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Abstract Reflectance Transformation Imaging is a recent

technique allowing for the measurement and the modeling

of one of the most influential parameters on the appearance

of a surface, namely the angular reflectance, thanks to the

change in the direction of the lighting during acquisition.

From these photometric stereo images (discrete data), the

angular reflectance is modeled to allow both interactive and

continuous relighting of the inspected surface. Two families

of functions, based on polynomials and on hemispherical

harmonics, are cited and used in the literature at this aim,

respectively, associated to the PTM and HSH techniques. In

this paper, we propose a novel method called Discrete Modal

Decomposition (DMD) based on a particular and appropri-

ate Eigen basis derived from a structural dynamic problem.

The performance of the proposed method is compared with

the PTM and HSH results on three real surfaces showing dif-

ferent reflection behaviors. Comparisons are made in terms

of both visual rendering and of statistical error (local and

global). The obtained results show that the DMD is more

efficient in that it allows for a more accurate modeling of the

angular reflectance when light–matter interaction is complex

such as the presence of shadows, specularities and inter-

reflections.
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1 Introduction

The measurement and modeling of the surface appearance

is an important challenge at both scientific and applica-

tion levels, such as quality inspection and controlling the

manufacturing process in industry (aerospace, automotive,

packaging, jewelry, cosmetics) or documentation of cultural

heritage artifacts. Beside, on the one hand, the visual per-

ception of surfaces is an unconscious and complex mental

processing influenced both by the perception-based repre-

sentations of past experiences and by the ongoing tasks.

On the other hand, visual appearance is also related to the

resulting sensory responses of measurable physical stimuli

by means of adequate instruments. The choice of measur-

ing instrument therefore requires a sound understanding

of the multi-physical interactions (light, material, surface

roughness, reflectance, etc.) involved in the perception of

surfaces.

Two main approaches are possible to address this issue.

The first is geometric in that it aims to model the visual

behavior of a surface from its 3D measurement. Results

in the field of surface topography [1–3] show that the

correlations between 3D roughness parameters and sur-

face appearance remain difficult to establish, particularly

in the case of real surfaces [4], where visual behaviors

are locally heterogeneous and often require a multi-scale

analysis. Moreover, the acquisition of topographical data is

often point-wise leading to a huge amount of data, which

are time-consuming for processing and analysis. The sec-

ond approach is photometric: the modeling of the visual

behavior is directly based on the photometric measurement

of the light reflection on the inspected surface. The most

comprehensive technique is the estimation of the Bidirec-

tional Reflectance Distribution Function (BRDF) [5,6] on

each point of the inspected surface. However, a conventional
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BRDF measurement is inappropriate in many application

contexts such as the inspection of visually salient anomalies

on real surfaces. Such approach is indeed time-consuming:

a sparse sampling of both the incident light and the reflec-

tion domain implies to manage large volumes of data and

typically induces several hours of acquisition in very con-

strained conditions. Methods based on simplification of the

global model of BRDF to its components deemed most per-

tinent have then been developed. For instance, techniques

known as Bidirectional Texture Function [7–9] provide a

texture image that enables to synthesize surface appear-

ance under all illumination and viewing directions (image

relighting). Malzbender et al. [10–12] proposed a simplified

formulation of the BTF approach by holding the photo-

metric sensor in a fixed position (a camera is generally

fixed vertically to the inspected surface). This technique

is called Reflectance Transformation Imaging techniques

(RTI) and the associated method for relighting is called

Polynomial Texture Mappings. The setup and method pro-

posed in this paper for measuring and modeling the visual

appearance of real surfaces fall within the scope of these

techniques.

In the RTI acquisition process, the view point and the

distance from the camera to the objects are fixed, only the

lighting directions (generally 30–100 directions) in the inci-

dent light domain vary. For each lighting direction an image

is acquired. From these discrete data, also called photomet-

ric stereo acquisitions, an angular reflectance function is

locally estimated at each pixel, allowing after reconstruc-

tion the interactive relighting of the surface. In addition, this

modality of acquisition makes possible to assess geometrical

descriptors on the inspected surface, such as local directional

slopes and curvatures, and even 3D reconstruction of sur-

faces by integration of the normal field information [13,14].

Two reconstruction methods also called parametrizations are

generally used to model the angular reflectance, based on

polynomials [10] and hemispherical harmonics [15], and

named, respectively, PTM and HSH. Although the HSH

method improves the reliability of the description of the

angular reflectance of surfaces [16,17], it remains insuf-

ficient in the case of complex surfaces (non-Lambertian

behaviors) characterized by an oversmoothing of the angular

reflectance variations due to the presence of specularities, as

depicted in Fig. 6 for instance. Therefore, we propose a new

parametrization aiming at more reliable reconstruction of the

appearance of real surfaces. After having introduced exist-

ing methods and related works in Sect. 3, this new technique

called Discrete Modal Decomposition (DMD) is described

in Sect. 4. The method is applied on three surfaces from

industry and cultural heritage, and results are compared with

the conventional PTM and HSH techniques (Sect. 5) before

concluding.

2 Measuring surface appearance

2.1 Approach

As indicated before, the relevant photometric quantity for

measuring the appearance is the BRDF since it character-

izes in a comprehensive manner the distribution of the light

reflected from a surface, in angular and spectral terms [18–

20]. In terms of human perception, the reflectance is inter-

preted by the human visual system at different spatial scales

in order to extract relevant parameters, as the size and shape

of the specular lobe, and appreciate the appearance of the

observed surface, such as the regularity of texture, the uni-

formity of color, the gloss, or the criticity of appearance

anomalies. The multi-scale acquisition carried out by the

human visual system is hardly reproducible by an auto-

matic instrumental device for tasks like inspection and/or

digitization a lot of real surfaces. A solution to reduce the

amount of information consists then to supplement the data

by a reflectance analytical model. Different models were

thus used depending on the approach (empirical, geomet-

ric or physical), associated with different scales. We can

cite Lambert, Phong and Blinn [21] (taking into account

the specular term), Lafortune (cosinusoidal functions) [22],

Ward (Gaussian lobes) [23], Schröder et Sweldens (spheri-

cal wavelets) [24], Koenderink (Zernike polynomials) [25].

In addition to optical models, various geometric ones have

also been developed, such as Cook and Torrance [26], Oren

and Nayar [27], Beckmann and Spizzichino [28], or He [29]

model, which differ mainly in terms of both the quantity

used to model surface variation (amplitudes, slopes) and

of the distribution function (Gaussian, Lorentzian, etc.).

The microfacet models are now common in applications

related to the reconstruction of the appearance of virtual

surfaces, but often imply a strong assumption on texture

homogeneity. Though refining these reflection models by

integrating the data of measurements on real surfaces can

be relevant [21,30,31], the analytical BRDF models are not

appropriate for the specific task of inspection and more

generally for the modeling of real surfaces. Other BRDF-

reduction models have also been proposed, as for example

the light transport method approaches. They demonstrate

very interesting performances for image relighting with com-

plex light behaviors such as caustics, complex occlusions

or sub-surface scattering [32,33]. However, the reflectance

acquisition process, made punctually on the inspected sur-

face, is still time-consuming (approximately 2 h for a 1.5 Mp

image) [34], and make not possible its implementation for

applications such as the inspection of the appearance behav-

ior/quality of real surfaces.

On the other side, inverse modeling (fitting a model to

data) is widely employed in surface problems for data com-
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Fig. 1 Multi-view RTI setup called “MeSurA Sphere”

paction and processing/rendering speed-up. One of the most

efficient techniques in this context is the RTI [35,36] tech-

nique. From the acquired discrete RTI data (set of images),

a continuous model of angular reflectance can then be esti-

mated at each point of the inspected surface. The original

method, called Polynomial Texture Mappings, uses a basis

of polynomial functions to compute this inverse model-

ing [10–12,37]. This PTM model as well as the HSH show

quite realistic rendering but fail in the presence of complex

reflectances (as non-Lambertian behaviors) and leads to an

oversmoothing of the local angular reflectances. To address

this issue, i.e., in order to perform an accurate reflectance

reconstruction, we developed and implemented a setup along

with a model based on a non-orthogonal projection derived

from dynamics, called Discrete Modal Decomposition.

2.2 Angular reflectance acquisition setup

The proposed approach implies the acquisition of photomet-

ric stereo data, i.e., the acquisition of a set of images from

a fixed position of the camera, at constant exposure, while

varying the light incidence at each shot. The light sources

are distributed uniformly over the incident light domain, to

cover a wide range of angles of colatitude θ and of azimuth

φ. Malzbender originally used a rigid opaque dome [11] with

a single camera placed orthogonal to the studied surface, and

adjustable in relation to the type and the size of the objects

to acquire (focal length, depth of field,…). In the fields of

archeology and historical artifact conservation [38–41], the

intrinsic constraints of the object and its environment make

manual acquisition protocol necessary. Other devices con-

trol a motorized arc using one or more light sources placed

around the object. In each case, the viewing angle (camera

position) is fixed, which turns to be limited in the case of

inspection of certain complex shapes, such as revolution or

freeform surfaces, requiring several viewing angles.

For the particular case of quality inspection of small

objects, we designed a multi-view device called “MeSurA

Sphere” (Fig. 1). The general architecture is shown in

Fig. 2 Architecture of the MeSurA Sphere: a multi-view photometric

stereo setup

Fig. 2. This device uses the principles of RTI acquisition

described by Malzbender and formed by two opaque domes

on which white light sources are distributed (high-power

LED, 4500 K). Several improvements were made in order

to provide solutions to the limitations of the existing RTI

devices and meet industrial requirements:

– Multiple fixed points of view were spread over a sphere

instead of the more conventional half-sphere, this will

allow for the simultaneous acquisition of the scene from

different angles and thus analyze complex surface struc-

tures without touching the object under inspection. In

terms of processing, this RTI multi-view system opens

up perspectives for a combination of 3D reconstruction

modalities (stereovision) with the acquisition of photo-

metric stereo information (modeling and simulation of

appearance, estimation of slope and curvature).

– Controlling the direction of light sources onto the dome

or sphere is essential to the quality of the information

acquired although this factor is often under-controlled in

existing systems (potential errors related to sphere shape

deviations, to the fixing systems of the sources on the

dome,…). We have allowed for the individual adjustment

in direction of each LED to ±0.1◦ and re-calibration of

the device used, if necessary using a referencing machine.

This mechanical device which maintains each of the light

sources in position can also optimize natural cooling (air)

of the light sources.

– Taking into account the context referred to for this work

(industrial visual quality inspection), important devel-

opment work was done on the aspects relating to its

automation and acquisition time reduction: acquisition,

transfer and processing times are significantly reduced

by suitable hardware choices (high-speed cameras and

GigE Ethernet interface devices) and the use of versatile

and multifunctional softwares.
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We implemented our method on a PC with Intel Core i7

3.40 GHz CPU and 16 GB of memory. In our implementa-

tion, we can capture a set of 56 × 2 images (for 2 domes)

of the inspected surface from three different camera posi-

tions, with a 6 Mp resolution in approximately 30 s. A typical

acquisition session including the image acquisition and the

angular reflectance estimation on each point/pixel of the

inspected surface using the DMD modeling approach takes

about 3 min. A particular strength of the method resides in the

ability to reconstruct the rendering (relighting) in a chosen

direction instantly once the calculation of the DMD coef-

ficients has been completed. This allows a truly interactive

rendering/relighting, as required for visual surface inspection

tasks.

3 Background and related works

3.1 Problem formulation

A photometric stereo acquisition setup is used to obtain a set

of luminance values associated with acquisition light direc-

tions. From this discrete luminance information, the principle

of the method consists in estimating in each pixel (x, y) of

the inspected surface an angular reflectance function which

describes the amount of light re-emitted by the surface in the

direction of the photometric sensor system, as a function of

the light direction angles. The estimated intensity Imeas in

each pixel can thus be expressed by Eq. 1, where θ and φ are

the angles associated with the lighting direction, respectively,

the colatitude and the azimuth.

Imeas = Ir,g,b(θ, φ, x, y) = L(θ, φ, x, y)Cr,g,b(x, y) (1)

where L and C represent the luminance and the chromatic-

ity information for the (x, y) pixel. The term C does not

depend on the angles (θ, φ) because the chromaticity vari-

ation potentially induced by the change of light direction

is not taken into account for this kind of approach. More-

over, the functions of angular reflectance are expressed within

the framework of the RTI technique in the local coordinate

system (lu, lv). This coordinate system is associated with

the projection of the direction vector
−−−−−→
ue(θ, φ) in the hori-

zontal plane. Thus, the angles (θ, φ) can be expressed by:

θ = arccos

(

√

1 − l2
u − l2

v

)

and φ = arctan 2(lu, lv) (2)

The encoded gray level G by the camera of a pixel is directly

proportional to the luminance L(
−→
uc ) in the direction of the

optical center [42], provided that an appropriate calibra-

tion of the photometric device is performed. This model

could be extended to take into account some nonlineari-

ties [43], linked for example to shadows, overexposures or

Fig. 3 Geometric configuration (camera-surface-light source) allow-

ing the acquisition and the parametrization of the angular reflectance

function from the measured values of luminance at one pixel (x, y)

multi-reflection phenomena. We can then express the gray

level measured in each pixel by Eq. 3 where k is the pro-

portionality factor that may vary depending of the used

camera (linearity, gain, transmission factor of lenses,…).

G = k × g wi th g = L(
−→
uc ) = L(lu, lv, x, y) (3)

Figure 3 shows, for pixel coordinates (x, y), the angular

reflectance function estimated from different directions of

illumination (θi , φi ) while the image acquisition process is

performed. The camera is fixed (θ∗, φ∗). The estimated local

angular reflectance function is represented in the spatial coor-

dinate system (lu, lv).

3.2 Related works

Different types of functions can be used for the parametriza-

tion of the angular component of reflectance. In this sec-

tion, we describe the two popular approaches named PTM

and HSH and, respectively, based on polynomial functions

(PTM) and on a linear combination of hemispherical har-

monics.

3.2.1 Polynomial Texture Mapping (PTM)

This technique was developed by Malzbender et al. [10–12]

with the aim of improving photo-realistic rendering. Angu-

lar polynomial parametrization of reflectance is described in

[44] where through the use of Eq. 4, information on each

pixel is described.

L(lu, lv) = a0 + a1lu + a2lv + a3lulv + a4l2
u + a5l2

v (4)

The calculation of the polynomial coefficients (a0 −a5) is

carried out by an approximation of the point cloud associated

4
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(a) (b) (c)

Fig. 4 Representation of the angular reflectance description functions a second-order polynomials, b hemispherical harmonics (9 first descriptors)

and c reflectance Modal Basis (9 first descriptors)

with luminance measured for each pixel (multiple regression

system of Eq. 5) and corresponds to a discrete projection of

the luminance in the polynomial function basis of order 2 as

illustrated in Fig. 4a.
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Once the six polynomial coefficients (a0 −a5) are calculated,

they are used to simulate the appearance of the studied sur-

face (on each pixel) under any illumination direction, almost

instantaneously. The six polynomial projection descriptors

presented in Fig. 4a correspond to a mode of translation,

two modes of inclination, a saddle-shaped mode and two

parabolic modes. The complexity reachable in combining

these basic shapes is reduced and leads to oversmoothing

when rapid changes of reflectance occur (Fig. 6a), due to

shadows, specularities, or inter-reflections.

3.2.2 Hemispherical harmonics (HSH)

This technique [15,16] is an improvement in the PTM

approach implementing a projection space based on hemi-

spherical harmonics (HSH) noted Hm
l (θ, φ), where l is the

order and m the degree. These functions are derived from

shifted Associated Legendre Polynomials (ALPs) over the

interval x ∈ [0, 1] using the linear transformation of x to

2x − 1 (Eq. 6).

P̃m
l (x) = Pm

l (2x − 1) (6)

This shift in spherical harmonics domain to the half-space

formed by the hemispheric functions allows for a reduction

to the domain in which the BRDF function is expressed. By

replacing x by cos(θ) in Eq. 6, we get defined polynomi-

als over the angular interval θ = [0, π/2] corresponding

to the values taken by the polar angle on the hemisphere.

Legendre’s polynomials Pm
l can be computed efficiently

using recurrence relations [15]. The Hemispherical Harmon-

ics Hm
l (θ, φ) are thereby expressed:

Hm
l (θ, φ)

=

⎧

⎨

⎩

√
2K̃ m

l cos(mφ)P̃m
l (cos θ) (m > 0)√

2K̃ m
l sin(−mφ)P̃−m

l (cos θ) (m < 0)

K̃ 0
l P̃0

l (cos θ) (m = 0)

(7)

with the following value of normalization K̃ m
l :

K̃ m
l =

√

(2l + 1)(l − |m|)!
2π(l + |m|)!

(8)

Any function describing surface reflectance can then be

decomposed into a series of HSHs [36,45–48], of order l and

degree m (Eq. 9a), where coefficients (contributions) Cm
l are

obtained by projection of reflectance function f in the space

of the hemispherical harmonic functions (Eq. 9b):

f(θv,φv)(θi , φi ) =
n

∑

l=0

l
∑

m=−l

Cm
l (θv, φv)Hm

l (θi , φi ) + Rn

(9a)

Cm
l (θv, φv) =

∫ 2π

0

∫ π
2

0

f (θv, φv, θi , φi )Hm
l (θi , φi )

sin θi dθi dφi (9b)

4 Proposed method

A new projection basis, namely the Discrete Modal Decom-

position (DMD), is proposed to estimate the angular

reflectance function on each pixel of the inspected surface

from stereo photometric images. Similar to a discrete Fourier

transform, this decomposition allows one to evaluate the

spectral content of a discrete signal, from a projection basis

consisting of vectors resulting from a structural dynamics

problem. DMD has notably been developed and applied for

characterization and specification of geometric deviations in

form in the field of geometric tolerancing [49,50], the 3D

multi-scale topographic measurements of roughness anal-

ysis [51,52], or even for the estimation of spatial term of
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a heat diffusion problem [53,54]. Results show that this

non-orthogonal projection basis not only provides closer

assessment of the estimated information (3D shape, rough-

ness, heat source spatial term) but is also more robust against

noise and side effects. In the current context with regard to

angular reflectance modeling, the objective is to enable a

more accurate description of the local angular reflectance

functions on each point/pixel of surfaces emanating from real

objects (i.e., non-virtual, showing spatial heterogeneities and

complex reflectance behaviors).

4.1 Modal basis and decomposition

Depending on the applications and the data to parametrize,

modal decomposition can be implemented with different sets

of vectors, called modal basis. The choice of the type and con-

struction parameters of the decomposition basis (notably the

boundary conditions) is crucial for an efficient decomposition

[53] (good approximation with minimum number of descrip-

tors). To implement the DMD for the purpose of the angular

component of reflectance reconstruction, we chose to build a

basis, called Reflectance Modal Basis (RMB), drawn from a

hemispheric reference surface that physically corresponds to

an ideal Lambertian surface. Concerning the formulation of

the boundary conditions, it was chosen to impose no-inplane

displacement on the base circle of the hemispherical sur-

face. This choice helps to obtain a more efficient basis for

complex reflectance surface morphologies. The construction

stages of the RMB are described below, and a representa-

tion of the geometric functions used for the modeling of the

angular reflectance information is presented in Fig. 4 (PTM,

HSH and DMD basis). For the HSH and DMD basis, these

representations describe the deviations from an hemispher-

ical reference form, that can be associated physically to a

Lambertian angular reflectance behavior.

The associated geometry (the hemispherical surface) leads

to the definition of the dynamic structural problem described

by Eq. 10a, where M and K are the matrices of mass and stiff-

ness, θ , φ and t are, respectively, the angles associated to the

light direction and the time variable. Under such formalism,

q = q(θ, φ, t) stands for the displacements which charac-

terize the modal shapes. Such a problem classically gives the

frequency-based solution expressed in Eq. 10b, where Qk is

the vector of amplitude associated with the pulsation wk .

M.q̈ + K .q = 0 wi th q = q(θ, φ, t) (10a)

q(θ, φ, t) =
+∞
∑

k=1

Qk cos(wk t) (10b)

Modes defined by (Qk, wk) are determined by solving

the linear system (Eq. 11), where I is the identity matrix, and

M−1 K is assumed to be diagonalizable. The discrete solution

is computed by a Finite Element Analysis (FEA) and pro-

vides the basis of projection named the RMB (Q1 . . . , Qn),

where n is the number of calculated modes.

(

M−1 K −
1

w2
k

I

)

Qk = 0 (11)

4.2 DMD-based reflectance modeling (RMB)

For each pixel, the angular reflectance function f can then

be expressed as a linear combination of modal vectors

and the residue of decomposition Rn (Eq. 12a), where the

modal coefficients λk are obtained by the projection of the

vector of measured luminances L onto each of the basis

modes. However, as the modal basis is not orthonormal,

the classic projection operator PQ = Q QT cannot be used.

Indeed, the use of the dual basis Q∗ = (QT Q)−1 QT is

required. An infinity norm is assigned to modal vectors

such as ||Qk ||∞ = 1. All of the resulting modal coeffi-

cients resulting from the projection of luminance values L in

the non-orthonormal modal projection basis is expressed by

Eq. 12b.

f(θv,φv)(θi , φi ) =
n

∑

k=1

λk(θv, φv)Qk(θi , φi ) + Rn (12a)

λk(θv, φv) = (Q T
k Qk)

−1 Q T
k .L (12b)

Summarily, the modal parametrization is an adaptive

method, both in terms of type and the construction hypothe-

ses for the set of decomposition vectors and in terms of the

number of modes. Indeed in practice, one adjusts the number

of descriptors depending on the density of the acquisitions

(chosen according to the Nyquist–Shannon Sampling Theo-

rem), the complexity of the shape of the surfaces potentially

described going up when n increases. Figure 6c shows sur-

face reflectance approximated by DMD, compared to other

projection bases (PTM, HSH).

5 Experiments, assessment and results

In this section, we present an evaluation of the proposed

approach. First, datasets from the RTI acquisitions used are

described. Then, the results of reconstruction using DMD are

compared to those using PTM and HSH. This comparison is

also made by visual evaluation in terms of pixel-to-pixel dif-

ferences and local and global maps.

5.1 Datasets

The application of the modal approach for the modeling of

appearance, as well as comparison with results from the PTM
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Fig. 5 Sample of surfaces selected for Dataset 1−3. a Ring of jewelry

(Dataset 1), b wall paintings at the Château de Germolles and c gauge

block (unidirectional brushed pattern)

and HSH methods, is performed on three representative sur-

faces. These three surfaces were chosen because of their

significant difference regarding the luminous behavior allow-

ing hence a thorough assessment of the performance of the

three methods.

Dataset 1. This sample is a piece of gold-plated jewelry, hav-

ing the shape of a ring (Fig. 5a) and whose surface is

mirror-polished. The surface exhibits several local spec-

ularities, due to the presence of a variety of local defects

such as scratches or pinholes. The associated problem in

this case study particularly concerns the detection and

analysis of local visual anomalies, and more generally

the inspection of the visual quality of the shiny surfaces.

The outside diameter of the ring is about 40 mm.

Like this sample, many industrial surfaces are metal

surfaces in which the gloss aspect is obtained on the

surface using different finishing operations (brushing,

sanding, polishing, etc.). Undesired alterations related

to the manufacturing process or manipulation of objects

can produce a variety of anomalies on these surfaces.

The modeling of these phenomena requires an accurate

description of complex local shapes of reflectance.

Dataset 2. This RTI acquisition set was acquired from a

portion of historical wall painting of the Château de Ger-

molles (Fig. 5b), which is a non-documented restoration

project and that raises certain questions [55]. Among the

raised issues, we can cite the stratigraphy, to origin of the

green color and also the brush marks on the boundaries

of the letters “P” and “M”. The presence of gold and tin

is also suspected.

Light behavior here is more Lambertian than for the sam-

ple Dataset 1, since the visual aspect of this painting is

generally diffuse. However, the presence of local relief

(gold and tin) due to retouching on the heterogeneous sur-

face induce significant spatial variations in reflectance on

the surface of the analyzed area. In terms of scale, this

area represents approximately 10 cm2.

Dataset 3. This sample is a gauge block used as a stan-

dard reference to check the calibration of measurement

tools. The manufacture of gauge blocks implies lapping

and polishing processes with high precision for achiev-

ing a fine surface finish. These gauges have to be of

very high quality (precision and location of patterns)

which requires a strong quality control stage (anomaly

detection). One of the sides of the gauge block has an

unidirectional brushed pattern.

5.2 Comparison with PTM and HSH

The first step in exploiting the RTI acquisition data is the

approximation of the points cloud obtained—representing

discrete measurements of reflectance—by the optimal con-

tinuous function of the data. This reconstruction is shown

in Fig. 6. We can appreciate the quality of the reconstruc-

tion obtained by these different methods; PTM, HSH and

(a) (b)

(c)

Fig. 6 Reflectance surface approximated of one pixel (x, y) from

Dataset 1. a PTM (2nd degree polynomials), b HSH (2nd order hemi-

spherical harmonics) and c DMD (Discrete Modal Decomposition)
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Fig. 7 Macroscopic views of the acquired and reconstructed images

from Dataset 1, in a single direction of illumination, by the PTM,

HSH and DMD methods (left-side), with the associated error maps

(right-side)

DMD for a pixel extracted from the sample Dataset 1, points

indicated by a circle marker represent the measured lumi-

nance (G) for this pixel. We can clearly notice that the points

cloud is better approximated by the DMD method, particu-

larly where rapid angular changes in luminance are observed.

This quality assessment of the angular reflectance modeling,

illustrated for one pixel in Fig. 6, could be extended to all pix-

els to provide global indicators of the quality of RTI-based

reconstructions, on which the following assessment focuses.

One of the main objectives of the implementation of the

RTI methods is the modeling of the appearance of the sur-

faces. However, the process of reconstruction and relighting

from any arbitrary direction needs to be fast, particularly for

quality inspection. A comparative analysis of visual render-

ings obtained by RTI methods is carried out in order to show

the advantages of the modal approach in comparison with

the two other commonly used reconstruction methods.

Figures 7, 8, 9 and 11 show the results for local and

global reconstructions associated with directions of acqui-

Fig. 8 Cropped views of the acquired and reconstructed images from

Dataset 1, by the PTM, HSH and DMD methods, in two directions of

illumination

sition defined in the coordinate system (lu, lv) (dome of

light viewed from above) for sets of stereo photometric

images associated to Dataset 1–3. Results depict that the

three reconstruction methods described previously provide

photo-realistic visual renderings. By estimating the angular

reflectance of the pixels separately, the quality of reconstruc-

tions is not impaired and does not generate high-frequency

noise. Hence, it is unnecessary to accommodate interpixel
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Fig. 9 Cropped view of the acquired and reconstructed images from

Dataset 2, in a single direction of illumination, by the PTM, HSH and

DMD methods (left-side), with the associated error maps (right-side)

couplings during reconstruction from RTI data. This can be

attributed to the fact that for each pixel, unlike contact mea-

suring instruments, the CCD photosensitive area behaves as

a physical integrator of the light irradiating each pixel and its

neighbors.

On the results associated with the Dataset 1 (ring of jew-

elry), perceptible differences between reconstructions are

observable especially where phenomena of high variations

of intensity (shadows and specularities) and rapid changes of

luminance (e.g., scratches) happen, as illustrated in Figs. 7

and 8. Indeed, the global view of the ring in Fig. 7 and

the error maps resulting from the difference between the

acquired image and the reconstructed image show that a

more accurate approximation of the specular regions and

more generally of local areas of shiny surfaces is obtained

by the DMD approach. PTM tends to strongly transform the

measured reflectances by a smoothed continuous behavior

(near-Lambertian), thereby removing the salient features of

reflection observed on real surfaces, while HSH and espe-

cially DMD allow to reconstruct in a more faithful way the

reflectance shapes. From these faithful reconstruction, the

visual rendering is better and capture even small details.

These visual assessments are confirmed by distance metrics

and statistical evaluations, developed later in this section.

Figure 8 shows a local view of the images reconstructed

from the ring for two light directions corresponding, respec-

tively, to a normal incidence and a near-grazing incidence.

These lighting configurations reveal different scratches over

the same region of interest. This phenomenon is well known

in sensory inspection. The specular lobes caused by fine

scratches form a narrow angular region around the specular

direction. It leads to a rapid variation in angular reflectances

and a strong contrast with neighbor points showing a Lam-

bertian behavior. Moreover, the scratches on the surface of

many objects are much smaller than the size of the optical

elements in the system (human eye or sensors in camera), yet

the effects they induce in their interactions with light play an

important role and could easily and quickly be observed by

sampling the surface under different lighting conditions by

moving it around. It is noticeable that these scratches are less

discernible on images reconstructed by the PTM and HSH

methods, which confirms the effect of smoothing expected

from these approximation methods. This is due to the low

complexity of elementary shapes used for the decomposi-

tion of measured reflectances (Fig. 4). On the other side,

the reconstructed renderings by the DMD method reproduce

faithfully the visual effects of these surface defects.

Figure 9 presents a local view of the wall painting of

Germolles for a particular lighting configuration. For this

lighting configuration, only the HSH and DMD methods pro-

vide equivalent results because the light from the surface is

mostly diffused (Lambertian) unlike the shiny surface of the

ring of jewelry. However, there is a more realistic recon-

struction of the shadows by the DMD approach. In addition

the smoothing effect caused by the PTM approach tends to

darken the surface appearance, accentuating a matt render-

ing of the surface than original images. In order to allow a

comparison at a glance, a view of PTM and DMD recon-

structions (zoom-in) has been superimposed in Fig. 10. This

Figure clearly highlights the quality of the DMD reconstruc-

tion that offers the recovery of the complete 3D texture relief.

Previous observations regarding the performance of the

DMD method are also confirmed on the third dataset (Fig. 11)

representing the unidirectional pattern of a gauge block. The

parallelism of the unidirectional brushed pattern is one of the

best qualities in gauge block. The visual appearance of this

repetitive geometric texture is highly dependent on the view-

ing and lighting configurations making undesired variations

(micro-scratches, pits and marks) immediately apparent on

the surface when these are not in the predominant direction

9
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Dataset 2 (Zoom-in)—PTM (left-side) versus DMD (right-side)

Fig. 11 Macroscopic view of the acquired and reconstructed images

from Dataset 3, in a single direction of illumination, by the PTM,

HSH and DMD methods (left-side), with the associated error maps

(right-side)

of the surface pattern. Moreover, the metal cutting operations

or damaged toolings may make deeper lines in the repetitive

structural pattern which are perceived brighter than its imme-

diate surround region. These particular textural defects are

visually better reproduced by DMD than the two other meth-

ods, and a clear difference is observed between the associated

error maps.

The histograms in Fig. 12 show the distributions of mean

absolute errors of gray level, between the reference image,

associated with each lighting acquisition configuration, and

the reconstructed images using (a) PTM, (b) HSH and

(c) DMD methods, from photometric stereo images for all

datasets. Results with the DMD method depict a decrease

in the average difference of luminance (approximately −50

and −30% with, respectively, methods PTM and HSH).

This result indicates that the clouds of discrete points of

luminance are on average better approximated by the imple-

mentation of the modal parametrization. This trend is similar

for standard deviation assessments. In terms of reconstruc-

tion (relighting), these results on Datasets 1–3 confirm that

the implementation of the DMD approach fit better the orig-

inal data and, therefore, provides the real visual behavior of

studied surfaces.

5.3 Local and pixel-wise comparison

In addition to the visual assessment through relighting, an

objective evaluation is performed (pixel-to-pixel and by

pixel-to-neighborhood) in order to identify more in detail

the effects induced by DMD method compared to PTM and

HSH. At this aim, we compare, with two criteria, images

obtained after the parametrization (PTM, HSH and DMD) for

a particular lighting direction with the image corresponding

to the same lighting direction in the set of acquired images.

The first criterion is the Peak Signal-Noise Ratio (PSNR),

expressed in terms of the logarithmic decibel scale, between

two images. A significant drawback of PSNR is that it relies

strictly on numeric comparison and does not actually take

into account spatial information nor any of the human vision

system (HVS) properties [56]. Hence, we use a second cri-

terion of a measure of similarity between images, called

Structural SIMilarity (SSIM), which includes this type of

weighting [57,58]. SSIM exploits the known characteristics

of HVS. Practically, SSIM consists in measuring the struc-

tural similarity between two images, based on a combination

of luminance, contrast and structure components calculated

in sliding windows over the image.

The results for these two criteria applied to the Dataset 1

are presented in Fig. 13, in terms of number of descriptors

used for angular reflectance reconstruction. The box plots

synthesize statistical characteristics (median, quartiles, min-

imum, maximum) of the values of PSNR and SSIM obtained

for all images that result from RTI processing. These results

seem to provide a fair compromise between the cost of recon-

struction (i.e., the number of descriptors used) and the quality

of the reconstruction when using 16 descriptors (asymptotic

expansion). Moreover, for a number of descriptors higher

than or equal to 16, there is a significant gain in reconstruction
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(a)

(b)

(c)

Fig. 12 Distribution of mean absolute errors of gray level (i.e., luminance value) between acquired and reconstructed images of Datasets 1–3, in

using a PTM b HSH, and c DMD

(a) (b)

Fig. 13 Comparison of RTI quality based on a PSNR and b SSIM values, versus the number of descriptors used for reconstruction, for Dataset 1

quality using the HSH and DMD method, compared to the

results obtained by the PTM method in its original embodi-

ment (6 descriptors). However, significant differences are not

statistically conclusive between the HSH and DMD meth-

ods, notably when the number of decomposition descrip-

tors is large. Equivalent results are obtained for Datasets

2 − 3.

Although calculated locally, the obtained results express

globally an averaging process (over local differences and

inter-configurations of acquisition). This double averaging

operation therefore disrupts the relevance of the data obtained

by these criteria, in the case of our study. Therefore, it is

more interesting to figure out a measure that captures sin-

gular behaviors (related to the phenomena of shadow and

specularity for example) rather than average one. Indeed,

atypical reflectance behaviors are often associated to most

salient features (like surface defects) that are naturally rare

on surfaces and, therefore, have little influence on the aver-

age PSNR and SSIM. However, highlighting and comparing

these reconstruction methods, particularly for these atypical

11



Acc
ep

te
d 

M
an

us
cr

ip
t

(a)

(b)

(c)

(d)

Fig. 14 Kurtosis maps of Datasets 1–3. a RTI data REF, b PTM and c HSH, d DMD

points, is possible by the construction of maps of local dif-

ferences.

5.4 Comparison of shape from luminance distributions

The human visual system collects and processes contrast

changes of the 2-D image of a surface. Human subjects

judgements, while evaluating appearance of surfaces, are

also highly correlated with certain image statistics (Kurtosis,

Skewness, etc.), measured through psychophysical experi-

ments [59,60]. One of the most influential parameters on the

human perception (and subsequent statistics) is the variation

of the lighting direction. Therefore, the analysis of the statis-

tics of these variations is thus important to understand the

nature of the RTI model transformations and how they affect

the estimation of the surface reflectance properties. An analy-

sis of the shape of the distribution of luminance, for each RTI

acquisition pixel, is therefore performed in order to assess

the differences between reconstructed luminance distribution

and measured luminance distribution of Dataset 1–3 along

the dimension associated to illumination direction changes.

The shape of the distribution is determined using Skewness

and Kurtosis measures based, respectively, on moments of

order 3 and of order 4 of luminance distribution. Kurtosis is

a measure of the pointedness of the distribution while Skew-

ness is a measure of the asymmetry of the distribution.

Kurtosis of the acquired image data seem to be corre-

lated with the types of reflection. Indeed, the Kurtosis map of

Dataset 1 estimated from acquired images (Fig. 14) shows a

segmentation of diffuse and specular pixels: the specular sur-

face of the object in yellow, the diffuse background in blue

and shadows at the edge of the ring in dark blue. Regions

in yellow have a Kurtosis higher than 3, implying a more

pointed distribution than normal (mesokurtic distribution),

whereas the bluest regions with Kurtosis less than 3 indicate

a relatively flat distribution (platikurtic distributions). There

are few yellow regions on the map associated to the wall

painting, thereby confirming the essentially diffuse behavior

of this surface. A visual comparison between the maps of

Kurtosis shows a clear improvement in the shape measure

using the DMD approach for the three datasets. The absolute

percentage error Δǫ is computed from the average values

of Kurtosis measures (κ) of pixels that belong to the object

itself. The reconstruction error in Kurtosis map for Dataset 1

is significantly less important with DMD (24%) compared

to HSH (43%) and PTM (66%). Similar results are obtained

for the maps of Skewness (not presented here).

Due to the shape complexity of the descriptors used in

the decomposition, HSH and, a fortiori, DMD offer a more
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accurate approximation of non-Lambertian behaviors of real

surfaces. It leads to a better description of the variations of the

luminances, to which the human visual system is particulary

sensitive when the incidence of illumination varies on the

surface. Skewness and Kurtosis measures permit to highlight

the limits of the PTM technique which tends to oversmooth

the measured reflectances and generates uniform luminance

distributions, thereby removing observable salient features

in reflectance space which could facilitate the isolation and

identification of surface artifacts.

6 Conclusion

In this article, we have proposed an adaptive and efficient

approach to model the angular component of the reflectance

from RTI data, based on a parametrization named Discrete

Modal Decomposition. The relevance of the DMD approach

is studied by comparing the results with those obtained by the

two most commonly used RTI methods, which are, respec-

tively, associated to the second-order polynomials (PTM) and

a set of hemispherical harmonic functions (HSH). It appears

to provide a robust and reliable estimation of the complex

local reflectances in terms of both angular variations and the

intensity of luminance. If equivalent results are obtained for

the diffuse reflectance (Lambertian behavior), a more accu-

rate approximation of the specular lobes, and more generally

of local areas of shiny surfaces is provided by this approach.

DMD is therefore particularly relevant for the description

of the local angular reflectance surfaces in the context of the

issue of detection and characterization of surface defects.

It opens up promising prospects in the context of indus-

trial application for surface quality inspection. Applying the

presented method to actual experimental measurements, in

cultural heritage or industrial applications, could help to

better understand the correlations between roughness and

reflectance properties, and between these reflectance prop-

erties and the visual perception of surfaces. This is the main

perspective of the study.
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