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A Hierarchical Detection and Response System to
Enhance Security Against Lethal Cyber-Attacks

in UAV Networks
Hichem Sedjelmaci, Member, IEEE, Sidi Mohammed Senouci, Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—Unmanned aerial vehicles (UAVs) networks have not
yet received considerable research attention. Specifically, secu-
rity issues are a major concern because such networks, which
carry vital information, are prone to various attacks. In this
paper, we design and implement a novel intrusion detection
and response scheme, which operates at the UAV and ground
station levels, to detect malicious anomalies that threaten the
network. In this scheme, a set of detection and response tech-
niques are proposed to monitor the UAV behaviors and categorize
them into the appropriate list (normal, abnormal, suspect, and
malicious) according to the detected cyber-attack. We focus on
the most lethal cyber-attacks that can target an UAV network,
namely, false information dissemination, GPS spoofing, jamming,
and black hole and gray hole attacks. Extensive simulations
confirm that the proposed scheme performs well in terms of
attack detection even with a large number of UAVs and attack-
ers since it exhibits a high detection rate, a low number of
false positives, and prompt detection with a low communication
overhead.

Index Terms—Anomaly detection and rules-based intru-
sion detection techniques, cyber-attacks, intrusion detection
system (IDS), unmanned aerial vehicles (UAVs).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have initially been
utilized in military applications to engage in air-to-

ground combats, surveillance, and target tracking in hos-
tile environments. Surveillance primarily concerns collection,
analysis, and management of critical information in critical
sites (airport area, nuclear site, etc.). Tracking is the operation
of following mobile targets (suspected persons or vehicles)
and monitoring their behaviors. Nowadays, UAVs are also
used in civil applications to explore inaccessible zones (e.g.,
disaster areas) and deliver data to and from areas with no
network infrastructure (3G, 4G, etc.) [1]. An UAV network
is a wireless ad-hoc network that facilitates UAV-to-UAV
and/or UAV-to-ground communications in order to deliver vital
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information for environmental monitoring, emergency, rescue
and recovery operations, and disaster assistance. Setting up
an ad-hoc network consisting of UAVs is very challenging
because they differ from mobile ad-hoc networks (MANETs)
and vehicular ad-hoc networks in terms of mobility, con-
nectivity, routing, services, and applications. Owing to node
mobility, rapid topology changes and sparse communications,
a delay tolerant network (DTN) based on a “store, carry-
and-forward” mechanism [2], where a node stores and carries
a message until a suitable next node is found, is adopted in
UAV networks.

Security is another major challenging issue due to the
wireless medium characteristics and the relevant informa-
tion handled by UAVs. Cryptography and intrusion detection
system (IDS) are two major security mechanisms. On one
hand, cryptography is used to ensure message privacy and node
authentication, and is used to prevent external intruders to pen-
etrate the network. On the other hand, IDS uses special agents
to analyze the misbehavior of a monitored node [3], [4]. IDS
is effective in protecting the network against both internal and
external intruders [3]–[5]. Furthermore, the IDS relies mainly
on two detection techniques [5].

1) Anomaly detection, which builds a model of normal
profiles and attempts to track deviations from normal
behavior that may be subject to anomalies or possi-
ble intrusions. Though this technique may detect new
attacks that have not been previously observed by the
system, it is computationally costly. Anomaly detec-
tion usually uses a learning algorithm such as neural
networks and support vector machines (SVMs) [6] to
detect the anomaly behavior of a monitored node.

2) Rules-based intrusion detection, which compares the
behavior of the monitored node against a set of rules
related to behaviors of specific known attacks. These
rules are defined by a set of attack signatures [7].

In this case, updates of the attack signatures are required on
a permanent basis. Deploying IDS in a DTN, like an UAV
network, is challenging because it is difficult for a set of
IDS nodes to monitor the behaviors of too few nodes spread
across a large geographical area. Thereby, the most appropriate
approach is a distributed IDS solution where all nodes through-
out the network activate their IDS agents by performing
promiscuous monitoring [8] to observe its neighborhood activ-
ities. Furthermore, determining the malice of a node in a sparse
network-based only on few (one or two) recommendations
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is difficult. In fact, this decision should be made, based on
the history of the node’s activities, by a centralized trusted
node. Therefore, a hierarchical intrusion monitoring and deci-
sion process is the most appropriate solution in a DTN, where
different detection and response techniques run at two layers,
UAV and ground station.

Existing security mechanisms [9]–[11] applied to UAV
networks are based on cryptography to ensure message privacy
and node authentication. Specifically, Strohmeier et al. [9] and
Wesson et al. [10] proposed an authentication-based solution
to authenticate and ensure the privacy of messages broadcasted
by the automatic dependent surveillance-broadcast (ADS-B)
component, which is an on-board component part of the UAV
system; ADS-B broadcasts critical information, such as posi-
tion, heading, speed, and collision avoidance. Detecting attacks
in UAV networks has not been well addressed in the litera-
ture. To the best of our knowledge, the intrusion detection
framework designed by Mitchell and Chen [12] is the only
publicly available work that relies on detection techniques
to protect such networks. In this paper, the normal behav-
ior of an UAV is modeled with a set of rules, where the
IDS agent should wade all the rules and exchange them
with its neighbors to detect malicious anomalies. This IDS
solution incurs a high communication overhead. In addition,
according to their simulation results, the system incurs high
false positives. In this schema, the intrusion detection tech-
niques proposed in MANET is applied directly in the UAV
network without taking into account of the UAV network’s
requirements such as mobility of nodes and energy constraints.
Thereby, in this paper, we propose a novel intrusion detec-
tion and response scheme that aims to detect the most lethal
cyber-attacks that can target an UAV network, including: false
information dissemination, GPS spoofing, jamming, and gray
hole and black hole attacks. Our scheme alleviates the draw-
backs of the scheme proposed in [12] because it is fast in terms
of attack detection, lightweight in terms of communications
overhead, scalable, and achieves a high accurate detection rate.
In addition and unlike [12], it takes into account of the UAV
network’s requirements.

This paper work focuses on UAV-based civilian applica-
tions where UAVs explore an isolated zone to collect and
transmit critical information to a remote ground station for
analysis and decision processes. The proposed hierarchi-
cal detection and response scheme is running at the UAV
and ground station levels to detect any malicious anoma-
lies that threaten the network. To achieve high accuracy,
the hierarchical scheme combines rules-based detection and
anomaly detection techniques. With the help of these detec-
tion techniques, we also develop a new response scheme that
categorizes the monitored UAVs into appropriate lists (nor-
mal, suspect, abnormal, and malicious) according to their
behaviors. Our IDS-based solution achieves the following
characteristics.

1) Smart activation of the intrusion monitoring process: in
fact, when a large number of nodes launch their monitor-
ing processes, the incurred overhead can be substantial;
therefore, a tradeoff between the intrusion detection rate
and overhead is considered in this paper.

Fig. 1. UAVs deployment and exploration with ground stations deployment.

2) The embedded IDS agents react against specific UAV
threats and are incorporated into the protocols used in
this network.

3) UAV and IDS are fully trusted.
The rest of this paper is organized as follows. In Section II,

we present the network model that we attempt to secure along
with an overview of the most important attacks observed
in UAV networks. Section III describes our proposed intru-
sion detection and response scheme, and Section IV presents
NS3 simulation results and analysis. In Section V, we high-
light the related works. Finally, the conclusion and discussion
on future works are presented in Section VI.

II. NETWORK MODEL AND SECURITY OBJECTIVES

This section is organized into two sections: the network
model and the different attacks we aim to identify, respectively.

A. Network Model

This paper focuses on civilian applications, where UAVs are
envisioned to carry out explorations in isolated zones (e.g., dis-
aster areas) to collect and transmit critical information about
detected events to a remote control station for further actions
as shown in Fig. 1. We suppose that each UAV follows a deter-
ministic mobility model [13] to explore a zone as detailed
in Section IV-A. The communication mode is either between
UAVs (UAV-to-UAV) or between UAV and the ground station
(UAV-to-ground). In this paper, we target UAV applications
in case of a disaster (e.g., tsunamis, volcanic eruptions, etc.),
which are time-sensitive applications. To best ensure this time
constraint in such zero-infrastructure environment, we propose
to form an opportunistic network composed of drones and
assisted by a set of ground stations. Within this network, it
is impossible to have persistent connections between UAVs
or between UAV and ground station unless we put drones
and ground stations everywhere across the field, which will,
however, incur insurmountable cost as well as safety con-
cerns (the ground stations cannot be deployed everywhere
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in a disaster area, e.g., the middle of a fire, tsunamis). In
time-sensitive applications, a DTN based on “store-carry-and-
forward” mechanism [2] is used to decrease the packets loss
in a hop-by-hop manner. When neither UAVs nor ground
stations are available, data are buffered in the UAV until
a neighbor becomes available. The “store-carry-and-forward”
mechanism is also called opportunistic data forwarding [14],
where nodes store, carry, and forward packets to target
nodes.

A number of DTN mechanisms have been proposed to
address communications disconnections and improve the
network delay [14], [15]. In this paper, inspired by the DTN
routing protocol proposed by Lu et al. [14], we propose to use
a ground station as a relay node when the next-hop UAV is not
available. Note that the ground station could be for instance
an emergency vehicle (ambulance, police car, etc.) and is part
of the network. These kinds of vehicles are assumed to be
relatively static since they are not mobile in case of disasters,
i.e., they are quickly deployed and remain stationary for a rel-
atively long period of time in, e.g., hours or days. In addition,
they are assumed to be trusted nodes, and possess higher com-
putational capabilities as compared to UAVs. They are able
to communicate between each other using secure digital pro-
fessional mobile radios like TETRAPOL [16]. As illustrated
in Fig. 1, UAV fleets are launched from some deployment
areas to explore an assigned region. They return back to these
departure points to recharge their batteries when their remain-
ing energy is not sufficient to continue the exploration. As
shown in Fig. 1, ground stations are deployed at sites, where
there are not enough UAVs to guarantee full coverage, to
help data forwarding. In the following, we discuss the ground
stations deployment and explain how data are forwarded in
this DTN.

1) Ground Stations Deployment: The optimal deployment
of the ground stations is achieved with the help of a graph-
based model [17]. Here, our aim is to determine a low degree
of intersection vertices (see Fig. 1) where the ground stations
are deployed to help forwarding data in case the next-hop
UAV is unavailable. The low degree of intersection vertices
refers to a region with a low distribution of UAVs. Denote
U = {u1, u2, u3, . . .} as the set of UAVs that will explore
the monitored zone, and φ = {V, δ} as a directed random
graph where V = {v1, v2, v3, . . .} is the set of intersection
vertices and δ is the set of directed edges between any two
directly connected vertices. For any edge ei,j ∈ δ from vi to
vj, where i �= j, the flow rate of UAVs traversing the edge is
denoted as G(ei,j) = λi,j if vi and vj are directly connected,
and G(ei,j) = 0 otherwise [14]. We assume the arrivals of
UAVs traversing the edge/link (vi vj) is Poisson, from which
its parameter, λi,j, can realistically be captured by counting
the average number of UAVs passing from vi to vj per unit
of time.

As in [14] and because all UAVs U = {u1, u2, u3, . . .}
follow the shortest path, the degree of vertex vi ∈ V is
defined as:

Di = G(vi)
∑

uj∈U ξj
=

∑
vj∈V λj,i

∑
uj∈U ξj

(1)

Algorithm 1 Packet Forwarding in UAV Network
1: Begin
2: UAV ui stores, carries a message M for a period of time (Ts),

and tries to forward M to the next-hop UAV using a greedy
forwarding mechanism within Ts.

3: if (ui detects a nearby UAV uj) then
4: ui forwards M to uj.
5: else if (ui detects a nearby ground station vi ) then
6: ui forwards M to vi.
7: else if (Ts is elapsed and no next-hop is available) then
8: M is removed from ui

′s buffer.
9: end

where ξj is the number of shortest paths that UAV uj ∈ U
could explore (depending on the remaining energy) and G(Vi)

is the flow rate of intersection vertex vi, which is equal to∑
vj∈V G(ej,i) = ∑

vj∈V λj,i.
As a result, the set of “low degree” intersection vertices,

where the ground stations are deployed, is determined accord-
ing to (2). Here, TR denotes the threshold, which is adjusted
to allow the ground stations to have a high capability to assist
UAVs to store-and-forward packets in the network. Note that,
for safety purposes, the ground stations cannot be deployed
everywhere in a disaster area, e.g., in the middle of a fire,
tsunamis, or volcano even if (2) holds

LIV = {
vi ∈ V

∣
∣Di < TR

}
. (2)

2) Data Forwarding: When the UAV detects an event
(e.g., critical disaster), it forwards a message that contains
the event type to the final destination (i.e., control station).
This forwarding is done hop by hop using a greedy forward-
ing mechanism [18]–[20]. In the latter, the next-hop (UAV
or ground station) is selected as the farthest one from the
sender [20]. In case neither other UAVs nor ground stations
are available, the UAV stores and carries the message for
a period of Ts. In case when Ts has elapsed and no next-
hop is available, the message is removed from the UAV’s
buffer. The packet forwarding in UAV network is illustrated
in Algorithm 1.

B. Common UAVs Cyber-Attacks

Owing to the nature of wireless medium and relevant
data handled by UAVs, securing UAV networks becomes vital
to protect them against lethal cyber-attacks. In this paper, we
focus on mitigating two types of cyber-attacks: 1) integrity
and 2) denial of service (DoS) attacks.

1) Integrity Attacks: Such attacks aim to fabricate false
information, i.e., altering GPS coordinates or disseminating
false information.

a) GPS spoofing attacks: The GPS receiver of a UAV can
be spoofed by an attacker, thus leading to a false estimate of
the drone position. For instance, the spoofed signal can lead to
the situation where the receiver estimates the UAV’s position,
which is different from the real position. It has been claimed
that the capture of a military drone aircraft by the Iranian mil-
itary in December 2011 was the result of such attack [11].
Furthermore, the Iranian hacker used a jamming attack to jam
signals between the controller and UAV that caused the UAV

3



to switch to the autopilot mode. The latter relied on GPS coor-
dinates to guide itself back to its home base. Afterward, the
hacker launched a GPS spoofing attack to falsify GPS coor-
dinates and led the UAV to think that it was close to the
home base. Recently, Wesson [21] described the procedure to
stage a GPS spoofing attack on a civilian UAV: 1) precisely
align a spoofed (counterfeit) GPS signal with the authentic sig-
nal generated by the satellite at the target node; 2) gradually
increase the counterfeit signal strength to get control of the
target node; and 3) move the counterfeit signal slowly away
from the authentic one. At the end, the attacker has a complete
control of the legitimate UAV. Such attack is simple to imple-
ment and inexpensive [22]. Furthermore, according to several
research works [21], [23], it is difficult to detect such attack
since the spoofer triggers no alarms on the ship’s navigation
component.

b) False information dissemination attacks: A malicious
UAV could broadcast a different physical phenomenon such
as environmental conditions or forest fires to its neighbors.
Such attack is defined as a false data injection attack. The
ADS-B attack [10] is another kind of attacks that aims to dis-
seminate false information. ADS-B is an on-board component
of the UAV system that broadcasts information such as posi-
tion and collision avoidance [24]. According to [10] and [24],
an ADS-B attack either aims to broadcast a false position
or spoof the GPS coordinates (i.e., GPS spoofing) of a tar-
get UAV. Therefore, the survivability of legitimate drones
is affected. A malicious intrusion detection agent, referred
to as UDA1, could also provide false detection informa-
tion to degrade the network performances. In Section III,
we give more details about UDA and on how this agent
can carry out a monitoring process. Such misbehavior is
categorized into two kinds of threats [12]: bad-mouthing,
i.e., UDA claims that a well-behaved node is malicious or
good-mouthing, i.e., UDA provides good recommendations
regarding a malicious node.

2) DoS Attacks: The malicious node that executes a DoS
attack attempts to exhaust energy resources of UAVs or disturb
the network and routing protocol [25]–[27]. Jamming and gray
hole and black hole attacks are among the major lethal DoS
attacks.

a) Jamming attacks: Jamming aims to jam the commu-
nications between the controller and UAV, and to take control
of a target UAV by launching another kind of attack such as
GPS spoofing. We will consider two kinds of jamming attacks:
1) deceptive and 2) random. The former constantly broadcasts
packets without any gap between subsequent packets [28].
However, a random jammer alternates between sleeping and
jamming [28]. During the jamming, it can play the role of
a deceptive jammer.

b) Gray hole and black hole attacks: In DTN, the mali-
cious node first lures packets by claiming that it can help to
forward them to the destination [14]; afterward, it carries out
a black hole or gray hole attack by dropping all or certain
received packets, respectively.

1UDA, which stands for UAV detection agent, runs at the UAV node level.

III. HIERARCHICAL INTRUSION DETECTION AND

RESPONSE SCHEME FOR UAV NETWORKS

We propose and conceive in this paper an efficient and
lightweight detection and response scheme to protect UAV
networks. This system is efficient since it detects the attacks
promptly and it is lightweight because it requires a low over-
head to achieve a high level of security (i.e., high detection
and low false positive rates). The hierarchical scheme aims to
prevent the occurrence of the most lethal cyber-attacks that
could target an UAV network, such as GPS spoofing, jam-
ming, false information dissemination, and gray hole and black
hole attacks. The network model that we attempt to secure is
the one described in Section II-A. Our hierarchical scheme
relies on two mechanisms: 1) an intrusion detection mech-
anism running at the UAV node level and 2) an intrusion
response mechanism running at the ground station level. In
this section, we start describing the set of detection rules
applied by the detection mechanism to detect the attacks cited
above. Afterward, we explain the process of intrusion verifi-
cation, node assessment, and UAVs’ categorization into well
or bad-behaved nodes performed by the response mechanism.

A. Intrusion Detection Mechanism

IDS is the most reliable technique to detect the cyber-
attacks. Furthermore, it is noted that, due to sparse communi-
cations in DTN, an UAV node or a set of UAVs could not
activate their IDSs and monitor all the behaviors occurred
within the network. Thereby, the most appropriate solution
in DTN is to deploy a distributed intrusion monitoring and
detection approach [29], [30]. In this approach, each node can
activate an IDS agent (UDA) by using a promiscuous monitor-
ing mode, i.e., UDA can hear all packets within its radio range
and can observe the behavior of UAVs that traverse its neigh-
boring area. In addition, mutual monitoring is applied where
each UAV can play the UDA role and monitor its neighbors,
and vice versa. Furthermore, in case when the UDA is detected
as an abnormal or malicious node, it loses the ability to moni-
tor anymore as explained in Section III-B. As a result, a secure
community of UDAs is achieved. This final decision-making,
i.e., the monitored UAV is an attacker or a malicious deci-
sion is provided by UDA, should be taken by a centralized
trust entity (e.g., ground station) to decrease false positives
and negatives.

In this paper, we propose to use a rules-based intrusion
detection approach to identify the most lethal attacks that
target UAV networks, where we define the following detec-
tion rules against GPS spoofing, jamming, false information
dissemination, and gray hole and black hole attacks.

1) GPS Spoofing Attack’s Detection Rule: A set of rules is
proposed to model the normal behavior of the nodes based on
GPS spoofing’s characteristics2 [24], [31]: 1) the GPS spoof-
ing attack generates a high signal strength intensity (SSI) to
get control of the drone, and this SSI is higher than that
from satellites as demonstrated by Shepard et al. [11] and
Kim et al. [24] and 2) the spoofer transmits several signals

2This is unlike anti-GPS spoofing detection approach that requires addi-
tional hardware components (e.g., antenna) to detect this attack [33].
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from a single antenna; consequently, they have almost the
same signal strength [24]. The detection process is carried
out as follows: the UDA collects SSIs that come from the
transmitters (satellites and attackers), and then evaluates their
SSIs’ distribution using the normal distribution concept. In the
latter, SSIs’ mean and standard deviations (σ ) are computed
according to (3) and (4), respectively. Furthermore, the SSIs
are correctly distributed (i.e., have almost the same value) if
they lie within mean ±3*σ [32]

Mean(SSI) =
n∑

i=1

SSIi

n
(3)

σ(SSIi) =
√
√
√
√1

n

n∑

i=1

(SSIi − Mean (SSI))2. (4)

Here, n is the number of signals generated by transmitters.
The UDA checks whether there are some SSIs that lie within
(mean −3*σ ) and (mean +3*σ ). However, SSIs that lie within
this range are identified as generated by the same transmitter.
Therefore, the monitored transmitter is suspected to carry out
a GPS spoofer attack. Furthermore, a reasonable maximum
SSI can be set to limit the spoof signal power since according
to Wen et al. [31], the spoofer node will increase the signal
power in space by at least 3 dB. As a result, in case when
the monitored transmitter exceeds the SSI’s threshold THssi,
it will be detected as a GPS spoofer attacker. We note that
the antenna type and environmental effects like multipath may
change the received signal power [33], [34]. In addition, the
signal strength is very easy to manipulate by an attacker; all
it needs to do is to set the transmission amplifier gain, which
will render this rules-based detection ineffective. Thereby, in
order to overcome these issues, THssi is updated over time
with the help of an SVM learning algorithm (embedded at the
ground station level) as explained in Section III-B. The rule
for detecting GPS spoofing is illustrated in Algorithm 2. Such
attack could be launched by a GPS spoofer equipment [11].
Thereby, when an attack is detected, the UDA stores and for-
ward to the ground station an intrusion report, which includes
the location where the malicious equipment is detected and
the attacker’s SSI.

2) Jamming Attack’s Detection Rule: The most lethal jam-
ming attacks are deceptive and random jammers that aim
to jam communications, and then instigate GPS spoofing to
alter the GPS coordinates as performed by Iranian military
in December 2011. As described in Section II-B2, the char-
acteristics of these attacks according to [28] are defined as
follows: 1) when the node carries out a jamming attack, it
sends a considerable amount of packets and as a consequence
the number of packets sent (NPS) significantly differs from its
neighbors and 2) JITTER is very low (high) when deceptive
(random) jammers are instigated. According to these charac-
teristics, a rule-based detection is defined to detect such attacks
as follows. The UDA collects the packets that come from the
transmitters (e.g., UAV, satellites, and attacker) located within
its radio range, and then evaluates the distributions of NPS
and JITTER using the normal distribution concept, in which
the NPS (and JITTER) are said to be correctly distributed if

they lie within (mean ±3*σ ), [32]

Mean(NPS) =
k∑

j=1

NPSj

k

σ
(
NPSj

) =
√
√
√
√1

k

k∑

J=1

(
NPSj − Mean (NPS)

)2 (5)

Mean(JITTER) =
s∑

j=1

JITTERj

s

σ
(
JITTERj

) =
√
√
√
√1

s

s∑

J=1

(
JITTERj − Mean(JITTER)

)2
. (6)

Here, k is the number of the suspected transmitter’s neigh-
bors observed by UDA and s is the number of messages
sent by a suspected transmitter. In this case, the agent checks
whether NPS (and JITTER) follows a normal distribution, i.e.,
within (mean ±3*σ ). However, when the NPS (and JITTER)
of a monitored node does not lie within this range, this node
is suspected to carry out a jamming attack. To increase the
accuracy detection, we fix a threshold THNPS, and when the
NPS of a monitored node is greater than THNPS, the node is
suspected to be carrying out the jamming attack. This thresh-
old is updated over time with the help of an SVM learning
algorithm as explained in Section III-B. The rule for detecting
jamming attack is illustrated in Algorithm 3.

When the UDA detects a jamming attack, it stores and for-
ward to the ground station an intrusion report, which includes
the identity of the suspected transmitter (e.g., UAV), the kind
of detected jamming (deceptive or random jammers), and the
attacker’s NPS (and JITTER).

3) False Information Dissemination Attack’s Detection
Rule: As described in Section II-B, our aim is to protect the
UAVs network against three types of false information dis-
semination attacks, where the detection rules related to each
one of them are illustrated in Algorithm 4 and summarized as
follows.

a) False data injection’s detection: The UAV task is to
monitor, sense, and broadcast the observed physical phenom-
ena, e.g., forest fires, injured persons, and traffic accidents.
Furthermore, UAVs that are located within the same neigh-
borhood should report the same phenomena [12]. However,
the malicious UAV could compromise the sensors’ readings
and inject a wrong physical phenomenon. The UDA relies on
the promiscuous mode (which overhears all the packets that
pass within its radio range) to detect such attack, where the
observed phenomena are compared with those broadcasted by
UAV neighbors. Furthermore, when the monitored UAV deliv-
ers false information, it will be suspected as an attacker. Note
that when there are not enough UAVs within the same neigh-
borhood, for instance, only one UAV and one UDA, it is hard
to decide whether if the suspected UAV, detected by the UDA,
is really malicious or not. Therefore, to address this issue and
decrease the false positives, the ground station performs a node
assessment process (as explained in Section III-B) by collect-
ing the historical data of UDA detection activities. Afterward,
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Algorithm 2 Detection Rules of GPS Spoofing Attack
1: UDA monitors the distribution of SSIs that come from the
neighboring transmitters
2: if (SSIi ∈ [(meanssi -3*σssi), (meanssi +3*σssi)] && (transmitteri
claims that it generates signals from different locations))
3: //the transmitteri is suspected to carry out a GPS spoofing attack
4: if (SSIi > THssi)
5: //the transmitteri is a GPS spoofer
6: Forward an Intrusion Report (malicious

equipment’s location, attacker’s SSI, GPS spoofer)
7: Updates THssi based on SVM
8: end if
9: end if

the ground station makes the final decision, i.e., the suspected
UAV is classified as an attacker or not.

B. ADS-B Attack’s Detection

As described in Section II-B, such attack aims to either
broadcast a false position or spoof GPS coordinates in order to,
for instance, incur an UAV’s crash. Several detection policies
have been proposed to check the position claimed by a mobile
node [35], [36]. To perform this task, we use the detection
strategy proposed by Sedjelmaci et al. [35] to determine the
position of a target. In this strategy, two algorithms, relying on
SSI and packet’s round trip time (RTT) are used to determine
the location of a target node. We refer the readers to [35]
for more details about these algorithms. Furthermore, for the
GPS spoofing coordinates attack, the detection rules explained
above (see GPS spoofing attack’s detection) are used.

C. Bad- and Good-Mouthing’s Detection

In this attack, the UDA brings a false detection, i.e.,
claiming a normal UAV as an attacker or vice versa, thus
leading to an increase on the false positive and negative
rates. Mármol and Perez [37] proposed a node assessment
approach to mitigate such attack. The assessment approach
(see Section III-B), which is embedded at a ground station,
evaluates the behavior of a monitored UAV and the decision
provided by the UDA. Furthermore, the UDA that provides
a wrong detection will see its trust level (TL) decreasing,
and will eventually be considered malicious as it continues
to provide false detection.

When the UDA detects an attack, it stores and forward to the
ground station an intrusion report, which includes the identity
of the suspected UAV and the kind of the detected attack (e.g.,
ADS-B or false data injection attacks).

1) Gray Hole and Black Hole Attacks’ Detection Rule: As
described in Section II-B, when these attacks occur, they drop
all or a certain number of received packets. Furthermore, it
is difficult for the UDA to monitor and detect such attacks
in this network owing to UAV mobility and frequent discon-
nections. As mentioned in Section II, the ground stations are
assumed to be trusted nodes and static, thus allowing them to
monitor the packets that circulate within the network [14]. The
use of ground stations for intrusion monitoring could generate
an overhead. In fact, there is a tradeoff between the security

Algorithm 3 Detection Rules of Jamming Attack
1: UDA monitors the distribution of NPS and JITTER that come from
the neighboring UAVs
2: if (NPSi ∈ [(meannps-3*σnps) , (meannps+3*σnps)] && JITTERi ∈
[(meanjitter -3*σnps) , (meanjitter+3*σnps)])
3: //the transmitteri is suspected to carry out a jamming attack
4: if (NPSi > THNPS)
5: //the transmitteri is a jammer
6: Forward an Intrusion Report (identity of a malicious

UAV, attacker’s NPS (and JITTER), jamming)
7: Updates THNPS based on SVM
8: end if
9: end if

Algorithm 4 Detection Rules of False Information
Dissemination Attack
1: UDA compares the observed phenomena with those

broadcasted by UAVs’ neighbors
2: if (UAV ui delivers false information)
3: //ui is carrying out a false data injection attack
4: Forward an Intrusion Report (identity of malicious ui, false
data injection)
5: end if
6: UDA monitors the distribution of SSIs and RTTs
7: if (SSIi ∈ [(meanssi -3*σssi), (meanssi +3*σssi)] )
8: //the UAV ui is suspected to broadcast a false position
9: if (RTTi >THRTT )
10: //ui is carrying out an ADS-B attack
11: Forward an Intrusion Report (identity of

malicious ui, ADS-B attack )
12: end if
13: end if
14: Ground station evaluates the intrusion decision provided by UDAs
15: Compute the trust level (TL)
16: if (TL of UDA ui < THTL)
17: //ui is carrying out a bad- or good-mouthing attack
18: end if

requirement and overhead. Thereby, centralized intrusion mon-
itoring is launched only for black hole and gray hole attacks.
The detection policy of these attacks is explained below.

Each UAV, in the neighborhood of a ground station, sends
a neighboring packet to the ground station. This packet con-
tains the node’s type (source or relay), next hop node (i.e., the
neighboring node to which the UAV forward the packet), and
previous hop node (i.e., the neighboring node from which the
UAV receives the packet). To minimize the false positive, the
ground station collects neighboring packets from normal and
suspected UAVs, and ignores the ones received from abnor-
mal and malicious UAVs (refer to Section III-B on categories
of UAVs). Afterward, the ground station checks whether the
relay node forwards a packet and computes the number of
packets dropped (NPD). It is important to recall that the NPD
could also be caused by the collisions and signal attenua-
tion due to obstacles. Note that these packet-dropping events
are less than those caused by the black hole and gray hole
attacks. Therefore, in order to distinguish between them, we
set new thresholds THBH and THGH for black hole and gray
hole attacks, respectively. These thresholds will be updated by
using the SVM algorithm as will be explained in Section III-B.
The detection rules of gray hole and black hole attacks are
illustrated in Algorithm 5.
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Algorithm 5 Detection Rules of Gray Hole and Black Hole
Attacks
1: Ground station collects neighboring packets from normal and
suspected UAVs
2: Monitors NPD of UAV ui
3: if (NPDi > THGH)
4: //ui is carrying out a gray hole attack
5: end if
6: else if (NPDi > THBH)
7: // ui is carrying out a black hole attack
8: Updates THGH and THBH with a help of SVM
9: end if

D. Intrusion Response Mechanism

The response mechanism is embedded in the ground sta-
tion to evaluate the UAV’s behavior and categorize each UAV
according to its perceived threat into the appropriate list. UAV
categorization into a well or bad behaved node and perma-
nent exclusion of a malicious UAV can only be done by
a trust entity (i.e., ground station) to decrease the false pos-
itives and negatives. Thereby, as mentioned in Section III-A,
each UDA broadcasts to the ground station located within its
radio range an Intrusion Report message, which includes the
suspected UAV’s information. The ground station stores into
its database the id of this suspected UAV, the ids of UDAs that
detect the suspected UAV as an intruder and also the ids of
UDAs (neighbor of suspected UAV) that do not detect it as an
intruder. Afterward, the ground station executes the following
three processes.

1) Verification Process: The ground station uses an
anomaly detection technique to check the attack detected
by the UDAs and make the final decision whether the sus-
pected UAV is an attacker. The anomaly detection technique
can model the anomaly behavior of a target node with high
accuracy [5], [38]. The response mechanism uses an SVM
learning algorithm to carry out data training and classify the
incoming data as normal or anomaly. In the training phase,
the ground station collects the Intrusion Report delivered
by the UDAs, which contains the features of the suspected
attack and its identity. For instance, the feature related to
a GPS spoofing is the SSI. These features are used as
input vectors for the SVM training. The latter computes
a set of vectors called support vectors to obtain a separat-
ing hyperplane, and hence procures binary classes (normal
and anomaly). Readers are referred to [39] for more details
about a hyperplane separation. To obtain an accurate binary
categorization, the training process is carried out periodi-
cally since the support vectors will vary over time due to
noise and unreliable wireless communications [40]. In the
discrimination phase, the ground station classifies the new
features according to the anomaly and the normal patterns,
determined during the training phase. Once the ground sta-
tion confirms the attack detected by the UDA, it informs
the UDAs within its radio range to update the threshold
related to the detected attack with the value of the current
feature used by the SVM training algorithm. Otherwise, the
ground station ignores the Intrusion Report delivered by this
agent.

2) Node Assessment: Based on the Intrusion Report deliv-
ered by the UDA, the ground station evaluates the UAVs’
behavior and assigns to each monitored UAV (and UDA) ui,
a TL computed as follows:

GTLi = α1NRi + β1TDRi, BTLi = α2DRi + β2FDRi

TLi = (GTLi − BTLi) (7)

where GTL is the good TL, BTL is the bad TL, FDR repre-
sents the number of UDAs that do not agree on the detection
provided by the UDA ui, TDR denotes the number of UDAs
that agree on the detection claimed by the UDA ui, DR is
the number of UDAs that detect the UAV ui as an attacker,
NR is the number of UDAs that detect the UAV ui as a nor-
mal node, and finally α1, β1, α2, β2 ∈ [0, 1] are weighting
factors. The ground station stores the TL of each UAV that
passes within its range in the Trust_database as follows: (UAV
ui, TLi); afterward, this information is exchanged among all
ground stations within the network. At the end, each ground
station computes a Total TL as shown in (8). As explained in
Section II-A, the ground stations are connected among them
through a secure digital professional mobile radio standard like
TETRAPOL [16]

Total_TLi =
∑d

k=1 TLik

d
(8)

where d is the number of ground stations that compute the
TL of UAV ui. Note that when Total_TLi < 0, the monitored
UAV is considered as a malicious node.

The frequent computation of the node’s TL is not desir-
able since it is affected by noise and packets collisions [12].
Thereby, to get an accurate TL value, we adopt the
beta distribution [41]. We model Total_TL by a variable x with

P(·) = Beta(α, β) ∈ [0, 1] [41], which is given by

P(x) = 	(α + β)

	(α)	(β)
xα−1(1 − x)β−1. (9)

P(x) is characterized by two parameters (α, β), where 0
≤ x ≤1, α > 0 and β > 0. As in [12], in order to deter-
mine an accurate Total_TL value, we set α and β values
to 1 and [1/log[1/(1 − Total_TL)])], respectively. The output
of P(x) varies between 0 and 1, with the value 0 indicating
that the UAV ui persists to misbehave, i.e., does not switch
to a well-behaved node and 1 indicating that the UAV ui is
a normal node.

3) Monitored UAVs’ Categorization Process: It is not wise
to eject the UAV directly when it exhibits a malicious anomaly
since it could switch to a normal behavior and acts as an
ordinary node during its passage through the network [41].
Therefore, as illustrated in Table I, the ground station catego-
rizes the monitored UAV into four categories according to its
observed behavior.

UAVs that are categorized as abnormal nodes are limited
from their participation in the network. For instance, they do
not have the right to activate their UDA agents. Furthermore,
when they persist to monitor their neighbors and forward
an Intrusion Report to the ground station, their P(x) will
be decreased. Moreover, the UAVs that are categorized as
malicious (attacker), their ids will be broadcasted in order to
prevent legitimate UAVs from communicating with them.
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TABLE I
UAV’S CATEGORIZATION

IV. SIMULATION RESULTS

In this section, we evaluate the performance of
our hierarchical detection and response scheme using
NS3 simulator [43]. We compare it with a distributed scheme
where the rules-based detection, anomaly detection, node
assessment, and UAVs’ categorization are carried out at
the UAV level (i.e., ground stations are not involved in
the detection and response). In addition, we compare our
hierarchical scheme with the current intrusion detection
scheme proposed for UAVs, namely, BRUIDS [12]. Here, we
compute the detection rate, false positive rate, efficiency, and
communications overhead, as defined below.

1) Detection rate is the ratio of correctly identified attackers
over the total number of attackers.

2) False positive rate is the number of normal UAVs
that are incorrectly classified as attackers over the total
number of normal UAVs.

3) Efficiency is the time required for UDAs to detect
attackers, computed as follows:

Efficiency =
N∑

i=1

DTi − MTi

Sampling frequency ∗ N
(10)

where MTi is the moment when the attack starts, DTi

is the detection time of the cyber-attack, and N is the
number of cyber-attacks [40].

4) Communications overhead is the amount of bytes gener-
ated by our hierarchical detection and response scheme
to achieve high detection and low false positive rates.

A. Mobility Model and Simulation Setup

The mobility model used for simulations has an impact on
the simulation results. To simulate a realistic UAV network,
a deterministic mobility model [13] is used. In this paper, we
use a paparazzi deterministic mobility model [44] where the
UAV follows a well-defined trajectory. The map explored by
the UAVs is mapped onto a grid with homogeneous squares
as illustrated in Fig. 1. Each UAV explores a monitored zone
and collects critical disaster information, and then transmits
them to a suitable next hop node, i.e., UAV or ground station,
by using a greedy forwarding mechanism [18]–[20]. As men-
tioned in Section II-A, the farthest next-hop is selected to relay
data. As explained in Section III-B, the threshold related to
each attack’s detection is updated over time via SVM learning.

TABLE II
SIMULATION PARAMETERS

This update is mandatory due to the following reasons: 1) envi-
ronmental effects like multipath or noise could affect the
monitored features (e.g., SSI, NPS, JITTER, and NPD) and
2) the attacker could have knowledge of the threshold and set
an appropriate one, which will render the rules-based detection
ineffective. At the beginning of the simulation (i.e., t = 0),
each threshold has been set with an initial value. The main
simulation parameters are summarized in Table II.

B. Analysis of the Results

We implement, using NS3, our hierarchical mechanism,
BRUIDS [12] and the distributed scheme. We inject the same
number of attacks, namely, false data injection, ADS-B, bad-
and good-mouthing, GPS spoofing, jamming, and gray hole
and black hole attacks. Note that BRUIDS does not have
the capability to detect GPS spoofing, gray hole, and black
hole. Thereby, we add to this scheme our detection rule (see
Section III-A) to enable it to identify these attacks. Afterward,
we compare the performances of these schemes in terms of
the metrics cited above. Here, the number of attackers vary
from 10% to 30% of the overall nodes. The most important
results are summarized below.

1) Detection Rate: As illustrated in Fig. 2, when the
number of UAVs increases, the detection rates of our hierar-
chical, BRUIDS and distributed schemes decrease, specifically
when the number of attackers is high. This reduction is
much greater for BRUIDS as compared to other mecha-
nisms. The hierarchical scheme can detect all the attacks
cited above with a detection rate that is above 93%. This
result is achieved when the number of UAVs and attack-
ers is equal to 250% and 30% of overall nodes, respectively
(i.e., worst case). This result is achieved due to the following
reasons.

1) Intrusion Detection Techniques: Our scheme combines
the advantages of rules-based and anomaly detection
techniques to achieve high detection accuracy, unlike the
BRUIDS framework, which relies only on rules-based
detection to identify the attackers.

2) No Drone Is 100% Trustable: The attackers are more
interested to target attractive nodes that manage relevant
information, for instance, intrusion detection agents that
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Fig. 2. Detection rate: number of attackers equal to (a) 10% of overall nodes,
(b) 20% of overall nodes, and (c) 30% of overall nodes.

have the authority to categorize a monitored node as nor-
mal or attacker. Thereby, our scheme takes into account
of this fact and also analyzes the decision provided
by UDAs (with the help from ground stations), unlike
BRUIDS, which assumes that an intrusion detection
agent is a trusted node.

2) False Positive Rate: As shown in Fig. 3, the false posi-
tive rate generated by the hierarchical scheme increases slowly
as compared to other schemes when the number of both UAVs
and attackers increase. The false positive rate yielded by the
proposed scheme is less than 3% when the number of UAVs

Fig. 3. False positive rate: number of attackers equal to (a) 10% of overall
nodes, (b) 20% of overall nodes, and (c) 30% of overall nodes.

and attackers are equal to 250% and 30% of overall nodes,
respectively. This result is attributed to the following reasons.

1) Node Assessment: The ground station categorizes the
monitored UAVs into normal, suspect, abnormal, and
malicious (attacker) by computing their TL P(x). This
classification is done via the node assessment process.
Therefore, this process helps decrease the false positive
rate.

2) Cooperative Detection and Decision: To distinguish
between a normal UAV and a malicious one, and hence
decrease the false positive, the intrusion detection agents
that are running at UAV and ground station levels coop-
erate between each other to detect an attacker and make
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Fig. 4. Efficiency: the number of attackers equal to (a) 10% of overall nodes,
(b) 20% of overall nodes, and (c) 30% of overall nodes.

the final decision (i.e., the monitored UAV is normal or
malicious).

3) Intrusion Detection Techniques: As mentioned above,
the combination of rules-based and anomaly detection
techniques enables detection of the malicious UAV with
a high accuracy.

3) Efficiency: Fig. 4 illustrates the required time for intru-
sion detection agents (UDAs for the hierarchical scheme) to
detect the attacks cited above. It is observed that the effi-
ciency of the hierarchical and distributed schemes is almost the
same, specifically when the number of UAVs is large. This is
unlike BRUIDS, which incurs a high intrusion detection delay,

Fig. 5. Communications overhead: number of attackers equal to 30% of
overall nodes.

due to the fact that the IDS agents should wade all the rules
to detect a malicious anomaly. According to the simulation
results, the hierarchical scheme detects the attacks promptly
in the order of milliseconds. This result is achieved even when
the numbers of UAVs and attackers equal to 250% and 30%
of overall nodes, respectively. Furthermore, when the numbers
of UAVs and attackers are high, the efficiency of the hierar-
chical intrusion detection and response scheme is about 70 ms
as illustrated in Fig. 4(c), which satisfies the requirement of
delay-sensitive applications. Such efficiency is attributed to
community of trusted UDAs: all the UAVs, in the hierarchical
scheme, have the ability to run an intrusion detection agent
(i.e., UDA) and monitor their neighbors. However, when the
UAV is suspected to be malicious, it cannot play the role of
UDA. Therefore, only a community of trusted UDAs carry out
the intrusion monitoring and detection, thus reducing the time
of detecting malicious UAVs.

4) Communications Overhead: We evaluate the commu-
nications overhead generated by the hierarchical scheme,
BRUIDS and distributed scheme by fixing the number of
attackers to 30% of overall nodes. As illustrated in Fig. 5, the
hierarchical scheme requires a low communications overhead
to detect the cyber-attacks as compared to the other schemes.
This is achieved even when the number of UAVs increases.

5) Theoretical Analysis: In this section, we analyze the
security of the proposed hierarchical detection and response
schema by using the communications overhead, false positive
rate and detection rate as main metrics.

Theorem 1: V (t) >> V ′(t), where V (t) and V ′(t) are
the communications overhead generated by BRUIDS [12] (or
distributed) and hierarchical schemas, respectively.

Proof: F(t) = ∑|C|
i=1

∑|Di|
j=1 f (ci, dj, t) is the number of mes-

sages sent and received by the IDSs agents in BRUIDS (or
distributed) schema, and F′(t) = ∑|C|

i=1

∑|D′
i|

j=1 f (ci, d′
j, t) is the

number of messages sent and received by UDA agents in the
hierarchical schema, where C = {c1, . . . , cn} is the set of all
UAVs in a network, D = {di1, . . . , dim} is the set of neighbors
of the suspected UAV ui, and D′ = {d′

i1, . . . , d′
im} is the set

of trusted neighboring UDAs of the suspected UAV ui

f
(
ci, dj, t

) =
{

1 IDS agent sent or received message
0 Otherwise
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and

f
(
ci, d′

j, t
) =

{
1 UDA agent sent or received message
0 Otherwise.

The condition F(t) >> F′(t) is held for the following
reasons: 1) in our hierarchical mechanism, only a trusted num-
ber of UDA nodes are activated to analyze the behavior of
their neighbors, unlike BRUIDS and distributed schemes, in
which all UAVs activate simultaneously their IDSs and 2) our
proposed mechanism minimizes the information exchanged
between UAVs and the ground station. BRUIDS and dis-
tributed schemes incur a huge amount of monitoring messages
to be exchanged between UAVs when a suspected node
is detected. Due to the fact that the communications over-
head depends on the number of exchanged messages and
size of message (m) as shown in (11) and (12) [45], hence
V(t) >> V ′(t), which is also demonstrated in simulation
analysis, as shown in Fig. 5

V(t) = F(t)m(t) (11)

V ′(t) = F′(t)m′(t) (12)

where m and m′ are the average sizes of messages that UAVs
sent and received in BRUIDS (or distributed) and hierarchical
schema, respectively.

Theorem 2: The false positive rate of our hierarchi-
cal scheme depends on the collision rate and number of
UDA agents.

Proof: According to Hai et al. [46], in the network where the
topology changes frequently due to fading and node failures
(such as the case of UAV-DTN), the probability of detection
PD of IDS agent uj against an attacker ui depends mainly
on the probability of collision PC occurring in a monitored
transmission link as shown in

PD(t) = PC(t)(1 − PC(t))2 (13)

⇒ PFj(t) = (1 − PC(t))2PC(t) + PC
2(t)(1 − PC(t))

= PC(t)(1 − PC(t)) (14)

where PFj(t) is the probability of false positive generated by
UDA agent uj.

So, the probability of false positive generated by our
hierarchical scheme when the attacks occur in the network is

PF(t) = (1 − PC(t))SPC(t)K−S + · · · + (1 − PC(t))KPC(t)K−S.

(15)

Here, K is the number of UDA agents and S is the number
of UDAs that detect the cyber-attacks.

When K UDA agents collaborate to decide the status of
a monitored UAV, i.e., the monitored UAV is normal or
attacker, the probability of false positive can be defined as
follows:

PF(t) =
k∑

i=s

(1 − PC(t))iPC(t)K−S. (16)

As a result, we can claim that to decrease the false posi-
tive rate, the number of collisions and UDA agents should be
decreased and increased, respectively.

Theorem 3: The attack detection rate of the hierarchical
scheme depends on the radio range of UAV (R) and network
density (D).

Proof: Let y be the distance between UAVs u1 and u2, and
the radio range (R) of UAVs are assumed to be the same. For
any distance y, the area, where IDSs (in our case UDA agents)
are located, is calculated as follows [47]:

S(y) = 2R2cos−1
( y

2R

)
− 2y

√

R2 − y2

4
. (17)

According to Hai et al. [46], the number of monitor nodes
(i.e., UDAs) for each link ui − uj where i �= j is given by

{⌊
0.362R2D

⌋
, if y = R⌊

E
[
S(y)

]
D

⌋
, if y �= R.

(18)

E[S(y)] is the expected value of the area S(y) and is
computed as follows:

E[S(y)] =
∫ R

0
S(y).f (y)dy.

The probability distribution of y is computed by: F(y) =
(y2/R2), and the probability density function f (y) =
(dF(y)/y) = (2y/R2).

As a result

E[S(y)] =
∫ R

0

2y

R2

⎛

⎝2r2cos−1
( y

2R

)
− 2y

√

R2 − y2

4

⎞

⎠dy

≈ 0.30πR2. (19)

Therefore, we claim that to increase the attack detection
rate, both UAV’s radio range and network density should be
increased.

V. RELATED WORKS

Intrusion detection is essential to protect the network
against attackers since it can potentially detect the cyber-
attacks with a high detection and low false positive
rates [5], [12], [48]–[51], while authentication only aims to
prevent the external attacker from entering the network. UAVs
are attractive and easy targets for the attackers due to the rel-
evant information handled by UAVs. However, the protection
of such network has not been well investigated to the best of
our knowledge; the intrusion detection scheme called BRUIDS
proposed by Mitchell and Chen [12] is the only publicly avail-
able work that relies on detection techniques to protect the
UAV network against cyber-attacks. BRUIDS aims to detect
the attacks that target the integrity such as false data injec-
tion and attacks that target the availability such as malicious
UAV that directs its weapon against a friendly resource, jam-
ming, bad- and good-mouthing. In this detection framework,
the authors proposed a set of rules related to the attacks to
model a normal UAV behavior. According to their simulation
results, their detection system exhibits a low false negative.
However, the false positive is higher (equal to 7%). In addi-
tion, this framework incurs a high overhead when the number
of UAVs is large, and is thus not scalable. Kim et al. [24] eval-
uated the behavior of attackers that target UAV nodes such as
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intruders that access to the autopilot components and intruders
that inject false data into UAV on-board sensors. According
to these malicious anomalies, they proposed certain detection
rules to model a normal UAV behavior. They did not evalu-
ate the performances of their approach in terms of detection
accuracy and overhead.

Strohmeier et al. [9] summarized the attacks that could tar-
get ADS-B component such as eavesdropping, jamming, and
data injection, and proposed a set of countermeasures to iden-
tify them. However, they did not conduct any simulation or
experimental analysis to evaluate the performances of their
proposed security countermeasures. Strohmeier et al. [9] and
Wesson et al. [10] claimed that ADS-B is a vulnerable compo-
nent to a wide range of attacks since it has no built-in security
mechanism. They proposed a confidentiality-based solution to
ensure the privacy of messages broadcasted by the ADS-B
component. However, detecting the attacks that can target this
component is not addressed. According to Shepard et al. [11],
GPS spoofing is the most lethal cyber-attack that could tar-
get UAVs as explained in Section II-B, in which the Iranian
hacker captured a military UAV by using such attack [11].
Several research works have proposed detection policies to
identify the GPS spoofing attack. Sedjelmaci et al. [52] aimed
to protect the UAV-aided vehicular network against the cyber-
attacks. In their work, they focus only to address the issue of
IDS activation in UAV-assisted network. They did not provide
detection techniques to detect the cyber-attacks that target such
network. Zhang et al. [33] aimed to protect the power grid
system against this attack by proposing the quickest spoofing
detection algorithm, which is based on evaluating the distri-
bution of a GPS signal issued from the transmitter nodes.
Furthermore, they proved that the spoofer transmits the same
signal from a single antenna several times to deceive the legit-
imate nodes that it is located in different places. According to
their simulations and experimental results, the GPS spoofing
can be detected with a high accuracy. However, they required
an additional hardware (e.g., antenna) to identify this cyber-
attack. Sedjelmaci et al. [53] addressed the false positive and
false negative issues that are generated by the IDS agents to
secure the UAVs network. In this paper, a threat estimation
model based on belief concept was developed. They did not
provide details on how to detect the attacks in UAVs network.

VI. CONCLUSION

In this paper, we have taken the challenge of securing an
UAV network by proposing a hierarchical intrusion detection
and response scheme, which orchestrates the intrusion detec-
tion, decision, and categorization mechanisms cooperatively
between UAVs and ground stations to detect and eliminate
security threats that may disrupt the network. To model a nor-
mal UAV behavior, a set of detection rules related to each
cyber-attack is proposed. Furthermore, at the ground station
level, SVM-based anomaly detection is used to verify the
attack detected by UAV agents; node assessment and UAV’s
categorization (normal, abnormal, suspect, and malicious) are
developed. We have analyzed the performance of our scheme
using NS-3, and showed that it exhibits a high-level of security

with a high detection rate (more than 93%) and low false pos-
itive rate (less than 3%), and facilitates prompt detection with
a low communications overhead, as compared to current state
of the art. Our future direction is to embed our scheme in
a fleet of a dozen of Parrot drones [54].
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