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Abstract. In this paper, we present a 3D reconstruction and enhance-
ment approach for high quality dynamic city scene reconstructions. We
first detect and segment the moving objects using 3D Motion Segmenta-
tion approach by exploiting the feature trajectories’ behaviours. Getting
the segmentations of both the dynamic scene parts and the static scene
parts, we propose an efficient point cloud registration approach which
takes the advantages of 3-point RANSAC and Iterative Closest Points
algorithms to produce precise point cloud alignment. Furthermore, we
proposed a point cloud smoothing and texture mapping framework to en-
hance the results of reconstructions for both the static and the dynamic
scene parts. The proposed algorithms are evaluated using the real-world
challenging KITTI dataset with very satisfactory results.

Keywords: 3D Reconstruction, 3D Scene Enhancement, Motion Seg-
mentation, Point Cloud Registration

1 Introduction

For the past decades, 3D scene reconstruction has been widely studied due to
the need of many applications, such as city map modelling [1], robot naviga-
tion [2], autonomous driving [3], etc. Among numerous works in this context, the
most representative approaches are: structure-from-motion of image sequence [4],
RGB-D data fusion [5], and laser scans registration [6]. These approaches make
use of the common assumptions that the environments are mostly static or con-
tain very few moving objects. However, such assumptions do not hold for many
practical scenarios, such as crowed campus and markets.

To address the problem of 3D reconstruction of dynamic environments, in
our previous works [7] [8], we proposed to detect and extract the moving objects
prior to the scene reconstruction using a 2D-3D (RGB camera + 3D laser scan-
ner) mobile camera system. Followed by, the static parts of the scene and the
dynamic parts of the scene are independently reconstructed using a 3-point Ran-
dom Sample Consensus (RANSAC) registration approach. Consequently, high
quality static map and rigidly moving object reconstructions are achieved from
highly dynamic environments. Since the 3-point RANSAC algorithm estimate
the 3D-to-3D rigid transformation between two corresponding point sets, the
accuracy of registration highly relies on the quality of corresponding sets. The
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3D-to-3D feature correspondences are established by the tracking of their associ-
ated 2D (image) features which is sensitive to noise, as detailed in Section IV [7].
Moreover, point cloud registration from long term observations inherently suf-
fers from multi-layered problem due to the multiple scans of the same area. This
problem can largely decrease the quality of the registration while increase the
memory consumption. Building on top of [7] [9], in this work, we propose a more
robust and effective algorithm, call Dual-Weighted Iterative Closest Point (DW-
ICP) algorithm, and a 3D reconstruction enhancement framework is presented
to produce photographic quality results of real outdoor scenes.

Point Cloud Registration: Iterative Closest Point (ICP) is one of the
most commonly used algorithm due to its simplicity and robustness. However,
the convergence of ICP algorithm requires a good initialization and rich geomet-
ric structures of the point clouds. For instance, ICP registration of two planar
objects can easily fall into a local minimum. To overcome these problems, we ex-
ploit that an initialization using 3-point RANSAC registration algorithm is very
effective. Moreover, a DW-ICP algorithm is introduced to iteratively estimate
the rigid transformation by assigning different weights to the RANSAC inlier
point pairs and the ICP correspondences, as detailed in Section 4.

3D Reconstruction Enhancement: Due to the measurement noise of
data, the 3D registration from multiple observations has multi-layered artefacts.
To address this problem, we employ a 3D Thin Plane Spline algorithm which
smooths the object surface to a single layer. Furthermore, a ball pivoting surface
triangulation approach is applied to construct 3D meshes of the smoothed point
clouds. Finally, the textures of the 3D meshes are mapped and refined using
mutual information, as detailed in Section 5.

2 Related Work

State-of-the-art methods in 3D point cloud registration are categorized as: ICP-
based point cloud alignment [10] [11] [12], RANSAC-based [1] [7] [13] [14] point
cloud registration, and volumetric representation-based point cloud fusion [5] [15]
[16]. ICP-based methods are generally robust and accurate without prior knowl-
edge of point-to-point correspondences. However, when the geometric struc-
ture of the point cloud is low, ICP registration yields to an ill-posed problem.
RANSAC-based approaches are robust and efficient while they require sufficient
number of precise 3D-to-3D matching pairs (at least 50% of them are inliers).
Volumetric representation-based algorithms utilize the Signed Distance Function
to describe the object surface using RGB-D camera. These methods work well for
dense point cloud registration of large scene, but they suffer from over-smoothing
problems.

3 Dynamic Scene 3D Reconstruction

In this section, we briefly revisit the principles of 3D reconstruction of dy-
namic scenes using 3D-based Sparse Subspace Clustering (3D-SSC) algorithm,
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Fig. 1: Dynamic Scene 3D Reconstruction and Enhancement Framework: Red
block segments the point cloud into the dynamic and the static scene parts.
Green block registers the point cloud sequence using our DW-ICP algorithm.
Blue block refines the registered point cloud, followed by the texture mapping.

see Fig. 1 Red Block. Given a mobile 2D-3D camera system, i.e. a car equipped
with a 2D camera and a 3D laser scanner, our objective is to detect and extract
the moving objects from a point cloud sequence, which yields to solve a Motion
Segmentation (MS) problem. For this purpose, the 3D-SSC analyses the motion
behaviours of the feature trajectories and segments them into independent mo-
tions. The principle of 3D-SSC is to construct an affinity matrix which encodes
the similarity between the feature trajectories, followed by a spectral clustering
algorithm to group the trajectories into their corresponding motion subspaces.

Let X = [x1, · · · ,xF ]T be a vectorized 3D feature trajectory of F frames,
where xi = [x, y, z] ∈ IR3 is a 3D feature point at frame i. Let X = [X1, · · · ,XP ]
be the assembly of P feature trajectories belonging to k different motions. Note
that each independent motion determines a unique subspace. An element can
be approximated by the linear combination of other elements from the same
subspace, so called self-representation property. The self-representation model
of MS problem is defined as a minimization problem:

min‖C‖1,1 s.t. X = XC, diag(C) = 0, (1)

where C = [C1, · · · ,CP ] is a square-sized sparse permutation matrix, and oper-
ator ‖ · ‖1,1 denotes the l1−norm of each column of C. The diagonal elements
diag(C) of C are constrained as zeros to avoid the trivial solution, so that Xi can-
not be used to represent Xi itself. More specifically, the sparse vector Ci ∈ IRP

contains a few of non-zero elements such that Xi = XCi. The sparsity of Ci con-
strains that the least number of closest feature trajectories are selected, which
contributes to its robustness to noise and outliers. By minimizing Eq. (1), the de-
sired sparse permutation matrix C∗ is obtained. Afterwards, a symmetric affinity

matrix A = |C∗| + |C∗|T is constructed to perform K-means spectral clustering
to separate the k independent motion subspaces. More details refer to [7].
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4 Robust Point Cloud Registration

Point cloud registration from long term observations is a challenging problem.
To tackle, we formulate an optimization problem that jointly minimizes both
the feature matching energy and the nearest neighbour energy.

4.1 3-Point RANSAC Registration

Given a set of correspondences between two 3D point clouds, the rigid transfor-
mation parameters, i.e. R and t, can be estimated by solving a linear system. Let
x = [x, y, z]T and y = [x′, y′, z′]T be two corresponding points under rigid trans-
formation, denoted as x = Ry+ t. In which, R is a 3× 3 rotation matrix and t is
a 3× 1 translation vector. Let g = [gx, gy, gz]

T
be the Gibbs representation [17]

of the rotation matrix R, we have R = (I3 + G)
−1

(I3 − G), where G = [g]× is the
skew-symmetric matrix form of g and I3 is a 3× 3 identity matrix.

By employing the Gibbs representation and the Cayley transform [18], the
3D registration problem is formulated as follow:

[
−[x + y]× I3

] [g
t̃

]
= x− y, (2)

where [·]× denotes the skew-symmetric form of a vector and t̃ = (I3 + G)t. Since
each matching pair provides 2 independent equations, solving the 6 unknowns
of Eq. (2) requires minimum 3 pairs of correspondences. For the sake of ro-
bustness to outliers, a RANSAC [19] framework is adopted, so called 3-Point
RANSAC registration. The 3-point RANSAC point cloud registration algorithm
is efficient and robust to outliers. However, in the presence of inaccurate cor-
respondences, the quality of RANSAC registration is usually not very satisfac-
tory. Therefore, we further propose to refine the registration by minimizing a
dual-weighted closet-point energy taking into account both the RANSAC inlier
matches as well as the full 3D point clouds.

4.2 Robust ICP Registration

When two overlapping point clouds of the same rigid object are given, the trans-
formation between them is generally obtained by minimizing the energy derived
from the closest-points distance. In most of the cases, this energy is minimized
using an iterative method – also known as Iterative Closest Point (ICP) al-
gorithm [20]. In each iteration, the ICP algorithm considers the closest points
across two point clouds, say the reference and the model, as the corresponding
ones. Let X = {x1, · · · ,xn} be the reference point cloud, and Y = {y1, · · · ,ym}
be the new model, the robust method of ICP iteratively minimizes the following
energy:

EI(T̂) = min
T

n∑
i=1

ρ( min
j∈{1,··· ,m}

‖xi − Tyj‖2), (3)
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where T̂ is the desired transformation matrix that relates the two point clouds.
Note that the energy term EI includes a robust cost function to handle noisy
and partial data. Our choice of robust cost, say ρ(x), is the Tukey’s biweight
function [21]:

ρ(x) =

{
(τ2/6)(1− [1− (x/τ)2]

3
) if |x| ≤ τ

(τ2/6) if |x| > τ
, (4)

and the weight of each corresponding pair is defined by:

w(x) =
1

x

dρ(x)

dx
=

{
[1− (x/τ)2]2 if |x| ≤ τ

0 if |x| > τ
, (5)

where τ is the inlier threshold, such that outliers (|x| > τ) are assigned with
zero weights.

4.3 Dual-Weighted ICP Registration

While consensus-based registration method requires a subset of accurate cor-
respondences, closest-point-based method requires rich structure of the point
clouds. These prohibit us to make a choice of one method over another. There-
fore, we propose to minimize a combined energy function – one from consensus,
say ER, and the other from closest-point, say EI . We minimize the joint energy
function in an iterative manner, named as dual-weighted ICP.

First, we define an energy function that measures the quality of the inlier set
obtained from 3-point RANSAC. Note that due to the sparsity and noise, the
inlier set obtained from RANSAC is not precise. Let {xi ↔ yi}, i = 1, . . . , k be
the inlier correspondence set, the energy ER for matching consensus is expressed
as:

ER(T̂) = min
T

k∑
i=1

ρ̃(‖xi − Tyi‖2), (6)

where k ≤ m,n, and ρ̃(x) is the Huber’s weight function denoted as:

ρ̃(x) =

{
(x2/2) if |x| ≤ τ̃

τ̃ [|x| − (τ̃ /2)] if |x| > τ̃
, (7)

w̃(x) =
1

x

dρ̃(x)

dx
=

{
1 if |x| ≤ τ̃

(τ̃ /|x|) if |x| > τ̃
, (8)

where τ̃ is the threshold for inlier matches. The Huber loss function is selected
under the assumption that the provided inlier set is noisy without severe outlier
that needs to be completely discarded. In the spirit of Eq. (3) and Eq. (6), we
formulate our combined energy function as follows:
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E(T̂) = min
T̂

α
√√√√ 1

n

n∑
i=1

ρ( min
j∈{1,··· ,m}

‖xi − Tyj‖2) +

(1− α)

√√√√1

k

k∑
i=1

ρ̃(‖yi − Tyi‖2)

 ,

(9)

where α is the regularization term to control the influence of the EI and ER energy
terms. Rather than optimizing the closest-point energy EI or matching consensus
energy ER independently, the DW-ICP aims to iteratively and simultaneously
optimize the joint energy E of Eq. (9).

4.4 Discussions

As summarized in Fig. 1 Green Block, our algorithm takes the 3-Point RANSAC
registration as initialization. Afterwards, the DW-ICP is applied to refine the
registration. Note that (also refer to Eq. (9)) the DW-ICP iteratively minimizes
the combined energy of ER and EI . On the one hand, EI minimizes the overall
registration error of the whole 3D point clouds. On the other hand, ER minimizes
the registration error of the inliers obtained form RANSAC. These two terms
are usually complementary to each other, which is the key to the success of
the proposed optimization framework. On top of the traditional ICP, there are
two main advantages of our DW-ICP: (a) Feature matching constraint promises
a proper registration regardless of the poor geometry structures of the point
clouds. (b) Robust estimation framework is preserved such that the algorithm is
generic and robust to outliers during a long term registration.

5 3D Reconstruction Enhancement

A complete pipeline for 3D reconstruction refinement is introduced to produce
photo-realistic high quality 3D models, as shown in Fig. 1 Blue Block. There are
three major steps involved, namely Moving Least Square (MLS) [22] point cloud
smoothing, Surface Reconstruction [23], and Weighted Blend Texture Mapping
[24]. Fig. 2 depicts the evolutions of a car object from raw registered point cloud
to high quality textured mesh.

Point Cloud Smoothing: The registered point cloud from long term ob-
servation suffers from outliers and multi-layered effects due to the measurement
noise and imperfect registrations. Surface reconstruction using such point cloud
suffers from many visual artefacts, such as spiky surfaces and holes. Therefore, a
MLS algorithm, which smooths an unorganized point could using a polynomial
fitting, is applied due to its simplicity and effectiveness.

Surface Reconstruction: To avoid the redundant (overlapped) points caused
by multiple observations, a sub-sampling processing is performed based on the
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Fig. 2: Illustration of 3D Reconstruction Enhancement: from left to right are raw
registration, smoothed point cloud, surface reconstruction, textured mesh in side
view, back view and top view, respectively.

points’ poisson-disk distribution [25]. Later on, a Ball Pivoting triangulation
(or Poisson triangulation) algorithm is utilized to establish the neighbour-points
relationships, followed by a dilation operation for hole closing. The Taubin Sur-
face Smoothing [26] method is adopted to smooth the reconstructed surface while
preserving the sharp edges. Finally, a Least Square Subdivision approach [27] is
performed to refine and produce high quality meshes.

Texture Mapping: We make use of the 2D images for texture mapping.
During this process, photographic alignment between the 3D mesh and the 2D
images are required. Since the 2D-3D camera system is calibrated, and the mo-
tion of the camera is known, all the images are aligned with respect to the mesh
reconstructed frame. The camera poses (between the cameras and the recon-
structed mesh) are estimated by computing the inverse of the transformation
matrices (obtained from registration) and using the camera calibration param-
eters. Furthermore, the blurring effect during the texture fusion from multiple
images is reduced by using a Weighted Blending algorithm.

6 Experiments

We conducted experiments on both synthetic and real data (KITTI bench-
mark [28]). Since there is no ground truth data available for 3D reconstruc-
tion quantification, we generated three sets of synthetic data to quantify the
robustness and accuracy of the proposed algorithms. Qualitative results of the
proposed framework is presented using real data. All the experiments are con-
ducted in a computer with Intel Quad Core i7-2640M, 2.80GHz, 8GB Memory.
The algorithm parameters were set as: α = 0.8, τ = 0.08m, τ̃ = 0.03m, rotation
tolerance εR = 10e-6, translation tolerance εT = 10e-6, and max iteration as 100.

Synthetic Datasets: The synthetic datasets were generated from three dif-
ferent objects, namely the Van, Red Car, and Cola Truck, see Fig. 4 for example.
We simulate the motion behaviours the rigidly moving objects with smooth rota-
tion and translation of 100 frames. Practical scenarios, such as partial overlaps,
occlusions, and poor 3D geometric structures, are also taken into consideration.
We applied 10 different levels of Gaussian noise, from 0.005 to 0.050 in meters.
The maximum noise level is chosen as 2.5 times higher than the expected ac-
curacy (0.02m) of the Velodyne laser scanner. We compare the performances of
the algorithms using the averaged absolute rotation and translation errors.

Fig. 5 shows the performances of 4 different algorithms, namely 3-Point
RANSAC [7], RANSAC+ICP refinement [20], RANSAC+Robust-ICP [10] and
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Fig. 3: High quality 3D reconstruction comparison: Row 1 are selected images.
Row 2 is the 3D reconstruction using [7]. Row 3 is the 3D reconstruction of
the proposed method, which is more accurate than [7]. Last row is the textured
reconstructed 3D mesh of static scene parts, where details of small objects are
lost as shown in the zoom-in region.
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Fig. 4: Synthetic Van object with left, back and right side views.

RANSAC+DW-ICP. The overall performance of the algorithms are ranked (from
top to down) as: DW-ICP, Robust-ICP, RANSAC+ICP and RANSAC. The
Robust-ICP (using M-Estimator) has significantly better performance against
that of traditional ICP. Most importantly, the proposed DW-ICP consistently
outperforms the other approaches, regardless of rotation or translation.
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Fig. 5: Synthetic Data Quantification: top and bottom are averaged translation
and rotation errors on Van, Red Car, and Cola Truck dataset, respectively.

Real Datasets: Table 1 depicts the dataset information, where the 3D Er-
ror (averaged Leave-One-Out Error) metric was used to quantify the registration
performance. The registration error of our method is consistently lower than [7],
although we have slightly more computation time. Moreover, the high quality
reconstructions of Fig. 2 and Fig. 6 were obtained using the proposed framework
of Fig. 1. Note that the objects are reconstructed from long-term and faraway
observations (see Table 1). The framework effectively overcomes the accumula-
tion errors during the registration process and products very satisfactory results.
Moreover, Fig. 3 and 6 demonstrates that significant better registration quality
of our method is achieved compared to [7].

7 Conclusion and Future Work

We have proposed an effective high quality 3D reconstruction and enhance-
ment framework which is evaluated using both synaesthetic and realistic outdoor
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Table 1: Dataset Information: Col. Sides is number of object sides (left, right,
back, and front) being captured. Col. Dist. is the averaged distance from the
camera to the object. Col. 3-Point RANSAC [10] and Col. Ours show their
respective averaged 3D error and computation time.

Object # Frame Sides
Dist. 3-Point RANSAC [4] Ours
(m) Error (m) Time (s) Error (m) Time (s)

Van 44 3 16.5 0.0150 3.1 0.0131 4.6
Red Car 60 3 10.8 0.0084 2.8 0.0080 4.3

Cola Truck 48 2 30.0 0.0234 3.7 0.0229 4.1

Fig. 6: Reconstructed Van and Cola Truck: top are registered point clouds using
[7]; bottom are our high quality meshes.

dataset. The reconstructed 3D mesh of rigidly moving objects achieve photo-
realistic quality, while some small details of the large-scale 3D scene reconstruc-
tion are not well preserved. As future work, we expect to reconstruct the higher
quality 3D mesh of the static scene parts.
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20èmé Congrès National sur la Reconnaissance des Formes et l’Intelligence Arti-
ficielle (RFIA), Clermont-Ferrand, France, June 2016.

9. Jiang, C., Christie, D., Paudel, D.P. and Demonceaux, C.: High Quality Recontruc-
tion of Dynamic Objects Using 2D-3D Camera Fusion. In Proc. of International
Conference on Image Processing (ICIP), 2017.

10. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. In Image and
Vision Computing, 21(13), pp.1145-1153, 2003.

11. Pomerleau, F., Colas, F. and Siegwart, R.: A review of point cloud registration
algorithms for mobile robotics. Foundations and Trends in Rob., pp.1-104, 2015.

12. Attia, M., Slama, Y. and Kamoun, M.A.: On Performance Evaluation of Registra-
tion Algorithms for 3D Point Clouds. In Proc. of Computer Graphics, Imaging and
Visualization (CGiV), 2016.

13. Pankaj, D.S. and Nidamanuri, R.R.: A robust estimation technique for 3D point
cloud registration. Image Analysis and Stereology, 35(1), pp.15-28, 2016.

14. Christie, D., Jiang, C., Paudel D.P., and Demonceaux C.: 3D reconstruction of
dynamic vehicles using sparse 3D-laser-scanner and 2D image fusion. In Proc. of
International Conference on Informatics and Computing (ICIC), 2016.

15. Yuheng Ren, C., Prisacariu, V., Murray, D. and Reid, I.: Star3d: Simultaneous
tracking and reconstruction of 3d objects using rgb-d data. In ICCV, 2013.

16. May, S., Koch, P., Koch, R., Merkl, C., Pfitzner, C. and Nchter, A.: A General-
ized 2D and 3D Multi-Sensor Data Integration Approach based on Signed Distance
Functions for Multi-Modal Robotic Mapping. In VMV, pp. 95-102, 2014.

17. Gibbs, J.W.: Elements of vector analysis: arranged for the use of students in
physics. Tuttle, Morehouse & Taylor, 1884.

18. Diele, F., Lopez, L. and Peluso, R.: The Cayley transform in the numerical solution
of unitary differential systems. Advances in Comp. Math., 8(4), pp.317-334, 1998.

19. Fischler, M.A. and Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6), pp.381-395, 1981.

20. Besl, Paul J and McKay, Neil D.: Method for registration of 3-D shapes, Robotics-
DL Tentative, pp. 586–606, 1992.

21. Cressie, N. and Hawkins, D.M.: Robust estimation of the variogram. In Jour. of
the Intern. Asso. for Math. Geology, 12(2), pp. 115–125, 1980.

22. Lancaster, P. and Salkauskas, K.: Surfaces generated by moving least squares meth-
ods, Mathematics of Computation, 37(155), pp.141–158, 1981.

23. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-
pivoting algorithm for surface reconstruction, IEEE Trans. on Visualization and
Computer Graphics, 5(4), pp. 349–359, 1999.

24. Callieri, M., Cignoni, P., Corsini, M., Scopigno, R.: Masked photo blending: Map-
ping dense photographic data set on high-resolution sampled 3D models, Journal of
Computers & Graphics, 32(4) pp. 464–473, 2008.

25. Corsini, M., Cignoni, P., Scopigno, R., Efficient and flexible sampling with blue
noise properties of triangular meshes, IEEE Trans. on Visualization and Computer
Graphics, 18(6), pp.914–924, 2012.

26. Taubin, G.: Curve and surface smoothing without shrinkage. In ICCV, 1995.
27. Boyé, S., Guennebaud, G., Schlick, C.: Least squares subdivision surfaces, In Com-

puter Graphics Forum, 29(7), pp.2021–2028, 2010.
28. Geiger, A., Lenz, P., Stiller, C. and Urtasun, R.: Vision meets robotics: The KITTI

dataset. In IJRR, 32(11), pp.1231-1237, 2013.


