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SOME COMPLEXITY AND APPROXIMATION RESULTS

FOR COUPLED-TASKS SCHEDULING PROBLEM

ACCORDING TO TOPOLOGY

B. Darties1, R. Giroudeau2, J.-C. König3 and G. Simonin4

Abstract. We consider the makespan minimization coupled-tasks prob-
lem in presence of compatibility constraints with a specified topology.
In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks
having the same sub-tasks execution time and idle time duration. We
study several problems in framework of classic complexity and approx-
imation for which the compatibility graph is bipartite (star, chain, . . .).
In such a context, we design some efficient polynomial-time approxi-
mation algorithms for an intractable scheduling problem according to
some parameters.

1. Introduction and model

The detection of an object by a common radar system is based on the following
principle: a transmitter emits a uni-directional pulse that propagates though the
environmental medium. If the pulse encounters an object, it is reflected back to
the transmitter. Using the transmit time and the direction of the pulse, the posi-
tion of the object can be computed by the transmitter. Formally this acquisition
process is divided into three parts: (i) pulse transmission, (ii) wave propagation
and reflection, (iii) echo reception. Thus the detection system must perform two
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tasks (parts (i) and (iii)) separated by an idle time (part (ii)). Such systems gen-
erally run in non-preemptive mode: once started, a task cannot be interrupted
and resumed later. However, the idle time of an acquisition task can be reused
to perform another task. On non-preemptive mono-processor systems, schedul-
ing issues appear when in parallel several sensors using different frequencies are
working: the idle time of an acquisition task can be reused to perform partially on
entirely a second acquisition process using another sensor, but only if both sensors
use different frequencies to avoid interferences. Otherwise these two acquisitions
processes should be scheduled sequentially.

Coupled-tasks, introduced first by Shapiro [15], seem to be a natural way to
model, among others, data acquisition processes: a coupled-task ti is composed
by two sub-tasks with processing time ai and bi and whose execution must be
separated by an incompressible and not flexible time li (called the idle time of
the task). For an acquisition process, a sensor emits a radio pulse as a first sub-
task, and listens for an echo reply as a second sub-task, while the radio pulse
propagation operates during an idle time li.

Coupled-tasks are also an efficient way to model acquisition systems designed
to detect changes in an environment for a given period, by producing two measure-
ments before and after the given period. Here each measurement can be modeled
as a sub-task.

We note T = {t1, . . . , tn} the collection of coupled-tasks to be scheduled. In
order to minimize the makespan (schedule length) of T , it is necessary to exe-
cute one or several different sub-tasks during the idle time of a coupled-task. In
the original model, all coupled-tasks may be executed in each other according to
processing time of sub-tasks and the duration of the idle time.

Some papers investigated the problem of minimizing the makespan for various
configurations depending on the values of ai, bi and li [1, 2, 14]. In [14], authors
present a global visualization of scheduling problems complexity with coupled-
tasks, and give main complexity results.

In a multi-sensors acquisition system, incompatibilities may arise between two
tasks ti and tj if they operate with two different sensors working at the same chan-
nel. Thus any valid schedule would require ti and tj to be scheduled sequentially.
Hereafter, we propose a generalization of an original coupled-tasks model by con-
sidering the notion of compatibility constraint among tasks: original coupled-task
model, by introducing compatibility constraint among tasks: two tasks ti and tj
are compatibles if any sub-task of ti may be executed during the idle time of tj
or reciprocally. In [16], we introduced a compatibility graph G = (V,E) to model
such this compatibility, where V = T is the entire collection of coupled-tasks, and
each pair of compatible tasks are linked by an edge e ∈ E. We proposed in [16,18]
new results focused on the impact of the addition of G on the complexity of the
problem.

Our work is motivated by the acquisition of data for automatic vehicle under
water, as a TAIPAN torpedo. With the growth in robotic technologies, several
applications and works are emerging and the theoretical needs are a priority. For
example, the torpedo is used to execute several submarine topographic surveys,
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including topological or temperature measurements. These acquisitions tasks can
be partitioned into specific sub-problems, where their modelling is very precise.

Since the engineers have a wide degree of freedom to create and transform
the different tasks, they required a strong theoretical analysis of coupled tasks
with compatibility constraint. Indeed, they needed to have a better knowledge of
the difficulty of scheduling coupled-tasks on such systems, and to compare their
scheduling heuristics to the optimal one.

1.1. Contribution

In this work, we propose new results of complexity and approximation for par-
ticular problem instances composed by stretched coupled-tasks only : a stretched
coupled-task is a coupled-task ti = (ai, li, bi) for which the three parameters ai, bi
and li are equal to the same value α(ti), called the stretch factor of ti.

We investigate here the problem of scheduling on a mono-processor a set of
stretched coupled-tasks, subject to compatibility constraint in order to minimize
the completion time of the latest task. For clarity, ai (resp bi) refers either to the
first (resp. second) sub-task, or to its processing time according to the context.

A major research issue concerns the impact of the class of the compatibility
graph G on the complexity of the problem: it is known that the problem is NP-
hard even when all the tasks are compatibles between each other, i.e. G is a
complete graph (see [14]). On the other side, when G is an empty graph a triv-
ial optimal solution would consist in scheduling tasks sequentially. Our aim is
to determine the complexity of the problem when G describes some sub-classes
of bipartite graphs, and to propose approximation algorithms with performance
guarantee for NP-hard instances.

Remark 1. If two compatibles stretched coupled-tasks ti and tj, with α(ti) ≤ α(tj),
are scheduled in parallel in any solution of the scheduling problem, then one of the
following conditions must hold:

(1) either α(ti) = α(tj): then the idle time of one task is fully exploited to
schedule a sub-task from the other (i.e. bi is scheduled during lj, and aj
is scheduled during li), and the execution of the two tasks is done without
idle time.

(2) or 3α(ti) ≤ α(tj): then ti is fully executed during the idle time lj of tj.
For sake of simplify, we say we pack ti into tj.

The others configuration α(ti) < α(tj) < 3α(ti) is unavailable, otherwise some
sub-tasks would overlap in the schedule.

From Remark 1 one can propose an orientation to each edge e = (ti, tj) ∈ E
from the task with the lowest stretch factor to the task with the highest one, or
set e as a bidirectional edge when α(ti) = α(tj). In the following, we consider
only oriented compatibility graphs. Abusing notation, dealing with undirected
topologies for G refers in fact to its underlying undirected graph.

We use various standard notations from graph theory: NG(x) is the set of
neighbors of x in G. ∆G is the maximum degree of G. We denote respectively by
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d−G(v) and d+G(v) the indegree and outdegree of v, and dG(v) = d−G(v)+d+G(v). We
denote by G[S] the graph induced from G by vertices from S.

Reusing the Graham’s notation scheme [10], we define the main problem of
this study as 1|α(ti), G|Cmax. We study the variation of the complexity when the
topology ofG varies, and we propose approximation results forNP-hard instances.

We study thee subclasses of bipartite graphs in particular: the chain, the star,
and the k-stage bipartite graphs. A k-stage bipartite graph is a graph G = (V0 ∪
V1 ∪ · · · ∪ Vk, E1 ∪ E2 ∪ . . . ∪ Ek), where each arc in Ei has its extremities in Vi

and in Vi+1, for i ∈ {1, . . . , k}. For a given k-stage bipartite graph G, we denote
by Gk = G[Vk−1 ∪ Vk] the kth stage of G. In this paper, we focus our study on
1-stage bipartite graphs (1-SBG) and 2-stage bipartite graphs (2-SBG). We also
study the problem when the compatibility graph G is a 1-stage complete bipartite
graph (1-SCBG), i.e. E1 contains all the edges (x, y), ∀x ∈ V0, ∀y ∈ V1.

For 1-SBG (or 2-SBG) with G = (X ∪ Y,E), we denoted by X-tasks (resp.
Y -tasks) the set of tasks represented by X (resp. Y ) in G. For any set of X-tasks,
let seq(X) be the time required to schedule sequentially all the tasks from X .
Formally, we have:

seq(X) =
∑

t∈X

3α(t).

Remark 2. Given an instance of 1|α(ti), G|Cmax. If X is an independent set
for G, then all the tasks from X are pairwise non-compatibles. Thus seq(X) is a
lower bound for the cost of any optimal solution.

The results obtained in this article are summarized in Table 1.

Topology Complexity Approximation
G=Chain graph O(n3) (Theo. 1)

G=Star graph 1 NP − C (Theo. 3) FPT AS (Theo. 7)
G=Star graph 2 O(n) (Theo. 2)

G= 1-SBG, dG(Y ) ≤ 2 O(n3) (Theo. 4)

G= 1-SCBG NP − C (see [17])
PT AS (Theo. 8)
13
12 -APX (Theo. 8)

G= 2-SBG NP − C (Theo. 5) 13
9 -APX (Theo. 9)

Table 1. Complexity and approximation results discussed in this paper.

1.2. Prerequisites

1.2.1. Performance ratio

Recall that the performance ratio ρ for a minimization (resp. maximization)
problem is given as the ratio between the value of the approximation solution re-

turned by the algorithmA on an instance I and the optimum i.e. ρ ≤ maxI
A(I)

OPT (I)

1Star graph with only incoming arcs for the central node arc.
2Star graph with at least one outcoming arc for the central node.
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(resp. ρ ≥ minI
OPT (I)
A(I) ). Notice that for a minimization problem the ratio is

greater than one (resp. lower than one).

1.2.2. Definition of problems

To prove the different results announced in this paper, we use several well-known
approximation results on four packing-related problems:

(1) The subset sum (ss) problem is a well-known problem in which, given a
set S of n positive values and v ∈ IN, one asks if there exists a subset S∗ ⊆
S such that

∑
i∈S∗ i = v. This decision problem is well-known to be NP-

complete (see [8]). The optimization version problem is sometimes viewed
as a knapsack problem, where each item profits and weights coincide to
a value in S, the knapsack capacity is v, and the aim is to find the set of
packable items with maximum profit.

(2) The multiple subset sum (mss) problem is a variant of well-known bin
packing in which a number of identical bins is given and one would like
to maximize the overall weight of the items packed in the bins such that
the sum of the item weights in every bin does not exceed the bin capacity.
The problem is also a special case of the Multiple knapsack problem
in which all knapsacks have the same capacities and the item profits and
weights coincide. Caprara et al. [4] proved that mss admits a PT AS,
but does not admit a FPT AS even for only two knapsacks. They also
proposed a 3

4−approximation algorithm in [5].
(3) multiple subset sum with different knapsack capacities (mssdc) [3]

is an extension of mss considering different bin capacities. mssdc also ad-
mits a PT AS [3].

(4) As a generalization of mssdc, multiple knapsack assignment re-
striction (mkar) problem consists to pack weighted items into non-
identical capacity-constrained bins, with the additional constraint that
each item can be packed in some bins only. Each item as a profit, the
objective here is to maximize the sum of profits of packed items. Con-
sidering that the profit of each item equals its weight, [6] proposed a 1

2 -
approximation.

We also use a well-known result concerning a variant of the NP-complete prob-
lem 3SAT [8], denoted subsequently by one-in-(2,3)sat(2,1̄): An instance of
one-in-(2,3)sat(2,1̄) is described by the following elements: we use V to denote
the set of n variables. Let n be a multiple of 3 and let C be a set of clauses of car-
dinality 2 or 3. There are n clauses of cardinality 2 and n/3 clauses of cardinality
3 such that:

• Each clause of cardinality 2 is equal to (x ∨ ȳ) for some x, y ∈ V with
x 6= y.

• Each of the n literals x (resp. of the n literals x̄) for x ∈ V belongs to one
of the n clauses of cardinality 2, thus to only one of them.

• Each of the n (positive) literals x belongs to one of the n/3 clauses of
cardinality 3, thus to only one of them.
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• Whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈ V , then x
and y belong to different clauses of cardinality 3.

The aim of one-in-(2,3)sat(2,1̄) is to find if there exists a truth assignment
I : V → {0, 1}, 0 for false and 1 for true, whereby each clause in C has exactly one
true literal. one-in-(2,3)sat(2,1̄) has been proven NP-complete in [9].

As an example, the following logic formula is the smallest valid instance of one-
in-(2,3)sat(2,1̄): (x0 ∨x1 ∨x2)∧ (x3 ∨x4 ∨x5)∧ (x̄0 ∨x3)∧ (x̄3 ∨x0)∧ (x̄4 ∨x2)∧
(x̄1 ∨ x4) ∧ (x̄5 ∨ x1) ∧ (x̄2 ∨ x5).

The answer to one-in-(2,3)sat(2,1̄) is yes. It is sufficient to choose x0 = 1,
x3 = 1 and xi = 0 for i = {1, 2, 4, 5}. This yields a truth assignment that satisfies
the formula, and there is exactly one true literal for each clause.

2. Computational complexity for some classes of
compatibility graphs

In this section, we present two preliminary results of complexity for the problem
that consists in scheduling a set of stretched-coupled tasks with compatibility
constraints. In such a context, we will consider the topologies of chain and star.

First we show that the problem is solvable within a O(n3) time complexity
algorithm when G is a chain (Theorem 1). Then we prove that it is NP-hard even
when the compatibility graph is a star (Theorem 3),

2.1. Chain graph

Despite of the simplicity of a chain topology, solving the scheduling problem on
a chain is not as simple as it appears : a main issue arise when two adjacent vertices
x and y have the same stretch factor. In this configuration, we cannot determine
locally if x and y can be packed together in an optimal solution or not (this requires
to examine the neighbourhood of x and y, and this problematic configuration can
be repeated all along the chain). However, we show that the scheduling problem
with a chain is polynomial using a similar method as developed in [18].

Theorem 1. The problem 1|α(ti), G = chain|Cmax admits a polynomial-time
algorithm.

Proof This problem can be solved in polynomial-time by a reduction to the
search for a minimum weighted perfect matching. This problem can be polynomi-
ally solved in O(n3) time complexity [7].

First, note that if for a task x with two neighbors y and z, we have 3(α(y) +
α(z)) ≤ α(x), the idle duration of x is high enough to schedule both y and z.
Thus one can schedule y and z into x without decreasing the cost of any optimal
solution, and remove tasks x, y and z from the studied graph. Thus, in the rest
of the proof, one can restrict our study to chains G = (V,E) such that for any
x ∈ V , we have 3

∑
y∈NG(x) α(y) > α(x).
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In order to obtain a graph with an even number of vertices and to find a
perfect matching, we construct a graphH = (VH , EH , w) and we define a weighted
function w : E → IN as follows:

(1) Let I1 be an instance of our problem with a compatibility graph G =
(V,E), and I2 an instance of the minimum weight perfect matching prob-
lem in graph constructed from I1. We consider a graph H , consisting
of two copies of G denoted by G′ = (V ′, E′) and G′′ = (V ′′, E′′). The
vertex corresponding to x ∈ V is denoted by x′ in G′ and x′′ in G′′.
Moreover, ∀i = 1, . . . , n, an edge {x′, x′′} in EH is added and we state
w({x′, x′′}) = 3 × α(x)′. This weight represents the sequential time of
the x′-task. We have H = G′ ∪ G′′ = (V ′ ∪ V ′′, E′ ∪ E′′), with |V ′ ∪ V ′′|
of even size.

(2) For two compatible tasks x′ and y′ with 3 × αx′ ≤ αy′ or 3 × αy′ ≤ αx′ ,
we add the edges {x′, y′} and {x′′, y′′} in EH and we state w({x′, y′}) =

w({x′′, y′′}) =
3×max{α

x′ ,αy′}

2
.

(3) For two compatible tasks x′ and y′ with αx′ =αy′ , we add the edges {x′, y′}

and {x′′, y′′} in EH , and we state w({x′, y′}) = w({x′′, y′′}) = 4×α
x′

2
.

Figure 1 shows an example of construction of H when G is a chain with 3
vertices.

A2

A1

A3

x′

1

x′

2

x′

3

x′′

1

x′′

2

x′′

3

3 × 2

3 × 8

3 × 8

G

G′ G′′

H

α1 = 2

α3 = 8

α2 = 8

3×8

2

3×8

2

4×8

2

4×8

2

Figure 1. Example of the transformation

One can show that there is a (weighted) perfect matching on H , which cover all
the vertices of H . In fact the construction implies that for any perfect matching
W of cost C on H , one can provide a valid schedule of processing time C for the
scheduling problem : an edge e ∈ W with e = x′, x′′, x′ ∈ G′ ∧ x′′ ∈ G′′ implies
that task x is scheduled alone, while an edge e ∈ W with e = x′, y′, x′, y′ ∈ G′

implies that tasks x and y are packed together in the resulting schedule - and the
edge e = x′′, y′′, x′′, y′′ ∈ G′′ belong also to the matching -.

For a minimum weight perfect matching C, we can associate a schedule of
minimum processing time equal to C and vice versa. The detailed proof of the
relationship between a solution to our problem with G and a solution of a minimum
weight perfect matching in H is presented in [18].
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In the review of the literature, the Edmonds algorithm determines a minimum
weight perfect matching in O(n3) [7]. So the optimization problem with G is poly-
nomial, and if one adds the execution of the blocks created by removed vertices,
this leads to the polynomiality of the problem 1|α(ti), G = chain|Cmax. �

2.2. Star graph

We focus on the case with a star graph, i.e. a graph with a central node β. In
such a context, we show that the complexity depends on the number of outgoing
arcs from β. The following results also imply that the studied problem can be NP-
hard even on acyclic low-diameter graphs, when the degree of G is unbounded.

Theorem 2. The problem 1|α(ti), G = star|Cmax is polynomial if the central node
admits at least one outcoming arc.

Proof
Let S be the set of satellite nodes. According to the Remark 2, seq(S) is a

lower bound for the cost of an optimal solution. This bound is achieved if we can
execute the central node in a satellite node.

�

Theorem 3. The problem 1|α(ti), G = star|Cmax is NP-hard if the central node
admits only incoming arcs.

Proof We propose a reduction from the subset sum (ss) problem (see Section
1.2). From an instance of ss composed by a set S of n positive values and v ∈ IN
(with v ≥ x, ∀x ∈ S), we construct an instance of 1|α(ti), G = star|Cmax =∑

t∈V α(t) + 2α(β) in the following way:

(1) For each value i ∈ S we introduce a coupled-task t with α(t) = i. Let V
be the set of these tasks.

(2) We add a task β with α(β) = aβ = lβ = bβ = 3× v.
(3) We define a compatibility constraint between each task t ∈ V and β.

Clearly the compatibility graph G is a star with β as the central node, and the
transformation is computed in polynomial time.

We will prove that there exists a positive solution for the subset sum (ss) prob-
lem iff there exists a feasible solution for the scheduling problem with a length∑

t∈V α(t) + 2α(β).
It is easy to see that 1|α(ti), G = star|Cmax =

∑
t∈V α(t) + 2α(β) ∈ NP .

Let W be the set of the nodes executed in the central node for a scheduling.
The cost of this scheduling in clearly seq(T )− seq(W ). Therefore, the problem of
finding a scheduling of cost seq(T ) − α(β) is clearly equivalent to an instance of
the subset sum with v = α(β) and S the set of the processing time of the satellite
tasks.

This concludes the Proof of Theorem 3. �
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3. On the boundary between polynomial-time algorithm
and NP-Completeness on 1-stage bipartite graphs

Preliminary results of Section 2 show that the problem is NP−hard on acyclic
low-diameter instances when the degree is unbounded. They suggest that the
complexity of the problem may be linked to the maximum degree of the graph.

This section is devoted to the NP−completeness of several scheduling problems
in presence of a 1-stage bipartite compatibility graph, according to the maximum
degree of vertices and some structural parameters like the number of different
values of coupled-tasks.

We will sharp the line of demarcation between the polynomially solvable cases
and the NP-hardness ones according to several topologies. We focus our analysis
when G is a 1-stage bipartite graph. We prove that the problem is solvable within
a O(n3) polynomial algorithm if ∆G = 2 (Theorem 4), but becomes NP-hard
when ∆G = 3 (Theorem 5).

We start by designing a polynomial-time algorithm for the scheduling problem
in which the maximum degree of incoming arcs on Y -tasks is at most two.

Theorem 4. The problem of deciding whether an instance of 1|α(ti),
G = 1−stagebipartite, dG(Y ) ≤ 2|Cmax is polynomial. In fact, the previous result
may be extended to a graph G (not necessarily bipartite) such that ∀x, d−(X) ≤ 2
with 3(α(x1) + α(x2)) > α(x), where x1 and x2 are the 2 neighbors of x.

Proof Let G = (X ∪ Y,E) be a 1-stage bipartite compatibility graph (arcs
oriented from X to Y only, implying that only X-tasks can be executed in the
idle time of and Y -task). Y -tasks will always be scheduled sequentially as Y is
an independent set of G (cf. Remark 2). The aim is to fill their idle time with a
maximum of X-tasks, while the remained tasks will be executed after the Y -tasks.
We just have to minimize the length of the remained tasks. It is easy to see that
all Y -tasks with incoming degree equal to one are executed sequentially with their
only X-task in their idle time. The following algorithm is focused on the case
∆G = 2. It is defined in two steps:

(1) For each task y ∈ Y such that 3×α(x1) + 3×α(x2) ≤ α(y) where x1 and
x2 are the only two neighbors of Y , we add y to the schedule and execute
x1 and x2 sequentially during the idle time of y. Then we remove y, x1

and x2 from the instance.
(2) Each remaining task y ∈ Y admits at most two incoming arcs (x1, y)

and/or (x2, y). We add a weight α(x) to the arc (x, y) for each x ∈ NG(y),
then we perform a maximum weight matching on G in order to minimize
the length of the remained tasks of X . Thus, the matched coupled-tasks
are executed, and these tasks are removed from G.

(3) Then, remaining tasks are processed sequentially after the other tasks.

The complexity of this algorithm is O(n3) using the Hungarian method [13]. For
the extension, it is sufficient to use a maximum weight perfect matching [7]. �
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Theorem 5. The problem of deciding whether an instance of 1|α(ti), G =
1 − stage bipartite, dG(X) = 2, dG(Y ) ∈ {2, 3}|Cmax has a schedule of length at
most 54n is NP-complete where n is the number of tasks.

Proof It is easy to see that our problem is in NP . Our proof is based on a
reduction from one-in-(2,3)sat(2,1̄): given a set V of n boolean variables with n
mod 3 ≡ 0, a set of n clauses of cardinality two and n/3 clauses of cardinality three,
we construct an instance π of the problem 1|α(ti), G = 1−stage bipartite, dG(X) =
2, dG(Y ) ∈ {2, 3}|Cmax = 54n in following way:

(1) For all x ∈ V , we introduce four variable-tasks: x, x′, x̄ and x̄′ with
(ai, li, bi) = (1, 1, 1), ∀i ∈ {x, x′, x̄, x̄′}. This variable-tasks set is noted
VT .

(2) For all x ∈ V , we introduce three literal-tasks Lx, C
x and C̄x with Lx =

(2, 2, 2);Cx = C̄x = (6, 6, 6). The set of literal-tasks is denoted LT .
(3) For all clauses with a length of three, we introduce two clause-tasks Ci

and C̄i with Ci = (3, 3, 3) and C̄i = (6, 6, 6).
(4) For all clauses with a length of two, we introduce one clause-task Ci with

Ci = (3, 3, 3). The set of clause-tasks is denoted CT .
(5) The following arcs model the compatibility constraint:

(a) For all boolean variables x ∈ V , we add the arcs (Lx, C
x) and (Lx, C̄

x)
(b) For all clauses with a length of three denoted Ci = (y∨ z∨ t), we add

the arcs (y, Ci), (z, Ci), (t, Ci) and (ȳ′, C̄i), (z̄′, C̄i), (t̄′, C̄i).
(c) For all clauses with a length of two denoted Ci = (x∨ ȳ), we add the

arcs (x′, Ci) and (ȳ, Ci).
(d) Finally, we add the arcs (x,Cx), (x′, Cx) and (x̄, C̄x), (x̄′, C̄x).

This transformation can be clearly computed in polynomial time and an illus-
tration is depicted in Figure 2. The proposed compatibility graph is a 1-stage
bipartite and dG(x) ≤ 3, ∀x ∈ VT ∪ LT ∪ CT .

In follows, we say that a task x is merged to a task y, if there exists a compat-
ibility constraint from x to y; i.e. the coupled-task x may be executed during the
idle time of coupled-task y.

• Let us first assume that there is a schedule with length of 54n at most.
We prove that there is a truth assignment I : V → {0, 1} such that each
clause in C has exactly one true literal (i.e. one literal equal to 1).

We make several essential remarks:
(1) The length of the schedule is given by an execution time of the

coupled-tasks admitting only incoming arcs, and the value is 54n =
3αCT |CT |+αLT (|LT |− |{Lx, x ∈ V}|) = 9|{Ci ∈ CT of length 2 and
3}|+ 18|{C̄i ∈ CT }|+ 18|{Cx and C̄x ∈ LT }| = 9 × 4n

3 + 18 × n
3 +

18× 2n.
Thus, all tasks from VT ∪ {Lx, x ∈ V} must be merged with tasks
from CT ∪ (LT − {Lx, x ∈ V}).

(2) By the construction, at most three tasks can be merged together.
(3) Lx is merged with Cx or C̄x.
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i
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i
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=

(1
,1
,1
),
∀
i
∈
{x

,x
′ ,
x̄
,x̄

′ }
,∀
x
∈
V

Lx = (2, 2, 2);Cx = C̄x = (6, 6, 6), x ∈ V

C(x,y,z) = (3, 3, 3)

C(x,y,z) = (6, 6, 6)

CC = CC′

= (3, 3, 3)

Case a)

Case b)

x is true and x̄ is false

x is false and x̄ is true

Figure 2. A partial compatibility graph for
the NP-completeness of the scheduling problem
1|α(ti), G =1−stage bipartite, dG(X) = 2, dG(Y ) ∈
{2, 3}|Cmax = 54n. A truth assignment and partial sched-
ule.
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(4) The allocation of coupled-tasks from CT ∪ (LT − {Lx, x ∈ V}) leads
to 18n idle time. The length of the variable-tasks VT and Lx equals
18n (in these coupled-tasks there are 6n idle times).

(5) If the variable-tasks x and x′ are not merged simultaneously with
Cx, i.e. only one of these tasks is merged with Cx, then by with the
previous discussion, it is necessary to merge a literal-task Ly, with
x 6= y one variable-task (ȳ or ȳ′) with Cy or C̄y. It is impossible by
size of coupled-tasks. In the same way, the variable-tasks x̄ et x̄′ are
merged simultaneously with C̄x if they have to be into it.

(6) Hence, first x and x′ are merged with Cx or with a clause-task where
the variable x occurs. Second, x̄ and x̄′ are merged with C̄x or a
clause-task.

So, we affect the value ”true” to the variable l iff the variable-task l is
merged with clause-task(s) corresponding to the clause where the variable
l occurs. It is obvious to see that in the clause of length three and two we
have one and only one literal equal to ”true”.

• Conversely, we suppose that there is a truth assignment I : V → {0, 1},
such that each clause in C has exactly one true literal.

– If the variable x = true then we merged the vertices Lx with Cx; x
with the clause-task Ci corresponding to the clause of length three
which x occurs; x′ with the clause-task Ci corresponding to the clause
of length two which x occurs; and x̄, x̄′ with C̄x.

– If the variable x = false then we merged the vertices Lx with C̄x; x̄
with the clause-task corresponding to the clause of length two which
x̄ occurs; x̄′ with the clause-task C̄i corresponding to the clause (C)
of length three which x occurs; and x, x′ with Cx.

The merged-tasks are given in Figure 2. For a feasible schedule, it is
sufficient to merge vertices which are in the same partition. Thus, the
length of the schedule is at most 54n.

�

Theorem 6. The problem of deciding whether an instance of 1|α(ti), G =
1− stage bipartite, dG(X) ∈ {1, 2}, dG(Y ) ∈ {3, 4}|Cmax has a schedule of length
at most 54n is NP-complete, where n is the number of tasks.

Proof We use a similar proof as given for the Theorem 5. It is sufficient to
add for each clause C with a length of two (resp. C′ of length three) a dummy
coupled-task DC (resp. D′

C) with DC = (1, 1, 1) = D′
C , and the value of the

clause-task C (resp. C′) is now C = C′ = (6, 6, 6). In other words, we add these
two compatibility constraints:

• DC → C, for each clause C of length two,
• D′

C → C′, for each clause C′ of length three.

There is a schedule with length of 54n at most iff there exists a truth assignment
I : V → {0, 1} such that each clause in C has exactly one true literal (i.e. one
literal equal to 1). �
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Corollary 1. The problem of deciding whether an instance of 1|α(ti) 6= α(tj), ∀i 6=
j,∆G = 3, G = 1 − stage bipartite|Cmax has a schedule of length at most 54n is
NP-complete, where n is the number of tasks.

Proof The proof of Theorem 5 can be adapted by using the classical scaling
arguments assigning α(x) + ǫ to each task. �

4. Polynomial-time approximation algorithms

This section is devoted to design some efficient polynomial-time approximation
algorithms for several topologies and mainly for bipartite graphs. In [17], authors
proposed a simple algorithm, which consists in scheduling all the tasks consecu-
tively, with a performance ratio bounded by 3/2 for a general compatibility graph.
The challenge for the remaining section, is to propose some efficient algorithms
with a ratio strictly lower than 3/2. We propose a FPT AS for the star graph
whereas some APX -algorithms are developed in the remaining section according
to the characteristics of the 1-stage bipartite graph. At last, we extend the result
is extended to the 2-stage bipartite graph.

4.1. Star graph

Theorem 7. The problem 1|α(ti), G = star|Cmax admits a FPT AS.

Proof The central node admits only incoming arcs (the case of the central node
admits at least one outcoming arc is given by Corollary 2). Therefore, we may use
the solution given by the subset sum (ss) (see [11] and [12]). Indeed, based on
the reduction used in the proof of Theorem 3 and the optimization version of ss:
the aim is to find W ∗ (an optimal set of tasks executed during the idle time of the
central node) which maximizes seq(W ∗) such that seq(W ∗) ≤ α(β).

Let us suppose that seq(W )
seq(W∗) ≥ 1 − ǫ, where W designates the value of the

approximation solution for subset sum.
Note that α(β) ≥ seq(W ∗) and seq(T ) ≥ 3α(β) lead to seq(T ) ≥ 3seq(W ∗).

seq(T )− seq(W )

seq(T )− seq(W ∗)
= 1 +

seq(W ∗)− seq(W )

seq(T )− seq(W ∗)

≤ 1 +
seq(W ∗)− seq(W )

2seq(W ∗)

≤ 1 +
1− seq(W )

seq(W∗)

2
≤ 1 +

1− (1 − ǫ)

2
= 1 + ǫ/2

Therefore the existence of a FPT AS for the subset sum involves a FPT AS for
our scheduling problem.

�
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4.2. 1−stage bipartite graph

Scheduling coupled-tasks during the idle time of others can be related to packing
problems, especially when the compatibility graph G is a bipartite graph. In the
following, we propose several approximations when G is a 1−stage bipartite graph.

Lemma 1. Let Π be a problem with Π ∈ {mkar,mssdc,mss} such that Π admits
a ρ-approximation, then the following problems

(1) 1|α(ti), G = 1− stage bipartite|Cmax,
(2) 1|α(ti), G = complete 1− stage bipartite|Cmax,
(3) 1|α(ti), G = complete 1−stage bipartite|Cmax, where G = (X∪Y,E) and

all the tasks from Y have the same stretch factor α(Y ),

posses a ρ′-approximables within a factor ρ′ = 1 + (1−ρ)
3 using an approximability

reduction from mkar,mssdc and mss respectively.

Proof

(1) Consider now an instance of 1|α(ti), G = 1− stage bipartite|Cmax with a
graph G = (X ∪ Y,E) (for any arc e = (x, y) ∈ E, we have x ∈ X and
y ∈ Y ) and a stretch factor function α : X ∪ Y → IN.

In such an instance, any valid schedule consists in finding for each task
y ∈ Y a subset of compatible tasks Xy ⊆ X to pack into y ∈ Y , each
task of x being packed at most once. Let Xp = ∪y∈Y Xy be the union of
X-tasks packed into a task from Y . Let Xp̄ the set of remaining tasks,
with Xp̄ = X \Xp. Obviously, we have:

seq(Xp) + seq(Xp̄) = seq(X) (1)

As Y is an independent set in G, Y -tasks have to be scheduled sequen-
tially in any (optimal) solution. The length of any schedule S is then
the time required to execute entirely the Y -tasks plus the one required to
schedule sequentially the tasks from Xp̄. Formally:

Cmax(S) = seq(Y ) + seq(Xp̄) (2)

From Equations (1) and (2) we have:

Cmax(S) = seq(Y ) + seq(X)− seq(Xp). (3)

We use here a transformation into a mkar problem: each task x from
X is an item having a weight 3α(x), each task y from Y is a bin with a
capacity α(y), and each item x can be packed into y if and only if the edge
(x, y) belongs to the bipartite graph.

Using algorithms and results from the literature, one can obtain an
assignment of some items into bins. We denote by Xp the set of these
packed items. The cost of the solution for the mkar problem is seq(Xp).
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If mkar is approximable to a factor ρ, then we have:

seq(Xp) ≥ ρ× seq(X∗
p ), (4)

where X∗
p is the set of packable items with the maximum profit. Com-

bining Equations (3) and (4), we obtain a solution for 1|α(ti), G = 1 −
stage bipartite|Cmax with a length:

Cmax(S) ≤ seq(Y ) + seq(X)− ρ× seq(X∗
p ) (5)

As X and Y are two fixed sets, an optimal solution S∗ with minimal
length Cmax(S

∗) is obtained when seq(Xp) is maximum, i.e. when Xp =
X∗

p . The length of any optimal solution is equal to:

Cmax(S
∗) = seq(Y ) + seq(X)− seq(X∗

p ) (6)

Using Equations (5) and (6), the ratio obtained between our solution S
and the optimal one S∗ is:

Cmax(S)

Cmax(S∗)
≤

seq(Y ) + seq(X)− ρ× seq(X∗
p )

seq(Y ) + seq(X)− seq(X∗
p )

≤ 1 +
(1− ρ)× seq(X∗

p )

seq(Y ) + seq(X)− seq(X∗
p )
(7)

By definition, X∗
p ⊆ X . Moreover, as the processing time of X∗

p cannot
excess the idle time of tasks from Y , we obtain:

seq(X∗
p ) ≤

1

3
seq(Y ) (8)

Combined to Equation (7), we obtain the desired upper bound:

ρ′ =
Cmax(S)

Cmax(S∗)
≤ 1 +

(1− ρ)

3
. (9)

(2) For the problem 1|α(ti), G = complete 1−stage bipartite|Cmax, the proof
is similar to the previous one. We remind that mssdc is a special case of
mkar in which each item can be packed in any bin.

(3) For the problem 1|α(ti), G = complete 1 − stage bipartite|Cmax where
G = (X ∪ Y,E) and all the Y -tasks have the same stretch factor α(Y ),
the proof is similar to the previous one since mssdc is a generalization of
mss.

�

Theorem 8. The following problems admit a polynomial-time approximation al-
gorithm:
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(1) The problem 1|α(ti), G = 1 − stage bipartite|Cmax is approximable to a
factor 7

6 .
(2) The problem 1|α(ti), G = complete 1 − stage bipartite|Cmax admits a

PT AS.
(3) The problem 1|α(ti), G = complete 1 − stage bipartite|Cmax where G =

(X ∪ Y,E) and all the Y -tasks have the same stretch factor α(Y ):
(a) is approximable to a factor 13

12 .
(b) admits a PT AS.

Proof

(1) Authors from [6] proposed a ρ = 1
2−approximation algorithm for mkar.

Reusing this result with Lemma 1, we obtain a 7
6−approximation for

1|α(ti), G = 1− stage bipartite|Cmax.
(2) We know that mssdc admits a PT AS [3], i.e. ρ = 1 − ǫ. Using this

algorithm to compute such a PT AS, with Lemma 1 we obtain an approx-
imation ratio of 1 + ǫ

3 for this problem.
(3) In this case we have two different results:

(a) Authors from [5] proposed a ρ = 3
4−approximation algorithm for mss.

Reusing this result with Lemma 1, we obtain a 13
12−approximation for

1|α(ti), G = complete bipartite|Cmax.
(b) They also proved that mss admits a PT AS [4] , i.e. ρ = 1 − ǫ.

Using the algorithm to compute such a PT AS, with Lemma 1 we
obtain an approximation ratio of 1 + ǫ

3 for 1|α(ti), G = complete 1−
stage bipartite|Cmax when Y -tasks have the same stretch factor.

�

4.3. 2−stage bipartite graph

In the following, we extend the previous result for 2-stage bipartite graphs.

Theorem 9. The problem 1|α(ti), G = 2− stage bipartite|Cmax is approximable
to a factor 13

9 .

Proof The main idea of the algorithm is divided into three steps:

(1) First we compute a part of the solution with a 7
6 -approximation on G0

thanks to Theorem 8, where G0 = G[V0 ∪ V1] is the 1st stage of G.
(2) Then we compute a second part of the solution with a 7

6 -approximation
on G1 thanks to Theorem 8, where G1=G[V1∪V2] is the 2nd stage of G.

(3) To finish we merge these two parts and we resolve potential conflicts be-
tween them, i.e. by giving a preference to tasks packed in G1. Computing
the cost of this solution gives us an approximation ratio of 13

9 .

Reusing the notation introduced for k-stage bipartite graphs (see Section 1.1),
we consider an instance of 1|α(ti), G = 2 − stage bipartite|Cmax with G = (V0 ∪
V1 ∪ V2, E1 ∪ E2), where each arc in Ei has its extremities in Vi−1 and Vi, for
i ∈ {1, 2}.



TITLE WILL BE SET BY THE PUBLISHER 17

∀i = {0, 1} we denote1 by Vip (resp. Via) the set of tasks merged (resp. remain-
ing) in any task from y ∈ Vi+1 in a solution S. Moreover, ∀i = {1, 2} let Vib be the
set of tasks scheduled with some tasks from Vi−1 merged into it. This notation is
extended to an optimal solution S∗ by adding a star in the involved variables.

Considering the specificities of the instance, in any (optimal) solution we pro-
pose some essential remarks:

(1) Tasks from V0 are source nodes in G, and they can be either scheduled
alone, or merged only into some tasks from V1 only. Given any solution S
to the problem on G, {V0p, V0a} is a partition of V0.

(2) Tasks from V1 can be either scheduled alone, merged into some tasks from
V2, or scheduled with some tasks from V0 merged into it. Given any
solution S to the problem on G, {V1p, V1a, V1b} is a partition of V1.

(3) Tasks from V2 form an independent set in G, and have to be scheduled
sequentially in any schedule (cf. Remark 2), either alone or with some
tasks from V1 merged into it. Given any solution S to the problem on G,
{V2a, V2b} is a partition of V2.

Any solution would consist first to schedule each task with at least one task merged
into it, then to schedule the remaining tasks (alone) consecutively. Given an
optimal solution S∗, the length of S∗ is given by the following equation:

S∗ = seq(V1
∗
b) + seq(V2b) + seq(V0

∗
a) + seq(V1

∗
a) + seq(V2

∗
a) (10)

or, more simply

S∗ = seq(V2) + seq(V1
∗
b) + seq(V0

∗
a) + seq(V1

∗
a) (11)

Note that V0
∗
p and V1

∗
p are not part of the equation, as they are scheduled during

the idle time of V1
∗
b and V2

∗
b .

The main idea of the algorithm is divided into three steps:

(1) First we compute a part of the solution with a 7
6 -approximation on G0

thanks to Theorem 8, where G0 = G[V0 ∪ V1] is the 1st stage of G.
(2) Then we compute a second part of the solution with a 7

6 -approximation
on G1 thanks to Theorem 8, where G1=G[V1∪V2] is the 2nd stage of G.

(3) To finish we merge these two parts and we solve potential conflicts between
them.

Let consider an instance restricted to the graph G0. Note that G0 is a 1-stage
bipartite graph. Let S∗[G0] be an optimal solution on G0. Let us denote by
V0

∗
p[G0] the set of tasks from V0 packed into tasks from V1 in S∗[G0], and by

V0
∗
a[G0] the set of remaining tasks.
Obviously, we have:

S∗[G0] = seq(V1) + V0
∗
a[G0] (12)

1Notations: p for packed, a for alone, and b for box
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Given any solution S[G0], let V1b[G0] be the set of tasks from V1 with at least
one task from V0 merged into them, and V1a[G0] be the remaining tasks. Let us
denote by V0p[G0] the set of tasks from V0 merged into V1, and by V0a[G0] the set
of remaining tasks. Using Theorem 8, Lemma 1, and the demonstration presented
in the proof from [6], we compute a solution S[G0] such that:

seq(V0p[G0]) ≥
1

2
seq(V0

∗
p[G0]) (13)

Note that we have:

seq(V0p[G0]) + seq(V0a[G0]) = seq(V0
∗
p[G0]) + seq(V0

∗
a[G0]) = seq(V0) (14)

Combining Equations (13) and (14), we obtain:

seq(V0a[G0]) ≤ seq(V0
∗
a[G0]) +

1

2
seq(V0

∗
p[G0]) ≤ seq(V0

∗
a) +

1

2
seq(V0

∗
p[G0]) (15)

as we know by definition that seq(V0
∗
a[G1]) ≤ seq(V0

∗
a).

We use a similar reasoning on an instance restricted to the graph G1. Let
S∗[G1] be an optimal solution on G1. Let us denote by V1

∗
p[G1] the set of tasks

from V1 packed into tasks from V2 in S∗[G1], and by V1
∗
a[G1] the set of remaining

tasks. Given any solution S[G1], let V2b[G1] be the set of tasks from V2 with at
least one task from V1 merged into them, and V1a[G1] be the remaining tasks. One
can compute a solution S[G1] based on a set of tasks V1p[G1] packed in V2 such
that:

seq(V1p[G1]) ≥
1

2
seq(V1

∗
p[G1]) (16)

and

seq(V1a[G1]) ≤ seq(V1
∗
a[G1]) + 1/2seq(V1

∗
p[G1]) ≤ seq(V1

∗
a) + 1/2seq(V1

∗
p[G1])

(17)
as we know by definition that seq(V1

∗
a[G1]) ≤ seq(V1

∗
a).

We design the feasible solution S for G as follows:

• First we compute a solution S[G1] on G1, then we add to S each task from
V2 and the tasks from V1 merged into them (i.e. V1p[G1]) in S[G1].

• Second we compute a solution S[G0] on G0, then we add to S each task v
from V1b[G0] \ V1p[G1] and the tasks from V0 merged into them.

• Third the tasks V1a[G1]\V1b[G0] and V0a[G0] are added to S and scheduled
sequentially.

• At last we denote by Vconflict the set of remaining tasks, i.e. the set of
tasks from V0 which are merged into a task v ∈ V1 in S[G0], thus that v
is merged into a task from V2 in S[G1].

Observe that:

seq(V1b[G0] \ V1p[G1]) + seq(V1a[G1] \ V1b[G0]) = V1a[G1]) (18)
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Thus the cost of our solution S is:

S = seq(V2) + seq(V1a[G1]) + seq(V0a[G0]) + seq(Vconflict) (19)

It is also clear that:

seq(Vconflict) ≤
1

3
seq(V1p[G1]) ≤

1

3
seq(V1

∗
p[G1]) (20)

Using Equations (15), (17) and (20) in Equation (19), we obtain:

S ≤ seq(V2) + seq(V1
∗
a) +

5

6
seq(V1

∗
p[G1]) + seq(V0

∗
a) +

1

2
seq(V0

∗
p[G0]) (21)

Using Equations (11) and (21), we obtain:

S ≤ S∗ +
5

6
seq(V1

∗
p[G1]) +

1

2
seq(V0

∗
p[G0]) (22)

We know that S∗ ≥ seq(V2), and that tasks from V1
∗
p[G1] must be merged into

tasks from V2 and cannot exceed the idle time of V2, implying that seq(V1
∗
p[G1])) ≤

1
3seq(V2). We can write the following:

5
6seq(V1

∗
p[G1])

S∗
≤

5
6 × 1

3seq(V2)

seq(V2)
≤

5

18
(23)

We know that tasks from V0
∗
p[G0] must be merged into tasks from V1 and cannot

exceed the idle time of V1, implying that seq(V0
∗
p[G0]) ≤

1
3seq(V1). We also know

that S∗ ≥ seq(V1), as V1 is an independent set of G. One can write the following:

1
2seq(V0

∗
p[G0])

S∗
≤

1
2 × 1

3seq(V1)

seq(V1)
≤

1

6
(24)

Finally, with Equations (22), (23) and (24) we conclude the proof:

S

S∗
≤ 1 +

5

18
+

1

6
=

13

9
(25)

�

5. Conclusion

In this paper, we investigate a particular coupled-tasks scheduling problem
1|ai = li = bi, G|Cmax in presence of a compatibility graph with regard to the
complexity and approximation. We also establish the NP-completeness for the
specific case where there is a bipartite compatibility graph. In such context, we
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propose a 7
6 -approximation algorithm and the bound is tight. We extend the result

to the 2-stage bipartite by designing a 13/9-approximation.
A further interesting question concerns the study of the complexity on tree

graphs with bounded degree. As we known, no complexity result exists. Another
perspective consists in extending the presented results to k-stage bipartite graphs.
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