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Facial cutaneo-mucosal venous
malformations can develop independently
of mutation of TEK gene but may be
associated with excessive expression of Src
and p-Src
Nabila Brahami1, Selvakumar Subramaniam2, Moudjahed Saleh Al-Ddafari1, Cecile Elkaim3, Pierre-Olivier Harmand3,
Badr-Eddine Sari1,4, Gérard Lefranc5 and Mourad Aribi1*

Abstract

We aimed to search for mutations in the germline and somatic DNA of the TEK gene and to analyze the expression level
of Src and phospho-Src (p-Src) in tumor and healthy tissues from patients with facial cutaneo-mucosal venous
malformations (VMCM). Eligible patients from twelve families and thirty healthy controls were recruited respectively at the
Departments of Stomatology and Oral Surgery, and Transfusion Medicine of Tlemcen University Medical Centre.
Immunoblot analyses of Src and p-Src were performed after direct DNA sequencing. No somatic or germline mutations
were found in all the 23 exons and their 5’ and 3’ intronic flanking regions, except for one case in which a c.3025+20-
3025+22 del mutation was highlighted at the intron 15, both in the germline and somatic DNA. Additionally, elevated
expression levels of Src and p-Src were observed only in the patient with such mutation. However, when normalized to
β-actin, the overall relative expression levels of both Src and p-Src were significantly increased in VMCM tissues when
compared to healthy tissues (for both comparisons, p <0.001). In conclusion, we confirm the outcomes of our previous
work suggesting that VMCM can develop independently of mutation of the TEK gene. Additionally, the results for Src
activity are of particular interest in the context of specific targeted therapies and biological diagnosis. Nevertheless, such a
conclusion should be confirmed through a mechanistic study and/or in a satisfactory number of patients.
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Background
Vascular malformations arise from an error of vascular
morphogenesis and are named by their predominant
vessel type: arterial, venous, capillary, lymphatic or differ-
ent combinations of each of them [1]. Venous malforma-
tions (VMs) are the most frequent vascular abnormalities
but remain quite rare, with an incidence of approximately
1 in 10,000 [2, 3]. They are present at birth, and often
become apparent afterward. Rapid growth may occur
during puberty, pregnancy, or traumatic injury [1].

When venous lesions are located both at skin and mu-
cous membranes, VMs are called cutaneo-mucosal venous
malformations (VMCMs). Their pathogenesis is not yet
fully understood. Nevertheless, it is assumed to be caused
by abnormal development of the venous system [4]. Further
studies showed that somatic mutations in the gene of the
receptor tyrosine kinase (TEK/TIE2, vascular endothelial
cell specific receptor tyrosine kinase) was present in various
single or multiple VMs and led to loss of TIE2 receptor
function [5], and upregulated expression of other vascular
endothelial growth factors, such as transforming growth
factor (TGF)-β and fibroblast growth factor (FGF)-β, which
exacerbated the severity of the lesion [6].
The TEK/TIE2 receptor tyrosine kinase plays a crucial

role in angiogenesis and cardiovascular development [7].
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The main role of this receptor is triggering angiogenesis
signals leading to the formation of blood vessels. This sig-
naling process facilitates communication between two types
of cells within the walls of blood vessels, endothelial cells
and smooth muscle cells [8]. Communication between
these two cell types is necessary to direct angiogenesis and
ensure the structure and integrity of blood vessels [9].
Angiogenesis, i.e. the formation of new blood vessels

from preexisting ones, is a key event in tumor progression,
which is controlled by a balance between positive and
negative regulators [10, 11]. Among the several growth
factors that can promote angiogenesis, vascular endothe-
lial growth factor (VEGF) is the most widely studied and
potent inducer of angiogenesis [12]. One group of signal-
ing molecules that may be involved in the VEGF signaling
cascade is the proto-oncogene tyrosine-protein kinase Src.
It has been reported that Src kinases play an important

role in cell cycle control and cell adhesion and movement,
as well as in cell proliferation and differentiation in a nu-
merous cells and tissues [13]. They also play an important
role in lymphokine-mediated cell survival and VEGF-
induced angiogenesis [14]. Of note, Src protein is one of
the best characterized non-receptor protein tyrosine kinases
that are involved in receptor signaling and cell communica-
tion. Multiple cellular functions are attributed to the activ-
ity of Src as a molecular switch allowing the external signal
transduction across the plasma membrane, and then its
conversion into internal message upon activation of the
target molecules inside a cell. High expression of Src has
been reported to be associated with increased VEGF ex-
pression [15], cellular proliferation and angiogenesis [16].
On the basis of these reports, we extend previously pub-

lished research on germline DNA of the TEK gene [17] by
including new eligible patients with VMCMs and additional
controls for the examination of both germline and somatic
mutation, as well as the evaluation of Src and p-Src expres-
sion levels.

Methods
Study design
The study was performed in patients with VMCMs.
The search for germline mutations in the DNA of TEK
gene was carried out in patients and healthy controls.
The search of somatic mutations and assessment of
the expression of Src activity were performed in tumor
and healthy tissues (Fig. 1).

Patients and subjects
Recently, we carried out the germline DNA analysis of
all exons of the TEK gene in ten families, each of them
includes one patient with facial VMCM [17]. In addition
to the ten patients, two new eligible cases and thirty
matched healthy control volunteers were recruited re-
spectively at the Departments of Stomatology and Oral

Surgery, and Transfusion Medicine of Tlemcen University
Medical Centre. The mean age (± standard error) of the
patients (4 men and 8 women) at diagnosis was 13 ±
2 years (Table 1). The inclusion criteria were geographic
location (North West of Algeria), and VMCM of the facial
region. Patients were excluded in case of arteriovenous
malformations. Patient recruitment was based on clinical
history and examination. Superficial VMCM were diag-
nosed for the presence of a blue or purple depressible
mass or under-mucous sheath, non-pounding and non-
blowing yet increasing of volume when the patient is in an
inclined position. The tumor mass tends to increase in
size with effort and maneuvers that could increase pres-
sure in the venous system. The histopathology examin-
ation was carried out after surgery. A magnetic resonance
imaging (MRI) was performed to define the flow charac-
teristics and the extension of the tumor.

Samples
Blood samples were collected into ethylenediaminetetra-
acetic acid-containing Vacutainer tubes (BD Vacutainer
EDTA, USA). VMCM and normal tissues were taken from
patients after surgery, immediately placed into a sterile
collection tube in liquid nitrogen and, then, stored at –
80 °C in dry ice. Extracted DNA from blood samples and
tissues were used for polymerase chain reaction (PCR)
and direct DNA sequencing for all exons and their flank-
ing regions of the TEK gene. Immunoblot analysis of Src,
p-Src and β-actin expression were performed on tissues.

DNA analysis
DNA extraction and purification was carried out as we
described [17]. The search for mutation was performed
by PCR amplification followed by direct sequencing of
amplified DNA segments. Such analyses were performed
in the Laboratory of Cell and Hormonal Biology, Arnaud
de Villeneuve Hospital, Montpellier (France).
The primer sequences were specifically established to

amplify each exon, using the Primer3 program v.0.4.0 [18],
referring to the TEK gene sequence (ENSG00000120156)
published in Ensembl [19] (Table 2).
The DNA was amplified in a thermocycler for PCR

(Applied Biosystems, Foster, CA), using the primers de-
scribed in Table 2. The medium of the DNA amplifica-
tion reaction was composed of 50 ng of DNA, 25 μM of
each primer, and 2X Promega PCR Master Mix (Pro-
mega). The PCR conditions were as follows: 5 min at
95 °C followed by 35 cycles of 30 s of denaturation at
95 °C, primer annealing at 60 °C for 30 s, and elongation
at 72 °C followed by one cycle at 72 °C for 10 min.
After checking the quality and size of the PCR prod-

ucts by agarose gel (1.5%) electrophoresis, a bidirectional
sequencing was performed by the use of Mix BigDye
Terminator kit version 3.1 (ABI). The sequences of the
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23 exons and their flanking regions were compared with
the TEK gene reference sequence published in Ensembl
using the SeqScape v2.5 software (ABI).

Src, p-Src and β-actin immunoblot assays
Venous malformation and healthy control tissues were
homogenised for 10 min each in lysis buffer (20 mM
HEPES, pH 7.3; 1 mM EDTA; 1 mM EGTA; 0.15 mM
NaCl; 1% Triton X-100; 10% glycerol; 1 mM phenylmethyl-
sulfonyl fluoride; 2 mM sodium orthovanadate and 2 μl/ml

anti-protease cocktail) and centrifuged (13000 g x 10 min).
Protein concentrations in the supernatants were determined
by bicinchoninic acid method (Pierce). Denatured proteins
(40 μg) were separated by SDS-PAGE (10%) and transferred
to PVDF membranes. Immunodetection was performed by
using p-Src (cell signaling tech, OZYME, FRANCE), Src
(cell signaling tech, OZYME, FRANCE) and β-actin (Sigma
Aldrich, FRANCE) antibodies. β-actin was used as a loading
control. Optimal dilutions of primary antibodies, including a
monoclonal anti-β-actin, were 1:1000 (v/v). The horseradish
peroxidase conjugated secondary antibodies were used at
1:5000 (v/v) dilution and the Enhanced Chemiluminescence
(ECL) system (NEL121001EA, Perkin Elmer) was used for
detection. Signal detection was done by ChemiDoc XRS
System (Bio-Rad). Densitometry and protein band analysis
were performed using ImageJ software (NIH, USA) as re-
ported [20]. Such analyses were performed at the UMR
U866 INSERM/Université de Bourgogne/AgroSup (France).
Additional verification analyses and experiments were car-
ried out at the Laboratory of Applied Molecular Biology and
Immunology (University of Tlemcen, Algeria).

Table 1 The demographic data of patients with cutaneo-mucosal
venous malformations

Variable Patients with VMCM

Age at diagnosis (year) 13 ± 2

Gender (F/M) 8/4

Total number of lesion (n) 1 ± 0

Lip VMCM (%) 11 (91.7)

Genio-cervical VMCM (%) 1 (8.3)

VMCM cutaneo-mucosal venous malformations

Fig. 1 Study flow-chart. TEK: TEK tyrosine kinase endothelial (also known as TIE2), TIE2: tyrosine kinase with immunoglobulin and epidermal growth
factor homology domains-2, VMCM: cutaneo-mucosal venous malformation
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Results and discussion
Facial VMCMs are often responsible for aesthetic and
functional discomfort, but also cause detrimental changes
in personal relationships, especially during childhood and
adolescence. They are due to localized defects of angio-
genesis that are caused by genetic modifications and
anomalies in signaling pathways, including that of Src
family kinases. From a genetic point of view, studies of
rare familial cases have helped to suggest that these de-
fects could be the result of mutations in the TEK gene
(also referred to as TIE2), which is located on the band 21
of the short arm of chromosome 9 (9p21).
It has been reported that TEK is the only gene which

mutations that can cause the development of VMCMs
[21]. As a matter of fact, the TEK gene was originally
identified as a factor responsible for these defects thanks
to a linkage analysis conducted in some families with
autosomal dominant transmission [4, 22]. Mutated gene
isolated by positional cloning experiment and the use of
proteins expressed in insect cells have demonstrated that
the mutation results in increased activity of the receptor
tyrosine kinase TIE2, i.e. the angiopoietin receptor which
is known to be specific for vascular endothelial cells.
This mutation corresponds to a missense mutation result-
ing in an arginine-to-tryptophan substitution at position
849 (R849W) in the kinase domain of TIE2 [4].
It has previously been reported an in-frame deletion of

129-bp, which corresponds to a loss of exon 3 and part
of exon 4, from a patient by cDNA screening [5]. In the
current study, we focused our experiments on patients
from the North-West region of Algeria, which is usually
characterized by a particular socio-demographic context
presenting a high rate of consanguineous marriage
[3, 23, 24]. So it is well-established that consanguinity
causes excessive homozygosity and loss of heterozygosity
(LOH) [25]. However, the most common R849W-TIE2

Table 2 Sequences of the sense and antisense primers used for
direct sequencing of all the exons of the TEK gene

Exon number Sense and anti-sense primers 5’-3’

5’ UTR region SP 5’-AGTCTGAGAAGGATTGGTCATCA-3’

ASP 5’-CTGTCTGAGCACAGGGAGTTT-3’

Exon 1.2 SP 5’-CAGCCCTGCTGATACCAAAT-3’

ASP 5’-CACTGATGAGATTTGGGGAGA-3’

Exon 2 SP 5’-GTTTACCCAATGGGGTCATG-3’

ASP 5’-AGCAGCTGCCAAGACAAAAG-3’

Exon 3 SP 5’-AACGCATTAGCCACCACTGT-3’

ASP 5’-ACATCTGCCCACAAGACCA-3’

Exon 4 SP 5’-CTGAATAGTTCAGCATTTTCATTCT-3’

ASP 5’-CAATGCCTGGTTTTTGCTTA-3’

Exon 5 SP 5’-CTCCTTGTCTTTGTTTCTGTCG-3’

ASP 5’-AAATTCTAGATCCAGCAACGATG-3’

Exon 6 SP 5’-GTTCATCCTACCATGCCACA-3’

ASP 5’-TGATTCAAAATCCTGTTGTCCA-3’

Exon 7 SP 5’-AGTTGGCATGATAGGAGCTCA-3’

ASP 5’-GGATGGAAACAAAAGAGGCTT

Exon 8 SP 5’-TCATCCACATCACAGGTGTCT-3’

ASP 5’-GTCAGTTCTGCCTCTCCAGG-3’

Exon 9 SP 5’-TGGGGTCAATGTTATGGACC-3’

ASP 5’-TCCTGGAAATTACCCCAAAG-3’

Exon 10 SP 5’-ATCACAAAACCTCAAAGCCG-3’

ASP 5’-AGCCACCACCTTGAGGTAGA-3’

Exon 11 SP 5’-TTTCAAAAGCCTAATTTTCCTCA-3’

ASP 5’-CACCCATTCAAAAGCGAACT-3’

Exon 12.1 SP 5’-AGTTGGCATGATAGGAGCTCA-3’

ASP 5’-GGATGGAAACAAAAGAGGCTT-3’

Exon 12.2 SP 5’-TGGGGTCAATGTTATGGACC-3’

ASP 5’-TCCTGGAAATTACCCCAAAG-3’

Exon 13 SP 5’-GCATAATGATCTAGGCCATGG-3’

ASP 5’-CCTATAGGGCTGCACGGTAA-3’

Exon 14 SP 5’-GCTGCTGTTAAGTTCCCATTACA-3’

ASP 5’-AAGCCAAAGAGAAGATGAGGC-3’

Exon 15 SP 5’-GTTCATCCTACCATGCCACA-3’

ASP 5’-TGATTCAAAATCCTGTTGTCCA-3’

Exon 16 SP 5’-TTTGGTTGTATACAGTTGATGGTGA-3’

ASP 5’-AGGCAAACCACAGCACAGTC-3’

Exon 17 SP 5’-GTTTACCCAATGGGGTCATG-3’

ASP 5’-AGCAGCTGCCAAGACAAAAG-3’

Exon 18 SP 5’-TCTTCTGCCAAGATGTGGTG-3’

ASP 5’-CAGGGGAGTACCTCGGAAA-3’

Exon 19 SP 5’-CTACCCAGCAATCATTTGTGG-3’

ASP 5’-TGCTAATTTATTTCCTGAGCTTTTT-3’

Table 2 Sequences of the sense and antisense primers used for
direct sequencing of all the exons of the TEK gene (Continued)

Exon 20 SP 5’-GTGCAAGGGCCTATCCTAGG-3’

ASP 5’-CCAAGTCACATCTGGTAGAACCA-3’

Exon 21 SP 5’-ATGTGCAGTGAGTTTGCCAA-3’

ASP 5’-CGGCTGACTTTGCTAGAGTC-3’

Exon22 SP 5’-GTTTACCCAATGGGGTCATG-3’

ASP 5’-AGCAGCTGCCAAGACAAAAG-3’

Exon 23.1 SP 5’-AGGTGGAATCAAAGCAGCCT-3’

ASP 5’-CACGCCTTCCTATGAAGTCC-3’

Exon 23.2 SP 5’-AATCAGAATGCCTGTTTGTGG-3’

ASP 5’-TTCTTAGGCTTGTAAGCAATGAG-3’

3’ UTR region SP 5’-TCTCAATTTTATCCCTCACCTG-3’

ASP 5’-TAAAGTATAATAAGGACATGTGGCA-3’

SP sense primer, ASP anti-sense primer, UTR untranslated region
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substitution that induce in vitro ligand-independent
hyperphosphorylation, occurred in 10 patients from 17
Belgium families reported by Limaye team [4, 21, 26],
has been shown in the context of heterozygosity. For
our part, we have recently shown, using a direct sequen-
cing of all exons of germinal DNA, including 5’ and 3’ in-
tronic flanking sequences, that VMCMs could develop in
the absence of mutation in the TEK gene. In order to
check our results and to obtain more extensive informa-
tion, we examined somatic mutation and the expression
levels of Src and p-Src in tumor and neighboring
healthy tissues. So direct sequencing of the amplifica-
tion products, from germinal and somatic DNA of the
TEK gene, revealed no mutation in all the 23 exons and
their 5’ and 3’ intronic flanking regions, except for one pa-
tient in which a deletion of two nucleotides intronic
c.3025+20-3025+22 del was found at the intron 15, both
in germline and somatic DNA (Fig. 2). The analysis of the
consequences of this deletion on splicing intron of exon
15, by the program “Splice site analysis” in Human Spli-
cing Finder v 2.4.1 [27] shows that there is no splice donor
site creation and there is no splice acceptor of interest.
Nevertheless, it has been reported that two unusual muta-
tions that are not predicted by bioinformatics analysis to
induce significant exon skipping, have been found to have
an effect on pre-mRNA splicing [28]. Consequently, de-
fects in pre-mRNA splicing may represent a cause of a

change in TEK protein activity. Additionally, intronic mu-
tations may lead to retention of large segments of intronic
DNA, or to removing exons, which lead to the production
of non-functional proteins. Other intronic variants can
interfere with those that regulate genes expression, such as
nonsense-mediated decay (NMD) [29] and export of
mRNA from nucleus to the cytoplasm [30].
On the other hand, western blotting analyses showed

an elevated expression of Src and p-Src only in the
patient with such mutation. However, the overall relative
expression levels of both Src and p-Src related to β-actin
were significantly increased in VMCM tissues when
compared to healthy tissues (for the two comparisons,
p <0.001) (Fig. 3). Our finding would add new mechan-
istic information that should be very interesting in the
diagnosis and treatment targeting angiogenesis, which is
specifically engaged in the process of VMCM development.
Angiogenesis and blood vessel formation involves many

signaling pathways that may interact with each other via
Src [31, 32]. Src is considered as the focus of a variety of
signaling pathways. It can be activated in multiple ways to
become p-Src, which can in turn activate specific signaling
pathways through phosphorylation of target proteins
[33, 34]. In our study, the increased expression of Src
and p-Src would be associated with the inducible effects
of some angiogenic growth factors, including VEGF, but
also the basic fibroblast growth factor (bFGF). Indeed, it

Fig. 2 Localization of venous malformations on mucosal sides of the uper lip and results of direct sequencing of a part of intron 15 in germline
and somatic DNA of the TEK gene. The patient with the malformation was diagnosed at the age of 11 years. No same cases have been identified
in its first degree family. The representative electropherogram of the same TEK frameshift mutation (c.3025+20-3025+22 del) detected at the
germline and somatic DNA level indicates a deletion of two nucleotides at the intron 15. The red box indicates the position of such deletion.
Wild-type and mutant TEK DNA sequences are shown along. mt: mutant, VMCM: cutaneo-mucosal venous malformations. wt: wild-type
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has previously been reported that these two factors initiate
the Src kinases signaling pathways, leading to the in-
creased expression of Src in angiogenic tissues [14].
Although both VEGF and FGF stimulate Src activation

in avian endothelial cells, only VEGF-induced angiogen-
esis is inhibited by treatment with a retrovirus that en-
codes for Src-251, which suppresses both angiogenesis
and tumor growth. Moreover, overexpression of Src-251
in avian blood vessels induces apoptotic death, indicating
that VEGF-induced activation of Src is essential for
endothelial cell survival and angiogenesis. Similar results
have been obtained in mice using a retrovirus encoding
for the C-terminal Src kinase (CSK) a tyrosine kinase
protein that blocks the action of Src through phosphor-
ylation of the inhibitory site on Tyr527 [14].
The extended Src family includes at least ten proteins

(Src, Frk, Lck, Lyn, Blk, Hck, Fyn, Yrk, Fgr, and Yes) [35]
that engage jointly in the intracellular signal transduction
[34, 36–38]. Numerous studies have shown an increase in
Src and p-Src expression levels in tissues of different tu-
mors, such as breast cancer, osteosarcoma and squamous
cell carcinoma of the tongue [39–41]. Additionally, it has
recently been shown that increased expression of Src is
positively correlated with metastasis [42, 43].
A relationship between the TEK gene and Src signaling

pathway can be suspected in the context of VEGF costimu-
lation. Indeed, angiopoietin 1 (Ang1) activates TEK recep-
tor, which triggers the activation of Rous sarcoma virus
(Ras) homologous A (RhoA), which, in turn, inhibits Src
proteins [44]. It has recently been reported that intact TIE2
may be necessary to blunt Src activation [45]. In our study,
the dinucleotide deletion at intron 15 of the TEK gene may
affect the function of this protein and consequently lead to
an increased expression of Src and p-Src in VMCM tissue.

Fig. 3 Expression of Src in facial venous malformation and associated
histopathology features. a VMCM tissues from the lip or genio-cervical
region and neighboring healthy control tissues (n= 12/12) were analyzed
by western blotting for the expression of signaling molecules.
Densitometry and protein band analysis were performed using
ImageJ software (NIH, USA). The mean optical density values (in
arbitrary units, AU) of the Western blotting bands are given in
percentage related to the total area for each band ± standard error
of mean. The relative expression of Src and p-Src were normalized
to β-actin as a loading control. The image bands correspond to
VMCM tissue versus healthy control tissue in the patient with the
deletion of the two nucleotides “CT” in intron 15 of the TEK gene
(the relative expression ratios between VMCM tissue versus healthy
tissue were 2.3 for Src and 1.9 for p-Src). The statistical graphs represent
the results of all VMCM and healthy control tissues. P-values for optical
density and ROD were respectively greater than 0.05 and less than 0.001
for both Src and p-Src by Mann–Whitney U using SPSS software version
16.0 (SPSS Inc., Chicago, IL, USA). b Histological layers stained with
hematoxylin-eosin showed thick and hyaline vessels with vascular
thrombosis and bordered venous lakes with endothelial cells (H-E x 10).
ROD: relative optical density, VC: vascular cavity, VE: vascular endothelium,
VMCM: cutaneo-mucosal venous malformation, VT: vascular thrombosis
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Conclusions
Here we confirm that VMCMs, especially non-family
VMCMs, are not necessarily linked to mutations in the
TEK gene. Although increased relative expression of the
Src protein appears to be associated with VMCMs, such
outcomes deserve to be verified in various populations.
Indeed, this is a novel report on relative issues and an al-
ternative reference for biological diagnosis and specific
targeted treatment of angiogenesis, using monoclonal
antibodies or pharmacological inhibitors. In order to
confirm the efficacy of this approach, further investiga-
tions should be conducted, and among others, it would
be wise to conduct a mechanistic study researching the
link with the Src pathway.
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