)H ′(v)]

Straightforward calculation leads to d
ds

(I (u(s), v(s), α(s))) = 0. �

Let us now give a geometrical interpretation of the differential equation of

Equation (17) obtained from the first integral of Proposition 24.

Proposition 25. The Darboux curves on the quadric Qa,b,c are the integral

curves of the one parameter family ( η being the parameter) of implicit differen-

tial equations

kn(β(u, v), α) = e(u, v)du2 + g(u, v)dv2

E(u, v)du2 + G(u, v)dv2
= 1

η

√

abc

uv
= 1

η
(abc)1/4K1/4.

whereK = k1k2 is the Gauss curvature of the quadric.

Proof. By Proposition 24 the Darboux curves are defined by the one parameter

family of implicit differential equations I = 1/η (levels of the first integral),

which are equivalent to

(

dv

du

)2

= (u − η)

(v − η)

vE(u, v)

uG(u, v)
= (u − η)H (v)

(v − η)H (u)
.

This equation writes

(v − η)H (u)v′2 − (u − η)H (v)u′2 = 0, H (x) = (x − a)(x − b)(x − c). (18)

As kn(β(u, v), α) = e + g(dv/du)2

E + G(dv/du)2
, it follows from Equation (18) and

from Equations (10) and (11) that kn (β(u, v), α) = 1

η

√

abc

uv
= 1

η
(abc)1/4K1/4.

This ends the proof. �
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5.2 Darboux curves on ellipsoids

Proposition 26. Consider the ellipsoidQa,b,c with a > b > c > 0.

i) For c < η < b the Darboux curves are and contained in cylindrical region

c < v < η and the behavior is as in Figure 14, upper left.

ii) For η = b the Darboux curves are the circular sections of the ellipsoid.

These circles are contained in planes parallels to the tangent plane to

Qa,b,c at the umbilical points. These circles are tangent along the ellipse

E y and through each umbilical point only one Darboux curve passes. See

Figure 14, bottom right.

iii) For b < η < a the Darboux curves are bounded contained in the two

cylindrical region η ≤ u ≤ a and the behavior is as shown in the Figure 14,

upper right.

Figure 14: Darboux curves on the ellipsoid.

Proof. First case: c < η < b.

The differential equation of Darboux curves is given by:

(v − η)

H (v)
v′2 − (u − η)

H (u)
u′2 = 0, c ≤ v ≤ η and b ≤ u ≤ a.

Define dτ1 = √
(u − η)/H (u)du and dτ2 = √

(v − η)/H (v)dv.

Therefore the differential equation is equivalent to dτ 2
1 − dτ 2

2 = 0, with

(τ1, τ2) ∈ [0, L1] × [0, L2] (L1 =
∫ a

b
dτ1 < ∞, L2 =

∫ η

c
dτ2 < ∞).
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In the ellipsoid this analysis implies the following.

The cylindrical region Cη = α([b, a]×[c, η]) is foliated by the integral curves

of an implicit differential equation having cusp singularities in ∂Cη . We observe

that this region is free of umbilical point and is bounded by principal curvature

lines, in coordinates defined by v = c and v = η.

The case b < η < a the analysis is similar. Now the differential equation of

Darboux curves are defined in the region [η, a]×[c, b] and we have a cylindrical

region Cη = α([η, a] × [c, b]).
For η = b the differential equation can be simplified in the following

(u − a)(u − c)dv2 − (v − a)(v − c)du2 = 0.

This equation is well defined in the rectangle [c, a] × [c, a] which contains

the [b, a] × [c, b].
Define dτ1 = 1/

√
(u − a)(u − c)du and dτ2 = 1/

√
(v − a)(v − c)dv.

So the equation is equivalent dτ 2
1 − dτ 2

2 = 0 with (τ1, τ2) ∈ [0, L] × [0, L]
(L =

∫ a

c
dτ1). So in this rectangle all solutions are straight lines. The images of

this family of curves on the ellipsoid are its circular sections. In fact we know

that the ellipsoid has circular sections parallel to the tangent planes at umbilical

points. As the circles are always Darboux curves it follows that the solutions

of the differential equation is the family of circular sections. So we have two

families of circles having tangency along the ellipse Ey. �

Remark. In Figure 14, a circle through an umbilic passes through the antipo-

dal umbilical point only when b2 = (a2 + c2)/2.

Proposition 27. Consider an ellipsoid Qa,b,c with three axes a > b > c > 0

and suppose b < η < a. Let L1 :=
∫ a

b

√
E(u, b)du and L2 :=

∫ η

c

√
G(b, η)du

and define ρ = L2

L1
. Consider the Poincaré map π : � → � associated to the

foliationof Darboux curves defined by the implicit differentialequation I = 1/η.

Then if ρ ∈ R \ Q (resp. ρ ∈ Q) all orbits are recurrent (resp. periodic) on

the cylinder region v ≤ η}. See Figure 14, bottom left.

Proof. The differential equation of Darboux curves is given by

(v − η)

H (v)
v′2 − (u − η)

H (u)
u′2 = 0, c ≤ v < η < u ≤ a.

Define dτ1 =
√

(u−η)

H (u)
du and dτ2 =

√

(v−η)

H (v)
dv. By integration, this leads to the

chart (τ1, τ2), in a rectangle [0, L1] × [0, L2] in which the differential equation
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of Darboux is given by

dτ 2
1 − dτ 2

2 = 0.

The result follows from the rotation number theory of circle diffeomorphisms,

see [22] and [12]. �

5.3 Darboux curves on hyperboloids

Proposition 28. Consider a connected component of a hyperboloid of two sheets

Qa,b,c with a > 0 > b > c.

i) For η < c the Darboux curves are non bounded and contained in the non

bounded region v < η and the behavior is as in the Figure 15, left.

ii) For η = c the Darboux curves are the circular sections of the hyperboloid.

See Figure 15, center.

iii) For c < η < b the Darboux curves are non bounded and contained in

the cylindrical region η ≤ u ≤ b and the local behavior is as shown in

Figure 15, right.

Figure 15: Darboux curves on a hyperboloid of two sheets.

Proof. The analysis developed in the case of the ellipsoid also works here. See

proof of Proposition 26. �

Proposition 29. Consider an hyperboloid of one sheetQa,b,c with a > b > 0 >

c. Let η ∈ (−∞, c) ∪ (b, ∞).

i) For η < c the Darboux curves are bounded and contained in the cylindri-

cal region η ≤ v ≤ c and the behavior is as in Figure 16, upper center.

ii) For b < η < a the Darboux curves are unbounded and contained in the

cylindrical region b ≤ u ≤ η (outside the hyperbola Ex ) and the behavior

is as in Figure 16, upper right.
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iii) For η = a the Darboux curves are the circular sections of the hyperboloid.

See Figure 16, bottom left.

iv) For a < η all Darboux curves are regular (helices) and go to ∞ in both

directions. See Figure 16, bottom right.

v) The families of straight lines of the hyperboloid are not in the level sets of

the first integral. See Figure 16, upper left.

Figure 16: Darboux curves on a hyperboloid of one sheet.

Proof. Similar to the proof of Proposition 26. We observe that the hyperboloid

of one sheet has two special families of Darboux curves, the straight lines and

the circular sections. The family of circular sections are given by η = a and that

of straight lines are given by η = ±∞. �

Remark. We noticed in the analysis of Darboux curves that all quadrics have

circular sections.

For instance, the circular sections of the hyperboloid

h(x , y, z) = x2

a2
+ y2

b2
− z2

c2
− 1 = 0

of one sheet are given by the intersection of the surface with the planes defined
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by

π1(y, z, u) =
√

a2 − b2

b
y +

√
a2 + c2

c
z − u = 0

π2(y, z, v) = −
√

a2 − b2

b
y +

√
a2 + c2

c
z − v = 0

(19)

where u, v ∈ R.

In order to explain the result consider the intersection of h−1(0) with the

sphere defined by S(x , y, z) = x2 + y2 + z2 − a2 = 0.

The key point here is that the sphere is bitangent to the hyperboloid at the

points (±a, 0, 0) with saddle contacts.

Elementary algebraic manipulations show that the intersection of these two

surfaces are given by the intersections of the planes πi (y, z, 0) with the sphere

S(x , y, z) = 0 and so are circular sections. To obtain the other circles, on needs

to consider the bitangent spheres with two saddle contact point with the quadric.

A similar analysis can be done for the ellipsoid and hyperboloid of two sheets.

6 A few remarks and problems

Except on Dupin cyclides, most of the Darboux curves different from lines

of principal curvature we encountered are not complete. Even the circles on

quadrics are broken by singularities, as they have tangencies with the principal

foliations.

Circles of homological type (1,1) on some cyclides surface spanned by two

families of circles are examples of closed Darboux curve on a compact embedded

surface. On smooth Dupin cyclides, there exist closed Darboux curves of any

homology type (n, m). Notice that if two surfaces are tangent along a Darboux

curve of one of them, this curve is also Darboux on the second surface. Therefore

the examples above can be transfered on other surfaces.

We can also see that, given a generic curve in E3, it is possible to built a small

ribbon containing the curve in its interior and such that the curve is a Darboux

curve on the ribbon. We did not manage to construct such a ribbon when the

curve has self accumulation points.

We do not know what is the local behavior of Darboux curves near Darbouxian

umbilical points (see [13]).

On can generalize the notion of Darboux curves to higher dimensions. Let C

be a curve contained in a hypersurface M ⊂ En+1. Given an order of contact k,

at each generic point m of a generic curve C, a k-osculating sphere �k
m . When

this sphere is always tangent to M , we say that the curve C is k-Darboux.

One could study the existence, geometry and dynamics of these curves.

33



Acknowledgements. The authors author are grateful to the faculty and staff

of Institut de Mathématiques de Bourgogne (UMR CNRS 5584), Université

de Bourgogne-Franche-Comté, Instituto de Matemática e Estatística, Univer-

sidade Federal de Goiás and Wydział Matematyki i Informatyki Uniwersytetu

Łódzkiego for the hospitality during there visits. The authors were supported

by Pronex/FAPEG/CNPq Proc. 2012 10 26 7000 803, European Union (grant

no. ICA1-CT-2002-70017/8), France-Brésil agreements 70017 and Polish Na-

tional Science Center (grant no. 6065/B/HO3/2011/40).

References

[1] J. d’Alembert. Opuscules mathémathiques ou Mémoires sur différens sujets de

géométrie, de méchanique, d’optique, d’astronomie. Tome VII, (1761), p. 163.

[2] A. Bartoszek, R. Langevin and P.G. Walczak. Special canal surfaces of S3. Bull.

Braz. Math. Soc. New Series, 42(2) (2011), 301–320.

[3] J.W. Bruce, P.J. Giblin and F. Tari. Families of surfaces: focal sets, ridges and

umbilics. Math. Proc. Cambridge Philos. Soc., 125(2) (1999), 243–268.

[4] R. Bryant. A duality theorem for Willmore surfaces. Journal of Differential Geom-

etry, 20 (1984), 23–53.

[5] G. Cairns, R. Sharpe and L. Webb. Conformal invariants for curves and surfaces

in three dimensional space forms. Rocky Mountain Jour. of Math., 24 (1994),

933–959.

[6] E. Cosserat. Sur les courbes tracées sur une surface et dont la sphère osculatrice

est tangente en chaque point à la surface. Note Comptes Rendus Acad. Scien.

Paris, 121 (1895), 43–46.

[7] G. Darboux. Des courbes tracées sur une surface, dont la sphère osculatrice est

tangente en chaque point à la surface. Note Comptes Rendus Acad. Scien. Paris,

tome LXXIII (1872), pp. 732–736.

[8] A. Enneper. Bemerkungen über die Differentialgleichung einer Art von Curven

auf Flächen. Göttinger Nachrichten (1891), pp. 577–583.

[9] N. Fenichel. Persistence and Smootheness of Invariant Manifolds of Flows. Indiana

University Math. J., 21 (1971-1972), 193–226.

[10] L.A. Florit. Doubly ruled submanifolds in space forms. Bull. Belg. Math. Soc.

Simon Stevin, 13 (2006), 689–701.

[11] R. Garcia, R. Langevin and P. Walczak. Darboux curves on surfaces I, to appear

in the Journal of the Mathematical Society of Japan.

[12] R. Garcia, R. Langevin and P. Walczak. Foliations making a constant angle with

principal directions on ellipsoids. Ann. Polon. Math., 113 (2015), 165–173.

[13] R. Garcia and J. Sotomayor. Differential Equations of Classical Geometry, a Qual-

itative Theory. Publicações Matemáticas, 27◦ Colóquio Brasileiro de Matemática,

IMPA, (2009).

34



[14] A. Gullstrand. Zur Kenntniss der Kreispunkte. Acta Math., 29 (1905), 59–100.

[15] J. Haantjes. Conformal differential geometry.V. Special surfaces. Nederl. Akad.

Wetensch. Verslagen, Afd. Natuurkunde, 52 (1943), 322–331.

[16] J.G. Hardy. Darboux lines on surfaces. Amer. Journal of Mathematics, 20 (1898),

283–292.

[17] U. Hertrich-Jeromin. Introduction to Möbius Differential Geometry. London Math.

Soc. Lecture Notes, vol. 300 Cambridge University Press (2003).

[18] M. Hirsh, C. Pugh and M. Shub. Invariant Manifolds. Lectures Notes in Math.,

583 (1977).

[19] F. Klein. Lectures on Mathematics. Macmillan and company (1894), reprint AMS

Chelsea publishing Providence, Rhode Island (2011 and 2000).

[20] R. Langevin and J. O’Hara. Conformal arc-length as 1
2

dimensional length of the

set of osculating circles. Comment. Math. Helvetici, 85 (2010), 273–312.

[21] R. Langevin and P.G. Walczak. Conformal geometry of foliations.Geom. Dedicata,

132 (2008), 135–178.

[22] W. Melo and J. Palis. Geometric Theory of Dynamical Systems. New York, Springer

Verlag (1982).

[23] G. Monge et Hachette. Application de l’analyse à la géométrie, Première Partie,

(1807), pp. 1–57.

[24] E. Musso and L. Nicoldi. Willmore canal surfaces in Euclidean space. Rend. Istit.

Mat. Univ. Trieste, 31 (1999), 177–202.

[25] A. Pell. D-lines on Quadrics. Trans. Amer. Math. Soc. vol. 1 (1900), 315–322.

[26] I.R. Porteous. Geometric Differentiation. Cambridge Univ. Press (2001).

[27] M. Ribaucour. Propriétés de courbes tracées sur les surfaces. Note Comptes Ren-

dus Acad. Scien. Paris, Tome LXXX, (1875), pp. 642–645.

[28] R. Roussarie. Modèles locaux de champs et de formes. Astérisque, 30 (1975),

pp. 181.

[29] L.A. Santaló. Curvas extremales de la torsion total y curvas-D. Publ. Inst. Mat.

Univ. Nac. Litoral. (1941), pp. 131–156.

[30] L.A. Santaló. Curvas D sobre conos. Select Works of L.A. Santaló, Springer

Verlag (2009), pp. 317–325.

[31] F. Semin. Darboux lines. Rev. Fac. Sci. Univ. Istanbul (A), 17 (1952), 351–383.

[32] M. Spivak. A Comprehensive Introduction to Differential Geometry, vol. III,

Publish of Perish Berkeley (1979).

[33] D. Struik. Lectures on Classical Differential Geometry. Addison Wesley (1950),

Reprinted by Dover Collections (1988).

[34] M.A. Tresse. Sur les invariants différentiels d’une surface par rapport aux

transformations conformes de l’espace. Note Comptes Rendus Acad. Sci. Paris,

192 (1892), 948–950.

35



[35] E. Vessiot. Contributions à la géométrie conforme. Cercles et surfaces cerclées.

J. Math. Pures Appliqués, 2 (1923), 99–165.

Ronaldo Garcia

Instituto de Matemática e Estatística

Universidade Federal de Goiás

Caixa Postal 131

74001-970 Goiânia, GO

BRAZIL

E-mail: ragarcia@ufg.br

Rémi Langevin

Institut de Mathématiques de Bourgogne

UMR CNRS 5584, U.F.R. Sciences et Techniques

9, avenue Alain Savary

Université de Bourgogne-Franche-Comté, B.P. 47870

21078 – DIJON Cedex

FRANCE

E-mail: Remi.Langevin@u-bourgogne.fr

Paweł Walczak

Katedra Geometrii

Wydział Matematyki i Informatyki

Uniwersytet Łódzki

ul. Banacha 22, 90-238, Łódź
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