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Thierry Combot

12 Higher variational equation techniques for the

integrability of homogeneous potentials

Abstract:We present several methods using higher variational equations to study the

integrability of Hamiltonian systems from the algebraic and computational point of

view. Through the Morales Ramis Simo theorem, strong integrability conditions can

be computed for Hamiltonian systems, allowing us to prove nonintegrability even for

potentials with parameters. This theorem can, in particular, be applied to potentials,

even transcendental ones, by properly defining them on complex Riemann surfaces.

In the even more particular case of homogeneous potentials, a complete computation

of integrability conditions of variational equation near straight line orbits is possible

at arbitrary order, allowingus toprove thenonintegrability of certain n-bodyproblems

which were inaccessible due to the complicated central configuration equation.

Keywords: Higher variational equations, differential Galois theory, integrability

AMS classification: 37J30

12.1 Introduction: integrable systems

In this paper, we consider Hamiltonian systems that are defined by an analytic func-

tion H : M → ℂ with M being a complex analytic symplectic manifold. The associ-

ated dynamical system is the following differential equation system:

q̇i = ∂piH, ṗi = −∂qiH, i = 1, . . . , n .
The dimension of M is 2n, where n is called the number of degrees of freedom. This

kind of differential system can sometimes be integrated, that is, the solutions can be

“explicitly found.” This has led to the following (complex version) notion of integra-

bility.

Definition 1.1 (Arnold [2]). Let M be a complex symplectic manifold of dimension 2n

and H : M → ℂ a complex analytic Hamiltonian with n degrees of freedom. Assume

that there exist I1 = H, . . . , In, with n being analytic functions, and Ii : M → ℂ such
that

– For all i = 1, . . . , n, we have {H, Ii} = 0. We say that the functions Ii are first

integrals.

– For all i, j = 1, . . . , n, {Ii , Ij} = 0. We say that the functions Ii are in involution. To

say that Ii is a first integral is equivalent to being in involution with H = I1.
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– The Jacobianmatrix A ∈ Mn,2n(ℂ) given by
Ai,j = ∂pj Ii i = 1, . . . , n, j = 1, . . . , n ,

Ai,j+n = ∂qj Ii i = 1, . . . , n, j = 1, . . . , n ,
has a full rank on an open dense set of M. This property is called independent

nearly everywhere.

Then, H is called Liouville integrable.

An important consequence of integrability is solvability by quadrature. For real sys-

tems, that is, real analytic Hamiltonians H : M → ℝ, with M, analytic symplectic

and real first integrals, some dynamical consequences follows from integrability.

Theorem 1.2 (Arnold–Liouville–Mineur [2]). LetM be a symplectic manifold of dimen-

sion 2n and H : M → ℝ an analytic Hamiltonian. If H is Liouville integrable with real

first integrals I1, . . . , In, then for any level set

Mf = {(p, q) ∈M : Ii(p, q) = fi , i = 1, . . . , n}
such that I1, . . . , In are independent ofMf , and we have

– Mf is a smooth manifold, invariant by the flow of H.

– IfMf is compact connected, then it is diffeomorphic to the n-dimensional torus𝕋n = {(φ1, . . . , φn)mod 2π} .
– IfMf is compact connected, the Hamiltonian flow of H onMf is quasiperiodic.

Integrable Hamiltonians are very rare, but they are very useful for understanding the

system quantitatively, like the behavior of solutions, stability. The fundamental pro-

blem of knowing the integrability of a system is to find the functions Ii, on which we

knownothing a priori.We typically assume that they belong to some class of functions

(in the following rational), but nothing can be said about their degree for example.

In the following, we will consider rational first integral, that is, rational functions on

algebraicmanifoldsM, aswewill focus on this problem froma computer algebra point

of view. Remark that all algebraic manifolds M are not equivalent to ℂ2n, and thus

rational functions on such manifolds cannot always be represented as 2n variables’

rational functions.

12.2 An algebraic point of view

12.2.1 Algebraic presentation of a Hamiltonian system

In this paper, wewill focus on integrability from analgebraic point of view. TheHamil-

tonian is assumed to be rational onM, and the complex manifold itself will typically
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be algebraic. The manifold M is, thus, typically defined by k algebraic equations onℂ2n+k. This manifold can be projected as

π : M → ℂ2n ,
whereℂ2n is the space of canonical variables p, q, but then a rational function f onM

can appear multivalued as a function of p, q. This is due to the fact that the projection

π is typically not invertible, and so above each (p, q) ∈ ℂ2n lies several points ofM and

so several values of f . Said otherwise, the field of rational functions onM as functions

of p, q forms a field extension of ℂ(p, q). The projection also carries a differentiation

structure:

Definition 2.1. A differential field extension K over ℂ(p, q) is a field K ⊃ ℂ(p, q)
equipped with 2n differentiations ∂pi , ∂qi pairwise commuting and which is stable by

the differentiations.

Notation: In the following, the polynomial ideal generated by P1, . . . , Pk ∈ ℂ[x1 , . . . ,
xn]will be noted, I = ⟨P1, . . . , Pk⟩. The common zero level of the elements of I will be

noted, V(I) ⊂ ℂn.
The simplest example of differential field isℂ(p, q) itself. Formore complicated fields,

the differentiations need to be defined more carefully, as in the differential field of

Example 1, K = Frac(ℂ[p1 , p2, q1, q2, s]/⟨s2 − q21 − q22⟩). This is a field extension

of ℂ(p, q), and elements of this field are represented by a five-variable rational func-

tion f . The derivations in p, q are then defined by

∂p1 = ∂1, ∂p2 = ∂2, ∂q1 = ∂3 + 2q12s
∂5, ∂q2 = ∂4 + 2q22s

∂5 .

The notation ∂i means that the representing function f is derived with respect to the

i-th variable. In our Hamiltonian setting, the differentiations ∂p , ∂q also define the

Poisson bracket and, thus, the symplectic form.

If the manifold is algebraic, such differential extensions will always be finite. Typical

problems about integrable systems are presented in the other way. The Hamiltonian

is given as a multivalued function of p, q, and the first step is to find a manifold on

which to define it properly. In the case of a algebraic Hamiltonian, we will see in the

following examples, this can be made more or less automatically through Groebner

basis and polynomial ideal methods.

Some examples

Example 1. The Hamiltonian of the Keplerian motion

H = 1
2
(p21 + p22) + 1√q21 + q22 . (2.1)
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This expression is well defined in the real domain, but we need to extend it to the

complex domain. However, this Hamiltonian is multivalued onℂ4: we cannot choose
a valuation for the square root, after a loop√q21 + q22 can become −√q21 + q22. To prop-
erly define this Hamiltonian on the complex, it is, therefore, necessary to introduce

the algebraic extension q21 + q22 = s2 and the associated manifold

M = {(p, q, s) ∈ ℂ2 × ℂ2 × ℂ : s2 = q21 + q22, s ̸= 0} .
The canonical projection π;M → ℂ4 over variables (p, q) produces from the rational

functions onM the function field K = ℂ(p, q,√q21 + q22) which contains the Hamilto-

nian.

Remark that the point s = 0 has been removed to obtain a smooth manifold M. This

is related to the fact that not only s = 0 is a singularity of H, but also the projection π

is not good at these points as two branches cross here. This could have consequences

for the application of Morales Ramis Simo Theorem as some particular orbits can be

removed from the phase space by this process. Here, however, s = 0 corresponds to a
singularity of H anyway. Under this representation, we can note the field

K = Frac(ℂ[p, q, s]/⟨s2 − q21 − q22⟩),
where Frac means that we take the fraction field with the derivations

∂p1 = ∂1, ∂p2 = ∂2, ∂q1 = ∂3 + 2q12s
∂5, ∂q2 = ∂4 + 2q22s

∂5 ,

H = 1
2
(p21 + p22) + 1s .

The Hamiltonian is rational on M (as it belongs to K), and the symplectic form and

Poisson bracket are defined through the differentiations given above. In the following,

the first integrals of this Hamiltonianwill be searched as rational functions onM, that

is, elements in K.

Example 2. Consider the following potential

V(q1 , q2 , w) = w5 + q22, I = ⟨w2 − q1⟩ (2.2)

associatedwith theHamiltonianH = 1
2 (p21+p22)+V(q, w). The associatedHamiltonian

system has a particular solution given by w(t) = 0, q1(t) = 0, q2(t) = cos t. However,
to properly define the analytical symplectic manifoldM, we need to remove the locus

w = q1 = 0:
M = {(p, q, w) ∈ ℂ3 : w2 = q1, w ̸= 0} .

This is due to the associated differentiations becoming singular at w = 0.
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Generalization to transcendental cases

For a transcendental Hamiltonian, a similar construction of a complex analytic man-

ifold M (instead of algebraic) can also be done. The manifold is now defined by k

holomorphic functions on ℂ2n+k, and a rational function onM is simply a restriction

of a rational function onℂ2n+k toM. However, in contrary to the algebraic case, to find

a set of k holomorphic functions leading to a smooth complex manifold with H ratio-

nal on it can be difficult [8]. The difficult point here is that we cannot rely on Groebner

basis to prove thatM is smooth.

Example 3. A transcendental case,

H = 1
2
p21 + cos(q1).

Although cos is an entire function and, thus, H is well defined on ℂ2, this is a tran-
scendental function. This system can, however, be defined on the manifold

M = {(p1, q1 , c, s) ∈ ℂ4 : c = cos(q1), s = sin(q1)} ,
on which the Hamiltonian is rational, H = 1

2p
2
1 + c. The associated differential field is

then

K = Frac(ℂ[p1 , q1, c, s]/⟨c2 + s2 − 1⟩), ∂p1 = ∂1, ∂q1 = ∂2 − s∂3 + c∂4 .
Parametrization approach

Another way of obtaining a rational presentation of these Hamiltonians is rational

parametrization. If we can find a (symplectic) variable change such that the Hamilto-

nian becomes rational in the new variables, then we come down to study a rational

Hamiltonian onℂ2n . In the first two examples we shown, a birational variable change
can be made as the manifolds s2 = q21 + q22 and w2 − q1 = 0 are rationally parametriz-

able. In Example 1, we have

Frac(ℂ[q, s]/⟨s2 − q21 − q22⟩) ≃ ℂ(r, z) with
q1 = r

2
(z + 1

z
) , q2 = r

2i
(z − 1

z
) , s = r .

We also need to change the variables p1 , p2 to obtain a symplectic variable change.

With this variable change, the Hamiltonian is in the new coordinates

H(pr , pz , r, z) = 1
2
(p2r − r2p2zz2

) + 1
r

and, thus, rational on ℂ4.
In Example 3, recalling that this Hamiltonian corresponds, in fact, to a pendulum

and that q represents the angle, we can note

cos q = 1
2
(z + 1

z
) p = −i w

z
H(w, z) = −1

2

w2

z2
+ 1
2
(z + 1

z
)
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and now the Hamiltonian is rational and properly defined on ℂ2.
The common property of these systemswhich allow such a parametrization is that the

configuration space is rationally parametrizable:

– Example 1 is a potential on a (complex) cone

– Example 2 is a potential on a parabola

– Example 3 is a potential on a circle.

This method, however, requires the parametrization that is difficult and not always

possible. The following Hamiltonian

H = 1
2
p2 + √1 − q3

is defined on an elliptic curve and, thus, not rationally parametrizable. The process

considering the algebraic extension w2 = 1 − q3 is not avoidable.
Generalization to algebraic potentials

This process can be generalized in the case of algebraic potentials [5]. We consider

polynomials G1, . . . , Gs ∈ ℂ[q1 , . . . , qn , w1, . . . , ws] and the ideal I = ⟨G1, . . . , Gs⟩.
We assume that I is a prime ideal and that the matrix

J ∈ Ms(ℂ[q, w]), Ji,j = ∂Gi

∂wj
, i, j = 1, . . . , s,

has a nonzero determinant modulo the ideal I. We define the associated manifold S =
I−1(0) and π : S → ℂn the projection on variables q.

Let us now define derivations on S. We first introduce the set

Σ(I) = {(q, w) ∈ S : det(J)(q, w) = 0} .
This setwill be called the critical set and corresponds topoints on Swhere the Jacobian

matrix J of the application (q, w) → (G1, . . . , Gs) is not invertible. In equation (2.1),
we have, in particular,

Σ(I) = {(q, s) ∈ ℂ2 × ℂ : s = 0, q1 ± iq2 = 0} .
Remark that this set is at least of codimension 1 because the determinant is not zero

modulo I. The manifold S is of dimension n, as it is the common zero of s functionally

independent (det(J) ̸= 0) polynomials in dimension n + s.
Let U be a nonempty open set of S and f a rational function on U. We may now

define

∂qk = ∂k f − (∂n+1f, . . . , ∂n+s f ) J−1 (∂kG1, . . . , ∂kGs)⊺ , (2.3)

where ∂i denotes the derivative according to the i-th variable (the variables are

q1, . . . , qn , w1 , . . . , ws in this order). These derivatives are well defined outside Σ(I).
6



Recall that a rational function on a complex algebraic manifold S is not, strictly

speaking, a function, as it has singularities, and even indeterminate points, as, for

example,

V(x, y) = xy

x2 + y2
which is indeterminate at (0, 0). Noting Σ0 this as the set of indeterminate points of

V, we now define the critical set of V,

Σ(V) = Σ0 ∪ (Σ(I) ∩ U).
Definition 2.2. A rational potential V on an open set U ⊂ S defines the following dy-
namical system on ℂn × (U \ Σ(V)):
q̇i = pi , ṗi = −∂qiV, i = 1, . . . , n ẇi = s∑

j=1 q̇j∂qjwi , i = 1, . . . , s . (2.4)

Let us remark now that any algebraic potential fits this definition. Consider an alge-

braic function V on ℂn and P ∈ ℂ[q1, . . . , qn][w] being a nonzero irreducible poly-
nomial such that P(V(q)) = 0. Now, we will define our dynamical system using the

2n + 1 variables p, q, w. The ideal I = ⟨P⟩ on ℂ[q1 , . . . , qn , w] is prime because P is

irreducible. The matrix J is 1 × 1 and its determinant is ∂2n+1P. As P is a nonzero irre-
ducible polynomial, we have ∂2n+1P ̸= 0 mod I; otherwise, P divides ∂2n+1P, which is
impossible because ∂2n+1P is nonzero and of degree lower than P. Thus, S = V(I) is a
manifold of dimension n, and V is a rational potential on S, with V(q, w) = w.
12.2.2 First-order variational equations

Definition 2.3. Let ẋ = X(x) be a differential system on an analytic manifoldM and X

analytic onM. Let Γ = {x(t), t ∈ ℂ} be an orbit of X. The first-order variational equation
is given by ̇ξ = ∇X(x(t)).ξ .
The first-order variational equation is a linear differential equation with time-depen-

dent coefficients. In our algebraic presentation, the field X is a rational Hamiltonian

field, and Γ an algebraic curve, that is, a one-dimensional prime ideal I of the polyno-

mial ring associated with the definition field K of H.

Some examples

Example 1. The algebraic potential

V(q1 , q2 , w) = w5 + q22 I = ⟨w2 − q1⟩
associated with H = 1

2 (p21 + p22) + V(q, w). The associated Hamiltonian system has

a particular solution given by w(t) = 0, q1(t) = 0, q2(t) = cos t. So the curve Γ is

7



algebraic, given by

Γ = V(⟨q1, p1, p22 + 2q22 − 2⟩) .
Remark now that the time parametrization is not important for us: indeed, the ex-

istence of first integrals is independent of the parametrization chosen. Thus, any

parametrization can be chosen, and in practice, if possible, a parametrization lead-

ing to a variational equation with rational coefficients is chosen. Here, we obtain

̇ξ = ( 0 0 1 0

0 0 0 1−2 0 0 0

0 0 0 0

) ξ

which can be rewritten as a second-order differential equation̈ξ = (−2 0

0 0
) ξ

and with q2 parametrization(1 − q22)∂2q2 ξ − q2∂q2 ξ = (−2 0

0 0
) ξ .

Remark that, in principle, in the second case, the coefficients will always be algebraic,

contrary to the first one where the coefficients belong a priori to ℂ(p(t), q(t)) (and,
thus, typically are transcendental functions).

In the potential case, the variational equation admits a nice representation as a

second-order differential equation as the Hamiltonian system can rewrite itself q̈ =−∇V(q).
Example 2. The spatial pendulum

The spatial coordinates (q1, q2 , q3) of the pendulum are restricted to the unit sphere.

And the momentum coordinates, thus, have to be restricted to the tangent plane of

the sphere at (q1 , q2, q3). After a projection on the q1, q2 plane, the potential can be
written as

V(q1 , q2) = √1 − q21 − q22 .
Using our previous method, we obtain the following Hamiltonian and symplectic

manifold:

V(q1 , q2, q3) = q3, H = 1
2
(p21 + p22 + p23) + q3 ,

M = {(p1, p2, p3 , q1, q2, q3) : q21 + q22 + q23 = 1, p1q1 + p2q2 + p3q3 = 0} .
Now, to study algebraically this system, wewill have to consider rational functions on

M, which admit the following representation in the variables p1, p2, p3, q1, q2, q3:

K = Frac(ℂ[p, q]/⟨q21 + q22 + q23 − 1, p1q1 + p2q2 + p3q3⟩)
8



with the derivations

∂q1 = ∂4 − q1q3 ∂6 − (p1q3 + (p1q1 + p2q2)q1q33
) ∂3 ,

∂q2 = ∂5 − q2q3 ∂6 − (p2q3 + (p1q1 + p2q2)q2q33
) ∂3 ,

∂p1 = ∂1 − q1q3 ∂3, ∂p2 = ∂2 − q2q3 ∂3 .
This system is a two degrees of freedomHamiltonian. Let us consider a circularmotion

Γ = {q3 = −1/2, p3 = 0}.
The Jacobian of the Hamiltonian field is computed modulo the ideal

I = ⟨q21 + q22 + q23 − 1, p1q1 + p2q2 + p3q3, 2q3 + 1, p3⟩ .
Direct computation of the Jacobian using the derivations formulas gives amatrix with

coefficients ℂ(p, q). Then, each entry is reduced by the following Groebner basis ap-
proach:

– An entry fraction P/Q is written as the ideal I + ⟨fQ − P⟩.
– A Groebner basis is computed in lexicographic order with f being the dominant

variable. The smallest element e (with respect to the monomial order) of the basis

containing the f variable is chosen.

– Solving e in f gives a new rational fraction, which is “simplified” in the normal

form.

The matrix obtained is

( −4q2p2 4p2q1 −4q22 + 4 4q1q2
4p1q2 4q2p2 4q1q2 4q22 + 1−4p21 + 8q22 − 8 −4p1p2 − 8q1q2 4q2p2 −4p1q2−4p1p2 − 8q1q2 −4p22 − 8q22 − 2 −4p2q1 −4q2p2 ) .

Now comes the parametrization of the curve Γ. The time parametrization is given by√3/2 cos(t√2),√3/2 sin(t√2), −√6/2 sin(t√2),√6/2 cos(t√2),
which leads to a variational equationwith transcendental coefficients. A rational vari-

ational equation can be obtained through a rational parametrization of Γ by noting

cos(t√2) = 1
2
(z + 1

z
) sin(t√2) = 1

2i
(z − 1

z
) .

The matrix of the variational equation after this parametrization is given by

( 3(z4−1)
4z3

− 3i(z2+1)2
4z3

− i√2(3z4+10z2+3)
8z3

− 3√2(z4−1)
8z3− 3i(z2−1)2

4z3
− 3(z4−1)

4z3
− 3√2(z4−1)

8z3
i√2(3z4−10z2+3)

8z3
4i√2
z 0 − 3(z4−1)

4z3
3i(z2−1)2

4z3

0 4i√2
z

3i(z2+1)2
4z3

3(z4−1)
4z3

) .
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Remark that in the case where the curve Γ can be rationally parametrized, it is al-

ways possible to obtain a variational equation with rational coefficients. This prop-

erty will be important for the further study of the differential Galois group of the vari-

ational equation. In the nonparametrizable case, it can still be possible that a good

parametrization allows us to obtain a variational equation with rational coefficients,

as in the case of homogeneous potentials.

Let us consider V ∈ ℂ(q1 , . . . , qn) a homogeneous function of homogeneity degree

k ̸= 0.
Definition 2.4. A point c ∈ ℂn \ {0} such that

∂q1V(c) = kc1 ⋅ ⋅ ⋅ ∂qnV(c) = kcn (2.5)

is a called aDarboux point of V. The number k on the right-hand side of the equations

is called themultiplier associated with c.

In thedefinitionofDarbouxpoints, themultiplier canbefixedarbitrary to anynonzero

value, and here we have chosen k. We now consider the curve Γ ⊂ ℂ2n given by
q(t) = cϕ(t), p(t) = c.ϕ̇(t), 1

2 ϕ̇
2 = −ϕk + 1,

where c is a Darboux point of V with multiplier k. This curve Γ is an orbit of V.

The important point here is that to each Darboux point, we can associate an algebraic

orbit of V. As the Darboux point equation is an algebraic equation with equal number

of unknowns and equations, such a point generically exists, and, thus, such an orbit

generically exists for homogeneous potentials.

Let us now focus on the type of curve Γ. Due to the equation 1
2 ϕ̇

2 = −ϕk + 1, the
curve is typically a hyperelliptic curve (except for some small values of k), and thus

not rationally parametrizable:

Ẍ = −ϕ(t)k−2∇2V(c)X .

Still, another miracle occurs: the parametrization of the curve inϕk leads to a rational

variational equation. This was first noted by Yoshida [23]. The system can furthermore

beuncoupled through the diagonalization of theHessian (in the generic case), leading

to n-uncoupled second-order variational equations

z(z − 1)Ẍi + (3k − 2
2k

z − k − 1
k
) Ẋi − λi

2k2
Xi = 0, where λi ∈ Spect(∇2V(c)) .

12.2.3 Differential Galois theory

Let us consider a linear differential equation

Ẋ = A(t)X , where A ∈ ℂ(t) . (2.6)

10



We are interested in the first integrals of this system, that is, rational functions in X, t

which are constant with respect to time. The purpose of differential Galois theory is

even larger: to determine all algebraic relations between the solutions of these differ-

ential equations.

The solutionsof equations (2.6) canbe formallywrittenby the fundamentalmatrix

R(t), such that
Ṙ = AR, R(0) = In .

Let us consider the polynomial ring K = ℂ(t)[x1,1 , . . . , xn,n, d] of n2 + 1 variables.

We will see an element of this ring as a polynomial function with coefficients in ℂ(t),
taking as arguments a matrix

(x1,1 . . . x1,n
. . .

xn,1 . . . xn,n

)
and a complex number d. We consider the following ideal:

Inv = {P ∈ K : P(R(t), det(R(t))−1) = 0} .
This is a polynomial ideal generated by the algebraic relations between the solutions

of equation (2.6). On this ideal, we can define a action of an element G ∈ GLn(ℂ) by
the right multiplication on the matrix x and d → d det(G)−1. The Galois group is now
defined as

Galℂ(t) = {G ∈ GLn(ℂ) : GInv = Inv} .
Through this definition, we see immediately that G is an algebraic Lie group, and,

thus, (at least in small dimension)G shouldbelong tofinitelymanypossible categories

of groups. This is the base of the Kovacic algorithm to compute this group.

A 2-dimensional example

Let us consider the following example:

Ẋ = (− t
1−t2 1

1−t2
1 0

) X .

The fundamental matrix can here be computed explicitly and is given by

1

2
((1 − t2)−1/2 (earcsin(t) + e− arcsin(t)) (1 − t2)−1/2 (earcsin(t) − e− arcsin(t))

earcsin(t) − e− arcsin(t) earcsin(t) + e− arcsin(t) ) .
From this, we can compute explicitly the invariant ideal. The determinant of the fun-

damental matrix is 2/√1 − t2. We, thus, obtain

Inv = ⟨4d2 + t2 − 1, 2x1,1d − x2,2, 2dx1,2 − x2,1, 2d(x1,1 + x1,2)(x2,1 − x2,2) + 1⟩ .
11



This encodes a 1D variety over the base field ℂ(t). Now, we can compute the Galois

group and, thus, find

G = ⟨( s2 + 1
2s

s
2 − 1

2s
s
2 − 1

2s
s
2 + 1

2s

)
s∈ℂ∗ ,(−1 0

0 −1)⟩ .

This is a 1D group, and has two connected components. This is related to the fact that

to express the solutions, we had to use one square root and one exponential-integral.

This group is isomorphic toℤ/2ℤ⋉ℂ∗ and, thus, solvable. The solvability ofG implies

that the solutions can be represented explicitly.

Remark that we did not give at all a usable approach to compute the Galois group.

Indeed, in practice, we want to compute the Galois group without having the funda-

mental matrix at first.

12.3 Introduction to Morales–Ramis theorem

12.3.1 The Morales–Ramis theorem

The main idea of the Morales–Ramis theorem is that if a Hamiltonian system is inte-

grable, then the linearized system along a particular solution should also be “inte-

grable.” In this section, the Hamiltonian H will only be assumed to be an n degrees of

freedom Hamiltonian over a general 2n-dimensional complex analytic manifoldM.

Let us consider a holomorphic function f on M, and a point x ∈ M. The initial

form of f at x is the lowest order nonzero term in the Taylor expansion of f at x. It

is, in particular, a homogeneous polynomial. If f is a meromorphic function on M,

then its initial form is defined as the quotient of the initial form of its numerator and

denominator.

This definition can then be generalized to curves. Given a complex analytic curve

Γ ⊂ M parametrized by t, we consider for a holomorphic f the Taylor expansion of

f at x(t). The coefficients of this expansion are functions of t, and the initial form is

the lowest order nonzero term (as a function of t) in this expansion. Remark that the

valuation of f at x(t) candiffer for some exceptional values of t (this typically occurs at
singular points of the variational equation). In the general meromorphic case, the ini-

tial formof f on Γ is then a homogeneous rational fractionwith coefficients depending

on t.

Lemma 3.1 (Ziglin [24]). Let f1, . . . , fk be germs of functionally independent mero-

morphic functions over a neighborhood of 0 in ℂn. Then, there exist polynomials

P1, . . . , Pk ∈ ℂ[z1 , . . . , zn] such that the initial forms at the origin of the functions gi =
Pi(f1, . . . , fk) are meromorphic functions functionally independent in ℂ(z1 , . . . , zk).

12



Let us consider Γ ⊂ M a trajectory of the Hamiltonian field XH. If this field has n

independent first integrals f1, . . . , fn, then after possibly algebraic transformations,

the initial forms of these first integrals can be assumed to be independent thanks to

Ziglin lemma. Remark that if the Poisson bracket {fi , fj} = 0, then the same is also true

for their initial forms.

Theorem 3.2 (Morales–Ramis [14]). Let H be a Hamiltonian over a complex analytic

symplectic manifold M of dimension 2n. Assume that H is integrable in the Liouville

sense (XH admits n independent meromorphic first integrals, pairwise Poisson commut-

ing). Let Γ be a connected not reduced to a point particular solution of the Hamiltonian

field XH . Then, the identity component of the Galois group of the variational equation

near Γ is Abelian over the base field of rational functions on Γ.

12.3.2 Homogeneous potentials

In the case of homogeneous potentials, if we take for Γ a curve coming from aDarboux

point, the variational equation admits a particular form

z(z − 1)Ẍ + (3k − 2
2k

z − k − 1
k
) Ẋ − λ

2k2
X = 0 .

This equation is a hypergeometric equation and the Galois groups for all parameters

values have been computed [10]. The result is that the integrability condition coming

from the Morales–Ramis theorem becomes much more explicit

Theorem 3.3 ([5, 15]). Let V be a homogeneous rational potential of homogeneity de-

gree k ∈ ℤ∗ and c a Darboux point with multiplier k. Assume that ∇2V(c) (the Hes-
sian matrix according to derivations in q) is diagonalizable. If V has n meromorphic

first integrals which are in involution and functionally independent, then for any λ ∈
Spect(∇2V(c)), the couple (k, λ) belongs to the table
k λ k λ

ℤ∗ 1
2 ik (ik + k − 2) −3 − 258 + 1

8 ( 65 + 6i)2ℤ∗ 1
2 (ik + k − 1) (ik + 1) −3 − 258 + 1

8 ( 125 + 6i)2
2 ℂ 3 − 18 + 1

8 (2 + 6i)2−2 ℂ 3 − 18 + 1
8 ( 32 + 6i)2−5 − 498 + 1

8 ( 103 + 10i)2 3 − 18 + 1
8 ( 65 + 6i)2−5 − 498 + 1

8 (4 + 10i)2 3 − 18 + 1
8 ( 125 + 6i)2−4 − 92 + 1

2 ( 43 + 4i)2 4 − 12 + 1
2 ( 43 + 4i)2−3 − 258 + 1

8 (2 + 6i)2 5 − 98 + 1
8 ( 103 + 10i)2−3 − 258 + 1

8 ( 32 + 6i)2 5 − 98 + 1
8 (4 + 6i)2

13



Remark that the eigenvalues k(k − 1) always appear in the spectrum of ∇2V(c)) due to
the fact that c is always an eigenvector of ∇2V(c)), and through the Euler formula for

homogeneous functions, we can prove that ∇2V(c)) ⋅ c = k(k − 1)c. So this theorem
gives generically n − 1 integrability condition at each Darboux point.
With this, it becomes possible to make explicit the test for integrability, even for po-

tentials with parameters (see [12, 13, 21]). However, two problems remain

– If the variational equation has a virtually Abelian Galois group, then the integra-

bility status of the potential remains unknown.

– In the homogeneous potential case, even if several orbits can be found in theory,

one needs to solve the Darboux point equation. This can be challenging even for

a few number of variables: we know that there are probably a lot of solutions, so a

lot of integrability conditions, so a lowprobability that the potential be integrable,

but we are not able to compute these Darboux points! This is the typical problem

in celestial mechanics [17, 22].

Thus, it is sometimes useful to have additional integrability conditions for a given or-

bit.

12.3.3 Higher variational equations

We now define higher variational equations, following Morales–Ramis–Simo [16, p.

860]. Let us denote the flow of the Hamiltonian field XH as φt. We denote

φt(y) = ∑
k

φ(k)t (x)(y − x)k
as the series expansion of φy at x. We define accordingly

XH(y) = ∑
k

X
(k)
H (x)(y − x)k .

The variational equations can now be written in a compact form

φ̇
(1)
t = X(1)H φ

(1)
t

φ̇
(2)
t = X(1)H φ

(2)
t + X(2)H (φ(1)t )2

φ̇
(3)
t = X(1)H φ

(3)
t + 2X(2)H (φ(1)t , φ

(2)
t ) + X(3)H (φ(1)t )3 ,

and the general formula is given by

φ̇
(k)
t = k∑

j=1∑ j!

m1! ⋅ ⋅ ⋅ms!
X
(j)
H ((φ(i1)t )m1 , . . . , (φ(is)t )ms ) .

The point derivation corresponds to the derivation with respect to time along a partic-

ular solution Γ of XH .

14



If the Hamiltonian system admits a first integral f , then the first-order variational

equation admits a rational first integral, the initial formof f . The sameholds for higher

variational equations. Noting fk as the series expansion of f consisting of the k first

terms of the Taylor series of f beginning by the first nonzero term, we obtain for fk
a polynomial (or rational fraction when f is rational) which is a first integral of the

k-th-order variational equation.

Remark that the first-order variational equation is a linear one, but higher order ones

are not. These, however, can be “linearized” by the following process:

– The right term of each equation in φ
(k)
t is a polynomial in φ

(i)
t with i < k. So the

right-hand side of the equation is a linear combination of monomial in φ
(i)
t with

i < k.
– A product of a solution of a linear differential equation is itself a solution of a

linear differential equation (called symmetric power/product).

– We can, thus, replace each monomial of the right-hand side by a new unknown

function, which will be a solution of a linear differential equation

The k-th-order variational equation (nonlinear version) can then be replaced by a

linear differential system, whose solutions are the same as the linear version.

With the k-th variational equation, we can associate a Galois group. This Galois

group preserves all rational invariants of the differential system and, in particular, the

rational invariants coming from the first integrals of the Hamiltonian field. Through

this process comes the following constraint on these Galois groups.

Theorem 3.4 (Morales–Ramis–Simo [16]). Let H be aHamiltonian over a complex ana-

lytic symplecticmanifold M of dimension 2n. Assume that H is integrable in the Liouville

sense (XH admits n independent meromorphic first integrals, pairwise Poisson commut-

ing). Let Γ be a connected but not reduced to a point particular solution of XH . Then, the

identity component of the Galois group of the k-th-order variational equation near Γ is

Abelian over the base field of rational functions on Γ.

Example

This example of potential comes from [3]:

V = 1
r
(1 + 3q22

q21
+ 101

12

q42
q41
) ,

where r2 = q21 + q22. The point q1 = 1, q2 = 0, r = 1 is a Darboux point with the

multiplier −1. The eigenvalue computation gives the spectrum {2, 5}which is compat-

ible with integrability as given by the Morales–Ramis theorem. Let us try to compute

higher variational equations. We compute the series expansion of V at order 2:

V(1 + q1, q2) = 1 − q1 + q21 + 52q22 − q31 − 152 q1q
2
2 + O(‖q1 , q2‖4) .

15



The second-order terms will lead to the first-order variational equation. The second-

order variational equation is built the following way:

Ẍ1 = ϕ−32X1 − ϕ−43X21, Ẍ2 = ϕ−35X2 − ϕ−415X1X2 . (3.1)

This equation is a nonlinear equation which is “linearized.” New unknowns are
introduced yn1 ,n2 ,n3,n4 (here 1 ≤ ∑ ni ≤ 2). In the following way, yn1 ,n2 ,n3,n4 =̇X1n1 ̇X2n2Xn3

1 X
n4
2 . We differentiate this expression and simplify it using the relation

(3.1). This produces the following system:

Ẍ1 = ϕ−32X1 − ϕ−43y2,0,0,0 , Ẍ2 = ϕ−35X2 − ϕ−415y1,1,0,0

Ẏ =
((((((((((((
(

0 2 0 0 0 0 0 0 0 0

2ϕ−3 0 1 0 0 0 0 0 0 0

0 4ϕ−3 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 5ϕ−3 0 1 0 0 0 0

0 0 0 2ϕ−3 0 0 1 0 0 0

0 0 0 0 2ϕ−3 5ϕ−3 0 0 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 5ϕ−3 0 1

0 0 0 0 0 0 0 0 10ϕ−3 0

))))))))))))
)

Y ,

Y = (y2,0,0,0 , y1,0,1,0 , y0,0,2,0 , y1,1,0,0 , y1,0,0,1 , y0,1,1,0 , y0,0,1,1 , y0,2,0,0 , y0,1,0,1 , y0,0,0,2 )⊺ .
This 10×10matrix is thematrix of the second symmetric power of the first variational

equation. As shown in this example, the variational equations very fast become a very

large size system of differential equations. They possess, however, a very important

structure: they can be solved iteratively. Once the first-order variational equation is

solved, the higher order ones can be solved through the variation of constant. In the

case above, the first-order variational equation has a Galois group ℂ+, and, in partic-
ular, a basis of solutions can be written as P, PQ, where P ∈ ℂ(t) and Q̇ ∈ ℂ(t). The
function Q is a transcendental function, an antiderivative, which corresponds to the

fact that theGalois group is additive 1D. Nowwe can solve the second-order variational

equation in the following way:

– The solutions of the 10×10 system are simply all products between the solutions

of the first-order variational equation.

– These solutions are injected in the X differential system. This produces a nonho-

mogeneous linear differential system with nonhomogeneous terms in ℂ(t)[Q].
– If the solutions X still belong toℂ(t)[Q], then the Galois group of the second-order

variational equation will still be 1D, so equal to ℂ+. This can be tested automati-

cally while solving in rational functions a linear differential system.

– If the search of such a solution fails, then a constraint on the monodromy of the

solutions is searched.

After reparametrization, the function Q here can be chosen as arctanh (t−1). We just

apply the following lemma:

16



Lemma 3.5 ([4]). Let F ∈ ℂ(z1) [z2] and
f(t) = F (t, arctanh (1

t
)) ∈ ℂ(t) [arctanh (1

t
)] .

We consider the following differential field extension and its differential Galois group:

K = ℂ(t, arctanh (1
t
) ,∫ fdt) , G = Galdiff(K/ℂ(t)) .

If G is Abelian, then

∂

∂α
Res
t=∞ F (t, arctanh (1

t
) + α) = 0 ∀α ∈ ℂ,

where Res corresponds to the residue.

Applying this procedure allows us to prove that the fifth variational equation has not

a virtually Abelian Galois group.

12.4 Application to parametrized potentials

12.4.1 Space of germs of integrable potentials

Let us consider a homogeneous potential of degree k with the series expansion

V(1 + q1, q2 , . . . , qn) = kq1 + n∑
i=1

λi
2
q2i + O(‖q‖3) . (4.1)

Assume that the integrability conditionon the λi is satisfied. Remark that anypotential

satisfying the Morales Ramis integrability condition can be reduced under this form.

What are the integrability conditions on higher order terms?

Let us denote Em,λ1,...,λn the affine space of series expansions of homogeneous

potentials of the form 4.1 of order m. We denote

V(1 + q1, q2, . . . , qn) = qk1 (1 + n∑
i=1

λi
2
( qi
q1
)2 +∑ ui1 ,...,in∏( qjq1 )i j)

as a parametrization of the space Em,λ1,...,λn . Remark that we have fixed the eigenval-

ues λ1, . . . , λn. Using only the series expansion up to order m, we can compute the

variational equation of order m − 1. The solutions of this (m − 1)th-order variational
equation will depend on the coefficients u. But in a specific way:

Proposition 4.1. Let us consider the homogeneous potential V given by (4.1) with fixed

eigenvalues λ1, . . . , λn. Then, the fundamental matrix of the (m−1)th-order variational
equation is an affine function of the highest order derivatives ui1,...,in , i1 + ⋅ ⋅ ⋅ + in =
m. More generally, it is a polynomial in u of weighted degree ≤ m − 2 with weights

deg(ui1 ,...,in) = i1 + ⋅ ⋅ ⋅ + in − 2.
17



Remark that a weighted degree is completely defined by its value on ui1 ,...,in : we can

deduce the degree of monomials (just by addition) and then polynomials (taking the

maximum of the degrees of the monomials).

Proof. Let us first remark that the first result is included in the second. The degree of

ui1,...,in , i1 + ⋅ ⋅ ⋅ + in = m is by definition m − 2. So any monomial containing such

highest order derivative cannot contain anything else (as the total degree is ≤ m − 2).
So this means that the fundamental matrix is an affine function of the highest order

derivatives.

The (m − 1)th-order variational equation matrix can be written as follows:

(A B1,2 B1,3 . . . B1,m−1
0 Sym2(A) B2,3 . . . B2,m−1
0 0 . . . . . . . . .

0 . . . 0 Symm−2(A) . . .

0 . . . 0 Symm−1(A)) , (4.2)

where A is thematrix of the first-order variational equation. Thismatrix is upper block

triangular, and the matrices Symi(A) (symmetric powers of A) do not depend on any

parameters (as the eigenvalues λi are fixed). So the only parameters of this system

are the ui1 ,...,in , which only appear in the matrices Bj,l. Following the procedure for

building higher variational equations, we have that Bj,l is linear in the derivatives

ui1,...,in , with i1 + ⋅ ⋅ ⋅ + in = l − j + 2.
This system can be solved through the variation of constants and the parame-

ters ui1 ,...,in only appear in the nonhomogeneous part linearly. So the solutions of the

variational equations depend polynomially on the u. Let us now look at the weighted

degree of these polynomials. Using this block structure of the variational equation,

we cut the components of a solution in m − 1 parts, the last being associated with the
matrix block Symm−1(A).
Lemma 4.2. Theweighted degree of the l-th part of the components of a solution of (4.2)

is ≤ m − 1 − l.
Proof. This is done by recurrence. For the solution components of the last block (with

Symm−1(A)), they are the solutions of a homogeneous systemswith no parameters. So

that they are of weighted degree 0. This proves the lemma for l = m − 1.
Assume that the lemma is true for all s ≥ l +1 for some fixed l. Let us prove it for s = l.
The part l components Xl are the solutions of a system of the form

Ẋl − Syml(A)Xl = Bl,l+1Xl+1 + ⋅ ⋅ ⋅ + Bl,m−1Xm−1.
Theweighted degree of Bl,s is s−l and, by recurrence assumption, theweighted degree

of Xs is s ≥ l + 1 is ≤ m − 1 − s. So the nonhomogeneous part has at most a weighted
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degree of

max
s=l+1,...,m−1 s − l + m − 1 − s = m − 1 − l .

The lemma applied to a basis of solutions gives that the maximal weighted degree is

m − 2.
This suggests to compute these higher variational equation constraints iteratively.

Moreover, the integrability constraints on the Galois group of these variational equa-

tions will then be polynomial in the higher order derivatives ui1 ,...,in . When searching

(possibly) integrable potentials having a series expansion in E, we obtain at each step

(among other lower derivatives constraints) linear constraints of the highest order

derivatives. If these constraints are strong enough at all orders, this approach can

lead to uniqueness theorems.

Lemma 4.3 (Combot [3]). Let V1andV2 be two rational integrable homogeneous poten-

tials on ℂ2 of degree −1 with a Darboux point of the form c = (1, 0) with multiplier −1.
Assume that there exists k0 ≥ 2 such that the integrability constraint of (VEk) is nonde-
generate ∀k ≥ k0 (see [3] for definition). If

∂i+j
∂qi1∂q

j
2

V1(c) = ∂i+j
∂qi1∂q

j
2

V2(c) ∀(i, j) such that i + j ≤ k0,
then V1 = V2.

Another consequence is the possible computation of the space of integrable series

expansion of order m in E. The following result was obtained by Combot [6] for k =−1, λ1 = 2, λ2 = 5, λ3 = 44,m ≤ 4:
m = 2 q−11 (1 + 52 q22

q21
+ 44

2

q23

q21
+ O((q2 , q3)3

q31
))

m = 3 q−11 (1 + 52 q22
q21
+ 44

2

q23

q21
+ u3,1 q22q3

q31
+ O((q2 , q3)4

q41
))

m = 4 q−11 (1 + 52 q22
q21
+ 44

2

q23

q21
+ u3,1 q22q3

q31
+ ( 7

459
u23,1 + 17524

) q42
q41
+

(− 734
7775

u23,1 + 130,779622
) q22q23

q41
+ 682,538,736

1,082,611

q43

q41
+ O((q1, q3)5

q51
)) .

For m ≥ 5, no integrable potential of this form remains. In general, the variety of the

integrable series expansion of order m − 1 in E is an algebraic variety. If some kind of

nondegeneracy condition onhigher variational equationholds, theHilbert dimension

of this variety decreases with m. This process always seems to lead to all integrable

potentials for some particular set of eigenvalues. For the set k = −1, {λ1, λ2, λ3} ={2, 5, 44}, this allows us to conclude:
19



Corollary 4.4 (Combot [6]). A rational homogeneous potential of degree −1 of dimen-

sion 3 with a Darboux point with the multiplier −1 and the eigenvalue set {2, 5, 44} is
not integrable.

This combination of eigenvalues was possible in the Morales–Ramis theorem, but the

use of higher variational equations and theMorales–Ramis–Simo theorem allowed us

to remove this combination from the possible integrable potentials. This approach can

now be effective even in cases where only bounding of the trace of the Hessianmatrix

at Darboux points can be obtained.

Let us consider a family of homogeneous potentials W of degree k. Assume that we

know a bound B ∈ ℕ such that∀V ∈ W, ∃c Darboux point with multiplier k, tr(∇2V(c)) ≤ B.
This property was called “bounded eigenvalue property” in [7]. Then, integrable po-

tentials in W are included in a finite union of affine spaces of type E. The study of

higher variational equations integrability conditions for each affine space E allows us

to find strong integrability conditions for potentials inW, and hopefully to prove that

no unknown integrable potentials rely on these spaces E.

12.4.2 Eigenvalue bounding of some n-body problems

The n-body problem is famous for having a difficulty to solve Darboux point equations

(which are called in this specific topic central configuration). Indeed, even finiteness

is not clear [1, 11, 20]. Here, the need of information of the spectrum of the Hessian of

V at these points is even more.

Theorem 4.5 (Combot [6]). We consider the collinear four-body problem with positive

masses. The potential after reduction is a 3D potential homogeneous of degree −1. Let c
be the real Darboux point with multiplier −1 (existence and uniqueness up to translation
due to [18]). Then, tr(∇2V(c)) < 70.
This theorem comes down to a real algebraic problem, and such a bound can be auto-

matically proved by real algebra software such as RAGLib [9]. Looking at theMorales–

Ramis table, we see that for k = −1, the minimal possible eigenvalue is −1 and the set
is discrete. Thus, only finitely many eigenvalue sets are possible. In this n-body pro-

blem, we have, moreover, a better lower bound.

Theorem 4.6 (Pacella [19]). We consider the collinear four-body problem potential with

positive masses after reduction and the Darboux point c with multiplier −1. Then,
Spect(∇2V(c))) = {2, λ1, λ2} with λ1, λ2 > 2.

20



Combining this with the upper bound of the trace, we obtain finitely many possible

sets: {5, 5}, {5, 9}, {5, 14}, {5, 20}, {5, 27}, {5, 35}, {5, 44}, {5, 54}, {9, 9} ,{9, 14}, {9, 20}, {9, 27}, {9, 35}, {9, 44}, {9, 54}, {14, 14}, {14, 20}, {14, 27} ,{14, 35}, {14, 44}, {20, 20}, {20, 27}, {20, 35}, {20, 44}, {27, 27}, {27, 35} .
For each eigenvalue set, a computation of the higher variational equations up to

order 5 allows us to prove that these eigenvalue sets are not possible for integrability.

Corollary 4.7 (Combot [6]). The collinear four-body problemwith positive masses is not

integrable.

Acknowledgement I wish to thank the numerous valuable comments and sugges-

tions of the anonymous referee.
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